×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Does Pseudo-Spin Symmetry Exist in the Continuum?

  • With the relativistic boundary condition, single proton resonant states in spherical nuclei are studied by an analytic continuation in the coupling constant (ACCC) method within the framework of the self-consistent relativistic mean field (RMF) theory. In this scheme, the energies, widths and the wave functions for proton resonant states in 120Sn are analyzed to discuss the probability of the existence of pseudospin symmetry in the resonant states, which is consistent with that in the bound states, where the splittings of energies and widths, as well as the behavior of the wave function between pseudospin doublets are found in correlation with the quantum numbers of single particle states.
  • 加载中
  • [1] . Hecht K T, Adler A. Nucl. Phys., 1969, A137: 1292. Arima A, Harvey M, Shimizu K. Phys. Lett., 1969, B30:5173. Blokhin A L, Bahri C, Draayer J P. Phys. Rev. Lett., 1995,74: 41494. Bahri C, Draayer J P, Moszkowski S A. Phys. Rev. Lett.,1992, 68: 21335. MENG J, Ring P. Phys. Rev. Lett., 1996, 77: 3963; Phys.Rev. Lett., 1998, 80: 4606. CAO L G, MA Z Y. Phys. Rev., 2002, C66: 0243117. ZHANG S S, MENG J, ZHOU S G et al. Phys. Rev., 2004,C70: 0343088. Greiner W. Relativistic Quantum Mechanics - Wave Equa-tion (Springt-Verlag, 1997)9. Ginocchio J N, Leviatan A. Phys. Rev. Lett., 2001, 87:072502
  • 加载中

Get Citation
ZHANG Shi-Sheng, ZHANG Wei, SUN Bao-Hua, GUO Jian-You and ZHOU Shan-Gui. Does Pseudo-Spin Symmetry Exist in the Continuum?[J]. Chinese Physics C, 2006, 30(S2): 97-99.
ZHANG Shi-Sheng, ZHANG Wei, SUN Bao-Hua, GUO Jian-You and ZHOU Shan-Gui. Does Pseudo-Spin Symmetry Exist in the Continuum?[J]. Chinese Physics C, 2006, 30(S2): 97-99. shu
Milestone
Received: 2006-10-16
Revised: 1900-01-01
Article Metric

Article Views(2125)
PDF Downloads(709)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, [email protected]
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Does Pseudo-Spin Symmetry Exist in the Continuum?

    Corresponding author: ZHANG Shi-Sheng,
  • School of Science and school of Advanced Engineering, Beihang University, Beijing 100083, China2 School of Electrical Engineering and Automation, Henan Polytechnic University, Henan 454000, China3 School of Physics, Peking University, Beijing 100871, China4 School of Physics and Material Science, Anhui University, Hefei 230039, China5 Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080, China6 Center for Theoretical Nuclear Physics, National Laboratory for Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, China

Abstract: With the relativistic boundary condition, single proton resonant states in spherical nuclei are studied by an analytic continuation in the coupling constant (ACCC) method within the framework of the self-consistent relativistic mean field (RMF) theory. In this scheme, the energies, widths and the wave functions for proton resonant states in 120Sn are analyzed to discuss the probability of the existence of pseudospin symmetry in the resonant states, which is consistent with that in the bound states, where the splittings of energies and widths, as well as the behavior of the wave function between pseudospin doublets are found in correlation with the quantum numbers of single particle states.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return