×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

The Extention of Berry's Theory on Geometric Phase

  • To the cyclic Hamiltonian system, where we have done the parameter transition t→R(t), we study the problem of the acquirement of Berry geometric phase γn (C) by the "strict" evolution from the non-adiabatic to the adiabatic-limit. Our results show that there exist four types of evolution states, all of which can satisfy the above "strict" evolution along the same closed curve C in the space formed by the parameter R and can obtain the same Berry geometric phase γn(C). When Berry first found the geometric phase γn(C), he only considered one evolution state, which is just the adiabatic approximation case of one of the four "strict" evolution states mentioned above. So Berry's theory on geometric phase can be extended into the four types of strict evolution shown in this paper.
  • 加载中
  • [1] Berry M V. Proc. Rog. Soc. Loud. 1984, A392:45─57 2 Suter D, Mueller K T, Pines A. Phys.Rev. Lett, 1988, 60(13):1218—12203 Tycko R. Phys. Rev. Lett., 1987, 58(22):2281—2284 4 Bitter T, Dubbers D. Phys. Rev. Lett. 1987, 59(3):251—254 5 Richardson D J, kilvington A et al. Phys. Rev. Lett., 1988, 61(18):2030—2033 6 Chiao R Y, Wu Y S. Phys. Rev. Lett., 1986, 57(8):933—936; Tomita A, Chiao R Y. Phys. Rev. Lett., 1986, 57(8):937—940: Simon R, Kimble H J, Sudarshan E C G. Phys. Rev. Lett., 1988, 61(1): 19─22; Breuer H P,Dietz K,Holthaus M.Phys. Rev., 1993, A47(1);725—7287 Zygelman B.Phys.Rev. Lett., 1990, 64(3):256—259; Mead C A.Phys.Rev. Lett., 1987, 59(2): 161—164; Moody J, Shapers A, Wilczek F. Phys. Rev. Lett., 1986, 56(9):893—896; Delacretaz G, Grant E R et al. Phys. Rev. Lett., 1986; 56(24):2598─2601 8 Zak J. Phys. Rev., 1989, B40(5):3156─316; Bird D M, Preston A R. Phys. Rev. Lett., 1988, 61(25): 2863—28669 Li H Z. Phys. Rev. Lett., 1987, 58(6):539─542; Isler K, Paranjape M B. Phys. Rev., 1990, D41(2):561─563 10 Mikam R S,Ring P. Phys.Rev. Lett., 1987, 58(10):980─983; Mikam R S, Ring P et al. Phys. Lett., 1990, B35(3,4):215─220; Liang J Q. Phys. Lett., 1989, A142(1):11—13 11 Samuel J, Bhandari R. Phys. Rev. Lett., 1988; 60(23):2339─2342; Jordan T F. Phys. Rev., 1988, A38(3): 1590—159212 Aharonov Y,Anandan J. Phys.Rev. Lett., 1987, 58(16): 1593—159613 Dittrich W,Reuter M.Classical and Quantum Dynamics.Springer–Verlag,Berlin:2nd Edltion 1994:301—306 14 Ni G J,Chen S Q,Shen Y L. Phys.Lett., 1995, A197: 100—10615 Chen S Q, Ni G J. Phys. Lett., 1993, A178:339—341
  • 加载中

Get Citation
Zhang Zhongcan, Fang Zhenyun, Hu Chenguo and Sun Shijun. The Extention of Berry's Theory on Geometric Phase[J]. Chinese Physics C, 1999, 23(10): 980-991.
Zhang Zhongcan, Fang Zhenyun, Hu Chenguo and Sun Shijun. The Extention of Berry's Theory on Geometric Phase[J]. Chinese Physics C, 1999, 23(10): 980-991. shu
Milestone
Received: 1998-04-28
Revised: 1900-01-01
Article Metric

Article Views(4101)
PDF Downloads(571)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, [email protected]
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

The Extention of Berry's Theory on Geometric Phase

    Corresponding author: Zhang Zhongcan,
  • Phvsics Department of College of Science of Chongqing University, Chongqung 400044

Abstract: To the cyclic Hamiltonian system, where we have done the parameter transition t→R(t), we study the problem of the acquirement of Berry geometric phase γn (C) by the "strict" evolution from the non-adiabatic to the adiabatic-limit. Our results show that there exist four types of evolution states, all of which can satisfy the above "strict" evolution along the same closed curve C in the space formed by the parameter R and can obtain the same Berry geometric phase γn(C). When Berry first found the geometric phase γn(C), he only considered one evolution state, which is just the adiabatic approximation case of one of the four "strict" evolution states mentioned above. So Berry's theory on geometric phase can be extended into the four types of strict evolution shown in this paper.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return