×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

A CHECK ON INDIVIDUAL TERMS OF THE NUCLEAR MASS FORMULA

  • The usual way to check whether a nuclear mass formula is good or not is to compare the calculated mass with experimental value. In this paper some concepts are summaried which check one or two terms in the mass formula separately: (ⅰ) P/P ratio-pairing energy; (ⅱ) Janecke ratio-symmetry energy; (ⅲ) A-dependence of giant resonance energy-symmetry energy; (ⅳ) IMME (isobaric multiplets mass equation)-Coulomb energy; (ⅴ) Difference of Coulomb energies-Coulomb energy; (ⅵ) β-stability lineCoulomb energy and symmetry energy; (ⅶ) Fissibility-Coulomb energy and surface energy. The following nuclear mass formulae are compared with each other: (A) Revised Weizsacker formula; (B) Danos-Gillet formula; (C) Myers-Swiatecki formula; (D) our formula. The main results are the following: (ⅰ) P/P'=1 for (A), (B) or (C);=3/4 for (D), which is in agreement with the experiment. (ⅱ) From the Janecke ratio, the form T(T+1) for the symmetry energy is better than T(T+4) or T2. (ⅲ) By the symmetry term T2/Aa, with a=0.90, the A-depeneence of giant resonance can be explained extremely well. (ⅳ) IMME, M(A, Tz)=a+bTz2+cTz2+dT z3. Only for (D), d≠0. (ⅴ) △Eo=Eo (Z+I)—Ec (Z), For (A) and (B), △EcA1/3/(Z+(1/2))=const.; for (C), △EcA1/3/(Z+(1/2)) (1—1.689)/A2/3=const.; for (D), △Ec Z2/3=const., which is in good agreement with the experiment. (ⅵ) For the β-stability line, if we compare the calculated ZA with the experimental value ZA and calculate the root mean square devidtions, then for (A), RMS=0.450; (B)=0.589; (C)=0.438; (D)=0.429.
  • 加载中
  • [1] C. E. Weizeacker, Z. Physik, 96(1935), 431.[2]H.A. Bethe and R. E. Bacher, Rev. Mod. Phys., 7(1936), 165.[3]E. Fermi,Physics, (Univ, of Chicago Press. 1950).[4]A. E. S. Green, Nuclear Physics, (1955), chap. 9.[5]J. Wing, and P. Fong, Phys. Rev., 136B(1964), 923.[6]J. Wing, A Comparision of Nusleidic Mass Equations with Ezperimental Data, Argonne National Laboratory Report, ANL-6814 (1964).[7]J. Wing, Nucl. Phys., A120(1968), 369.[8]J. Wing, Systematic Comparision of Semiepirical Nucleidic Mass Equations, in Proc. 3rd Int.Conf, on Atomic Masses, Winnipeg (1967).[9]W. D. Ilwera and W. J. Swiatecki. Nucl. Phys.. 81(1968). 1:Annals of Physics 55(1969). 369:Annals of Physics, 84(1974), 186.[10]M.Danoe and P. Gillet, Proc. Int, Conf. on Nuclear Structure, Tokyo, (1977), p. 60.[1l]O. Y. Tseng(曾谨言),T. S. ChenQ(程植生)and F. C. Yang(杨福家),Nucl. Phys., A334(1980), 470.[12]J. Janecke, Nucl. Phys., 73(1965), 57.[13]C. Y. Tseng(曾谨言)and F. C. Yang(杨福家),NBI-80-5 ;或Proc. Int, Cof. on Nuclear Physics, Aug. 24-30, 1980, Berkeley, California, p. 753[14] E. P. Wigner, Proc, of the Robert A. Welch Foundation Conference on Chemical Research, ed. by W.D. Milikan, (1957).[15] W. Beneneon and E. Kashy, Rev. Mod. Phys., 51(1979), 527[16] W. Benenson and E, gashy, Atomic Maesee and Fundamental Constants, Vol. 5, ed. by J. H Saudere and A. H. Wapetra (1976),[17] J. Cerny et al., Phys. Rev. Lett., 13(1964), 726.[18] R. G. H, Robarteon, W. 8. Chien and D. R. Gooeman Rev. Lett.,34(1915), 33.(19] A. G. Ledebnhr et al.,私人通讯(1980 ).[20] J. Aysto et al., Phys. Lett,, 42(1979), 43.[21] D. M. Molts et e1., Phys. Rev. Lett., 42(1979), 43.[22] W. J. Courtney and J. D. Fox, Atomic Data and Nuclear Data Tables, 15(1975), 141.[23]曾谨言,物理学报,24(1975), 151.[24] M. A. Preston and R. K. Bhaduri, Structure of the Nucleus, (1975).[25] J. W. Dewdney, Nucl. Phys., 43(1963), 303.[26] A. Michaudon, Advances in Nuclear Physics, 6(1973), 1.[27] S. Cohen and W. J. Swiatecki, Annals of Physics,19(1962), 67; 22(1963), 406.[28] B. B. Back et al., in Physics and Chemistry of Fission (1973), Vol. 1, p.3; p.25.[29] R. Vandenbosch and J. R. Huizenga, Nuelear Fission (1973), Academic Press.
  • 加载中

Get Citation
ZENG JIN-YAN, LIN CHUN-ZHENG and YANG FU-JIA. A CHECK ON INDIVIDUAL TERMS OF THE NUCLEAR MASS FORMULA[J]. Chinese Physics C, 1981, 5(2): 232-243.
ZENG JIN-YAN, LIN CHUN-ZHENG and YANG FU-JIA. A CHECK ON INDIVIDUAL TERMS OF THE NUCLEAR MASS FORMULA[J]. Chinese Physics C, 1981, 5(2): 232-243. shu
Milestone
Received: 1980-07-29
Revised: 1900-01-01
Article Metric

Article Views(2473)
PDF Downloads(269)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, [email protected]
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

A CHECK ON INDIVIDUAL TERMS OF THE NUCLEAR MASS FORMULA

Abstract: The usual way to check whether a nuclear mass formula is good or not is to compare the calculated mass with experimental value. In this paper some concepts are summaried which check one or two terms in the mass formula separately: (ⅰ) P/P ratio-pairing energy; (ⅱ) Janecke ratio-symmetry energy; (ⅲ) A-dependence of giant resonance energy-symmetry energy; (ⅳ) IMME (isobaric multiplets mass equation)-Coulomb energy; (ⅴ) Difference of Coulomb energies-Coulomb energy; (ⅵ) β-stability lineCoulomb energy and symmetry energy; (ⅶ) Fissibility-Coulomb energy and surface energy. The following nuclear mass formulae are compared with each other: (A) Revised Weizsacker formula; (B) Danos-Gillet formula; (C) Myers-Swiatecki formula; (D) our formula. The main results are the following: (ⅰ) P/P'=1 for (A), (B) or (C);=3/4 for (D), which is in agreement with the experiment. (ⅱ) From the Janecke ratio, the form T(T+1) for the symmetry energy is better than T(T+4) or T2. (ⅲ) By the symmetry term T2/Aa, with a=0.90, the A-depeneence of giant resonance can be explained extremely well. (ⅳ) IMME, M(A, Tz)=a+bTz2+cTz2+dT z3. Only for (D), d≠0. (ⅴ) △Eo=Eo (Z+I)—Ec (Z), For (A) and (B), △EcA1/3/(Z+(1/2))=const.; for (C), △EcA1/3/(Z+(1/2)) (1—1.689)/A2/3=const.; for (D), △Ec Z2/3=const., which is in good agreement with the experiment. (ⅵ) For the β-stability line, if we compare the calculated ZA with the experimental value ZA and calculate the root mean square devidtions, then for (A), RMS=0.450; (B)=0.589; (C)=0.438; (D)=0.429.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return