×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

IN-Medium Effective Chiral Lagrangian and the Pion Mass in Nuclear Matter

  • We argue that effective pion mass in nuclear matter obtained from chiral effective lagrangians is unique and does not depend on off-mass-shell extensions of the pion fields as e. g. the PCAC choice. How chiral perturbation theory can be applied to the analysis of s-wave pion propagation is discussed. We consider tree level lagrangians throughout, working to O(Q 2). We illustrate the results for homogeneous, isotropic, isospin symmetric and spin-unpolarized nuclear matter, and evaluate nucleon operators in the mean field approximation, such that the corresponding results hold modulo nuclear correlation corrections. The effective pion mass in isospin symmetric nuclear matter is predicted to increase slightly with increasing nuclear density, whereas the effective time-like pion decay constant and the magnitude of the density-dependent quark condensate decrease appreciably. We work out the in-medium pion mass, the effective pion decay constant, the in-medium quark condensate, the Gell-Mann-Oakes-Renner relation and the PCAC relation in nuclear matter. The in-medium GMOR relation as well as other in-medium identities are studied in addition. Finally, we discuss how the new developments about non-relativistic chiral lagrangians and generalizations to four-quark condensates constrain the structure of the in-medium chiral lagrangians, sevral constraints on effecttive lagrangians for the description of the pion propagation in isospin symmetric, isotropic and homogenous nuclear matter.
  • 加载中
  • [1] . Kaplan D B .Nelson A E .Phys.Lett.,1986,B175:572. Brown G E ,Koch V ,Rho M .Nucl.Phys.,1991,A535:701 3. Delorme J,Ericson M ,Ericson T E O .Phys.Lett.,1992,B291:379 4. Brown B E et al.Nucl.Phys.,1993,A567:937 5. Yabu H et al.Phys.Lett.,1993,B315:17;Yabu H ,Nakamura S,Kubodera K .Phys.Lett.,1993,B317:269;Yabu H ,Myhrer F ,Kubdera K .Phys.Rev.,1994,D50:35496. Thorsson V ,Wirzba A .Nucl.Phys.,1995,A589:633 7. Coleman S ,Wess J,Zumino B .Phys.Rev.,1969,177:2239 8. Gasser J, Leutwyler H .Ann.Phys.(N .Y .),1984,158:142 9. Gasser J, Sainio M E ,Svarc A .Nucl.Phys.,1988,B307:779 10. Weinberg S .Phisica,1979,A96:327;Phys.Lett.,1990,B251:288;Nucl.Phys.,1991,B363:3 11. Knecht M ,Stern J. Generalized Chiral Perturbation Theory. In the Second Edition of the DAPHNE Physics Handbook,eds.L .Maini,G .Pancheri,N .Paver(Frascati,May1995)12. Jenkins E ,Manohar A .Phys.Lett.,1991,B255:55813. Bernard V ,Kaiser N ,Kambor J et al.Nucl.Phys.,1992,B388:31514. Bernard V ,Kaiser N ,Meiβner U G .Phys.Lett.,1993,B309:421 15. Gasser J, Leutwyler H ,Sainio M E .Phys.Lett.,1991,B253:25216. Koch R .Nucl.Phys.,1986,A448:707 17. Baym G ,Flowers E .Nucl.Phys.,1974,A222:29;Nelson A E ,Kaplan D B .Phys.Lett.,1987,B192:193;Muto T, Tatsumi T .Phys.Lett.,1992,B283:165;Thorsson V ,Prakash M ,Lattimer J M .Nucl.Phys.,1994,A572:693;1994,A574:85118. Gell-Mann M ,Oakes R J,Renner B .Phys.Rev.,1968,175:2195 19. Kirchbach M ,Riska D O .Nucl.Phys.,1994,A578:511 20. Drukarev E G ,Levin E M .Nucl.Phys.,1988,A511:697;Cohen T D ,Furnstahl R J,Griegel D K .Phys.Rev.Lett.,1991,67:961;Phys.Rev.,1992,C45:1881;Birse M C .J.Phys.,1994,G20:1537 21. Bernard V ,Meiβner U G .Nucl.Phys.,1988,A489:647;Lutz M ,Steiner A ,Weise W .Nucl.Phys.,1992,A542:521;1994,A574:755 22. Leutwyler H .Phys.Rev.,1994,D49:3033
  • 加载中

Get Citation
TANG Shu-Pian and XU Yuan. IN-Medium Effective Chiral Lagrangian and the Pion Mass in Nuclear Matter[J]. Chinese Physics C, 2001, 25(12): 1197-1205.
TANG Shu-Pian and XU Yuan. IN-Medium Effective Chiral Lagrangian and the Pion Mass in Nuclear Matter[J]. Chinese Physics C, 2001, 25(12): 1197-1205. shu
Milestone
Received: 2000-06-05
Revised: 1900-01-01
Article Metric

Article Views(2876)
PDF Downloads(590)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, [email protected]
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

IN-Medium Effective Chiral Lagrangian and the Pion Mass in Nuclear Matter

    Corresponding author: TANG Shu-Pian,
  • College of Basic Science, Hebei Science and Technology University, Shijiazhuang 050054, China2 Department of Mathematics and Physics, Hehai Univgrsity, Nanjing 210024, China

Abstract: We argue that effective pion mass in nuclear matter obtained from chiral effective lagrangians is unique and does not depend on off-mass-shell extensions of the pion fields as e. g. the PCAC choice. How chiral perturbation theory can be applied to the analysis of s-wave pion propagation is discussed. We consider tree level lagrangians throughout, working to O(Q 2). We illustrate the results for homogeneous, isotropic, isospin symmetric and spin-unpolarized nuclear matter, and evaluate nucleon operators in the mean field approximation, such that the corresponding results hold modulo nuclear correlation corrections. The effective pion mass in isospin symmetric nuclear matter is predicted to increase slightly with increasing nuclear density, whereas the effective time-like pion decay constant and the magnitude of the density-dependent quark condensate decrease appreciably. We work out the in-medium pion mass, the effective pion decay constant, the in-medium quark condensate, the Gell-Mann-Oakes-Renner relation and the PCAC relation in nuclear matter. The in-medium GMOR relation as well as other in-medium identities are studied in addition. Finally, we discuss how the new developments about non-relativistic chiral lagrangians and generalizations to four-quark condensates constrain the structure of the in-medium chiral lagrangians, sevral constraints on effecttive lagrangians for the description of the pion propagation in isospin symmetric, isotropic and homogenous nuclear matter.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return