×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

THE SU2×SU2 BASIS AND THE PHYSICAL BASES FOR THE STATE VECTORS OF d-BOSON SYSTEMS AND THE TRACELESS BOSON OPERATORS (Ⅰ)

  • The group chain U5O5SU2×SU2 used by K. T. Hecht (1965) and by the othersprovides an important representation for expressing the physical basis of d-boson sys-tems. However the methods which have been introduced for this SU2×SU2 representa-tion to construct a physical basis is poorer in comparison with those for the otherrepresentations. In view of this we try to find appropriate methods to obtain the SU2×SU2 representation wave functions of the existing physical bases constructed byChacon et al. and by Szpikowski et al., In the present paper we analyse the SU2×SU2 tensor properties of the,bosonoperators and Vilenkin's traceless boson operators and express succinctly the elementaryvectors of the SU2×SU2 basis, the |PP SU2×SU2 > vectors, in terms of the tracelessoperators. With the help of this form of the| PP SU2 SU2> vectors we derive a simpleformula for obtaining the SU2×SU2 -representation wave functions of a physical basisfrom its (nμ)-representation wave functions. Thus the problem mentioned above is partlysolved. The other parts of the solution of the problem will be found in a coming paper.
  • 加载中
  • [1] D.B Bès, Nucl. Phys., 10(1959), 373.[2」E. Chaon, M. Moehineky and R. T, Sharp, J. Math. Phys., 17 (1976), 668.[3]N. Y. Vilenkin, Special Functions and Theory of Groups Representations(A.M. Tranl. Providence, B. I, 1968).[4]M. A. Lohe, "The Development of the Boson Calcnlns for the Otthogonal and Symplectic Groups" Thesis, University of Adelaide (1974).[5]E. Chaón and M. Moshinsky, J. Math. Phys., 18(1977), 870.[6]S. Szpikowski and A. Gózdz, Nucl. Phys., A340(1980),76.[7]K. T. Hecht, Nucl. Phys., 63(1965), 117.[8]孙洪洲, 高能物理与核物理, 4(1980), 478.
  • 加载中

Get Citation
YANG ZE-SEN and TSE-SEN YANG. THE SU2×SU2 BASIS AND THE PHYSICAL BASES FOR THE STATE VECTORS OF d-BOSON SYSTEMS AND THE TRACELESS BOSON OPERATORS (Ⅰ)[J]. Chinese Physics C, 1982, 6(5): 630-641.
YANG ZE-SEN and TSE-SEN YANG. THE SU2×SU2 BASIS AND THE PHYSICAL BASES FOR THE STATE VECTORS OF d-BOSON SYSTEMS AND THE TRACELESS BOSON OPERATORS (Ⅰ)[J]. Chinese Physics C, 1982, 6(5): 630-641. shu
Milestone
Received: 1982-03-04
Revised: 1900-01-01
Article Metric

Article Views(1636)
PDF Downloads(244)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, [email protected]
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

THE SU2×SU2 BASIS AND THE PHYSICAL BASES FOR THE STATE VECTORS OF d-BOSON SYSTEMS AND THE TRACELESS BOSON OPERATORS (Ⅰ)

  • Department of Physics, Peking University

Abstract: The group chain U5O5SU2×SU2 used by K. T. Hecht (1965) and by the othersprovides an important representation for expressing the physical basis of d-boson sys-tems. However the methods which have been introduced for this SU2×SU2 representa-tion to construct a physical basis is poorer in comparison with those for the otherrepresentations. In view of this we try to find appropriate methods to obtain the SU2×SU2 representation wave functions of the existing physical bases constructed byChacon et al. and by Szpikowski et al., In the present paper we analyse the SU2×SU2 tensor properties of the,bosonoperators and Vilenkin's traceless boson operators and express succinctly the elementaryvectors of the SU2×SU2 basis, the |PP SU2×SU2 > vectors, in terms of the tracelessoperators. With the help of this form of the| PP SU2 SU2> vectors we derive a simpleformula for obtaining the SU2×SU2 -representation wave functions of a physical basisfrom its (nμ)-representation wave functions. Thus the problem mentioned above is partlysolved. The other parts of the solution of the problem will be found in a coming paper.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return