×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Cover Story (Issue 6, 2024) | Recent development on critical collapse

  • Share:

Cover Story (Issue 6, 2024) | Recent development on critical collapse

Author: Prof. Zhou-Jian Cao (Beijing Normal University)

 

The discovery of the critical phenomena in gravitational collapse by Choptuik is a breakthrough in numerical relativity. Choptuik studied the implosion of a massless scalar field in spherical symmetry. There are two extremities in this model. At the first extremity, when the initial value of the scalar field is weak enough, the field bounces at the center and then is dispersed to infinity: a flat spacetime remains. At the other one, when the initial value is strong enough, the field will collapse to form a black hole. Critical collapse occurs in the intermediate case between these two extremities. Analytic expressions are very important for understanding the dynamics of gravitational collapse. However, the high nonlinearity of the Einstein equations makes it very challenging to seek the analytic solutions to collapse.

 

In a recent article [1], the authors studied the dynamics of critical collapse of the same model as worked with by Choptuik. Approximate analytic expressions for the metric functions and matter field in the large-radius region were obtained, agreeing well with the numerical results.

 

It was found that, in the central region, owing to the boundary conditions, the equation of motion for the scalar field is reduced to the flat-spacetime form. Specifically, the smoothness requirement at the center makes the first-order derivatives of the metric functions with respect to the areal radius asymptote to zero. Consequently, the terms related to gravity in the equation of motion for the scalar field are negligible. It is true that the Ricci curvature scalar in the central region can be very large. However, this quantity is mainly attributed to the second-order derivatives of the metric functions and other terms, rather than to the first-order ones.

 

 

 

References:

[1] Jun-Qi Guo, Yu Hu, Pan-Pan Wang, and Cheng-Gang Shao, Chinese Physics C 48, 065104 (2024). [arXiv:2307.04372 [gr-qc]]