Loading [MathJax]/jax/output/HTML-CSS/jax.js

Same-sign tetralepton signature in type-II seesaw at lepton colliders

  • The same-sign tetralepton signature via the mixing of neutral Higgs bosons and their cascade decays to charged Higgs bosons is a unique signal in the type-II seesaw model with the mass spectrum MA0MH0>MH±>MH±±. In this study, we investigate this signature at future lepton colliders, such as the ILC, CLIC, and MuC. Direct searches for doubly charged scalar H±± at the LHC have excluded MH±±<350(870) GeV in the H±±W±W±(±±) decay mode. Therefore, we choose MA0=400,600,1000,1500 GeV as our benchmark scenarios. Constrained by direct search, H±±W±W± is the only viable decay mode for MA0=400 GeV at the s=1 TeV ILC. With an integrated luminosity L=8 ab1, the promising region, with approximately 150 signal events, corresponds to a narrow band in the range of 104 GeVvΔ102 GeV. Meanwhile, for MA0=600 GeV at the s=1.5 TeV CLIC, approximately 10 signal events can be produced with L=2.5 ab1. For heavier triplet scalars MA0870 GeV, although the H±±±± decay mode is allowed, the cascade decays are suppressed. A maximum event number 16 can be obtained at approximately vΔ4×104 GeV and λ40.26 for MA0=1000 GeV with L=5 ab1 at the s=3 TeV CLIC. Finally, we find that this signature is not promising for MA0=1500 GeV at the s=6 TeV MuC. Based on the benchmark scenarios, we also study the observability of this signature. In the H±±W±W±(±±) mode, one can probe MA0800(1160) GeV at future lepton colliders.
  • 加载中
  • [1] Y. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 81, 1562-1567 (1998), arXiv:hep-ex/9807003[hep-ex doi: 10.1103/PhysRevLett.81.1562
    [2] Q. R. Ahmad et al. (SNO), Phys. Rev. Lett. 89, 011301 (2002), arXiv:nucl-ex/0204008[nucl-ex doi: 10.1103/PhysRevLett.89.011301
    [3] F. P. An et al. (Daya Bay), Phys. Rev. Lett. 108, 171803 (2012), arXiv:1203.1669[hep-ex doi: 10.1103/PhysRevLett.108.171803
    [4] S. Weinberg, Phys. Rev. Lett. 43, 1566-1570 (1979) doi: 10.1103/PhysRevLett.43.1566
    [5] E. Ma, Phys. Rev. Lett. 81, 1171-1174 (1998), arXiv:hep-ph/9805219[hep-ph doi: 10.1103/PhysRevLett.81.1171
    [6] P. Minkowski, Phys. Lett. B 67, 421-428 (1977) doi: 10.1016/0370-2693(77)90435-X
    [7] R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980) doi: 10.1103/PhysRevLett.44.912
    [8] M. Magg and C. Wetterich, Phys. Lett. B 94, 61-64 (1980) doi: 10.1016/0370-2693(80)90825-4
    [9] J. Schechter and J. W. F. Valle, Phys. Rev. D 22, 2227 (1980) doi: 10.1103/PhysRevD.22.2227
    [10] T. P. Cheng and L. F. Li, Phys. Rev. D 22, 2860 (1980)
    [11] G. Lazarides, Q. Shafi, and C. Wetterich, Nucl. Phys. B 181, 287-300 (1981) doi: 10.1016/0550-3213(81)90354-0
    [12] R. N. Mohapatra and G. Senjanovic, Phys. Rev. D 23, 165 (1981) doi: 10.1103/PhysRevD.23.165
    [13] J. Schechter and J. W. F. Valle, Phys. Rev. D 25, 774 (1982) doi: 10.1103/PhysRevD.25.774
    [14] R. Foot, H. Lew, X. G. He et al., Z. Phys. C 44, 441 (1989) doi: 10.1007/BF01415558
    [15] F. del Aguila and J. A. Aguilar-Saavedra, Nucl. Phys. B 813, 22-90 (2009), arXiv:0808.2468[hep-ph doi: 10.1016/j.nuclphysb.2008.12.029
    [16] S. P. Das, F. F. Deppisch, O. Kittel et al., Phys. Rev. D 86, 055006 (2012), arXiv:1206.0256[hepph doi: 10.1103/PhysRevD.86.055006
    [17] F. F. Deppisch, P. S. Bhupal Dev, and A. Pilaftsis, New J. Phys. 17(7), 075019 (2015), arXiv:1502.06541[hep-ph doi: 10.1088/1367-2630/17/7/075019
    [18] Y. Cai, T. Han, T. Li et al., Front. in Phys. 6, 40 (2018), arXiv:1711.02180[hep-ph doi: 10.3389/fphy.2018.00040
    [19] S. M. Boucenna, S. Morisi, and J. W. F. Valle, Adv. High Energy Phys. 2014, 831598 (2014), arXiv:1404.3751[hep-ph
    [20] Y. Cai, J. Herrero-García, M. A. Schmidt et al., Front. in Phys. 5, 63 (2017), arXiv:1706.08524[hep-ph doi: 10.3389/fphy.2017.00063
    [21] G. ’t Hooft, NATO Sci. Ser. B 59, 135-157 (1980)
    [22] A. Arhrib, R. Benbrik, M. Chabab et al., Phys. Rev. D 84, 095005 (2011), arXiv:1105.1925[hep-ph doi: 10.1103/PhysRevD.84.095005
    [23] P. Fileviez Perez, T. Han, G. y. Huang et al., Phys. Rev. D 78, 015018 (2008), arXiv:0805.3536[hep-ph doi: 10.1103/PhysRevD.78.015018
    [24] A. Melfo, M. Nemevsek, F. Nesti et al., Phys. Rev. D 85, 055018 (2012), arXiv:1108.4416[hep-ph doi: 10.1103/PhysRevD.85.055018
    [25] M. Aoki, S. Kanemura, and K. Yagyu, Phys. Rev. D 85, 055007 (2012), arXiv:1110.4625[hep-ph doi: 10.1103/PhysRevD.85.055007
    [26] Z. L. Han, R. Ding, and Y. Liao, Phys. Rev. D 91, 093006 (2015), arXiv:1502.05242[hep-ph doi: 10.1103/PhysRevD.91.093006
    [27] Z. L. Han, R. Ding, and Y. Liao, Phys. Rev. D 92(3), 033014 (2015), arXiv:1506.08996[hep-ph doi: 10.1103/PhysRevD.92.033014
    [28] A. G. Akeroyd and H. Sugiyama, Phys. Rev. D 84, 035010 (2011), arXiv:1105.2209[hep-ph doi: 10.1103/PhysRevD.84.035010
    [29] A. G. Akeroyd, S. Moretti, and H. Sugiyama, Phys. Rev. D 85, 055026 (2012), arXiv:1201.5047[hep-ph doi: 10.1103/PhysRevD.85.055026
    [30] E. J. Chun and P. Sharma, Phys. Lett. B 728, 256-261 (2014), arXiv:1309.6888[hep-ph doi: 10.1016/j.physletb.2013.11.056
    [31] K. S. Babu and S. Jana, Phys. Rev. D 95(5), 055020 (2017), arXiv:1612.09224[hep-ph doi: 10.1103/PhysRevD.95.055020
    [32] T. Li, JHEP 09, 079 (2018), arXiv:1802.00945[hep-ph
    [33] P. S. Bhupal Dev and Y. Zhang, JHEP 10, 199 (2018), arXiv:1808.00943[hep-ph
    [34] R. Primulando, J. Julio, and P. Uttayarat, JHEP 08, 024 (2019), arXiv:1903.02493[hep-ph
    [35] B. Barman, S. Bhattacharya, P. Ghosh et al., Phys. Rev. D 100(1), 015027 (2019), arXiv:1902.01217[hep-ph doi: 10.1103/PhysRevD.100.015027
    [36] Y. Du, A. Dunbrack, M. J. Ramsey-Musolf et al., JHEP 01, 101 (2019), arXiv:1810.09450[hep-ph
    [37] T. B. de Melo, F. S. Queiroz, and Y. Villamizar, Int. J. Mod. Phys. A 34(27), 1950157 (2019), arXiv:1909.07429[hep-ph doi: 10.1142/S0217751X19501574
    [38] R. Padhan, D. Das, M. Mitra et al., Phys. Rev. D 101(7), 075050 (2020), arXiv:1909.10495[hep-ph doi: 10.1103/PhysRevD.101.075050
    [39] B. Fuks, M. Nemevšek, and R. Ruiz, Phys. Rev. D 101(7), 075022 (2020), arXiv:1912.08975[hep-ph doi: 10.1103/PhysRevD.101.075022
    [40] S. Blunier, G. Cottin, M. A. Díaz et al., Phys. Rev. D 95(7), 075038 (2017), arXiv:1611.07896[hepph doi: 10.1103/PhysRevD.95.075038
    [41] P. Agrawal, M. Mitra, S. Niyogi et al., Phys. Rev. D 98(1), 015024 (2018), arXiv:1803.00677[hep-ph doi: 10.1103/PhysRevD.98.015024
    [42] P. S. B. Dev, S. Khan, M. Mitra et al., Phys. Rev. D 99(11), 115015 (2019), arXiv:1903.01431[hep-ph doi: 10.1103/PhysRevD.99.115015
    [43] X. H. Yang and Z. J. Yang, arXiv: 2103.11412[hep-ph]
    [44] M. Aaboud et al. (ATLAS), Eur. Phys. J. C 78(3), 199 (2018), arXiv:1710.09748[hep-ex doi: 10.1140/epjc/s10052-018-5661-z
    [45] A. G. Akeroyd, M. Aoki, and H. Sugiyama, Phys. Rev. D 77, 075010 (2008), arXiv:0712.4019[hep-ph doi: 10.1103/PhysRevD.77.075010
    [46] M. Aaboud et al. (ATLAS), Eur. Phys. J. C 79(1), 58 (2019), arXiv:1808.01899[hep-ex doi: 10.1140/epjc/s10052-018-6500-y
    [47] G. Aad et al. (ATLAS), arXiv: 2101.11961[hep-ex]
    [48] E. J. Chun and P. Sharma, JHEP 08, 162 (2012), arXiv:1206.6278[hep-ph
    [49] E. J. Chun, S. Khan, S. Mandal et al., Phys. Rev. D 101(7), 075008 (2020), arXiv:1911.00971[hep-ph doi: 10.1103/PhysRevD.101.075008
    [50] J. B. Guimarães da Costa et al. (CEPC Study Group), arXiv: 1811.10545[hep-ex]
    [51] T. Barklow, J. Brau, K. Fujii et al., arXiv: 1506.07830[hep-ex]
    [52] K. Fujii, C. Grojean, M. E. Peskin et al. arXiv: 1710.07621[hep-ex]
    [53] L. Linssen, A. Miyamoto, M. Stanitzki et al, arXiv: 1202.5940[physics.ins-det]
    [54] A. Robson and P. Roloff, arXiv: 1812.01644[hep-ex]
    [55] J. P. Delahaye, M. Diemoz, K. Long et al., arXiv: 1901.06150[physics.acc-ph]
    [56] K. Long, D. Lucchesi, M. Palmer et al., arXiv: 2007.15684[physics.acc-ph]
    [57] M. Baak et al. (Gfitter Group), Eur. Phys. J. C 74, 3046 (2014), arXiv:1407.3792[hep-ph doi: 10.1140/epjc/s10052-014-3046-5
    [58] A. Arhrib, R. Benbrik, M. Chabab et al., JHEP 04, 136 (2012), arXiv:1112.5453[hep-ph
    [59] A. G. Akeroyd and S. Moretti, Phys. Rev. D 86, 035015 (2012), arXiv:1206.0535[hep-ph doi: 10.1103/PhysRevD.86.035015
    [60] E. J. Chun, H. M. Lee, and P. Sharma, JHEP 11, 106 (2012), arXiv:1209.1303[hep-ph
    [61] P. S. Bhupal Dev, D. K. Ghosh, N. Okada et al., JHEP 03, 150 (2013)
    [62] P. S. Bhupal Dev, D. K. Ghosh, N. Okada et al., erratum: JHEP 05, 049 (2013), arXiv:1301.3453[hep-ph
    [63] A. M. Sirunyan et al. (CMS), arXiv: 2103.06956[hep-ex]
    [64] J. Alwall, R. Frederix, S. Frixione et al., JHEP 07, 079 (2014), arXiv:1405.0301[hep-ph
    [65] A. Alloul, N. D. Christensen, C. Degrande et al., Comput. Phys. Commun. 185, 2250-2300 (2014), arXiv:1310.1921[hep-ph doi: 10.1016/j.cpc.2014.04.012
    [66] C. Degrande, C. Duhr, B. Fuks et al., Comput. Phys. Commun. 183, 1201-1214 (2012), arXiv:1108.2040[hep-ph doi: 10.1016/j.cpc.2012.01.022
    [67] J. de Favereau et al. (DELPHES 3), JHEP 02, 057 (2014), arXiv:1307.6346[hep-ex
    [68] G. Cowan, K. Cranmer, E. Gross et al., Eur. Phys. J. C 71, 1554 (2011) doi: 10.1140/epjc/s10052-011-1554-0
    [69] G. Cowan, K. Cranmer, E. Gross et al., erratum: Eur. Phys. J. C 73, 2501 (2013), arXiv:1007.1727[physics.data-an doi: 10.1140/epjc/s10052-013-2501-z
    [70] G. Aad et al. (ATLAS), JINST 14(12), P12006 (2019), arXiv:1908.00005[hep-ex doi: 10.1088/1748-0221/14/12/P12006
  • 加载中

Figures(7)

Get Citation
Xu-Hong Bai, Zhi-Long Han, Yi Jin, Hong-Lei Li and Zhao-Xia Meng. Same-Sign Tetralepton Signature in Type-II Seesaw at Lepton Colliders[J]. Chinese Physics C. doi: 10.1088/1674-1137/ac2ed1
Xu-Hong Bai, Zhi-Long Han, Yi Jin, Hong-Lei Li and Zhao-Xia Meng. Same-Sign Tetralepton Signature in Type-II Seesaw at Lepton Colliders[J]. Chinese Physics C.  doi: 10.1088/1674-1137/ac2ed1 shu
Milestone
Received: 2021-09-01
Article Metric

Article Views(1868)
PDF Downloads(31)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Same-sign tetralepton signature in type-II seesaw at lepton colliders

Abstract: The same-sign tetralepton signature via the mixing of neutral Higgs bosons and their cascade decays to charged Higgs bosons is a unique signal in the type-II seesaw model with the mass spectrum MA0MH0>MH±>MH±±. In this study, we investigate this signature at future lepton colliders, such as the ILC, CLIC, and MuC. Direct searches for doubly charged scalar H±± at the LHC have excluded MH±±<350(870) GeV in the H±±W±W±(±±) decay mode. Therefore, we choose MA0=400,600,1000,1500 GeV as our benchmark scenarios. Constrained by direct search, H±±W±W± is the only viable decay mode for MA0=400 GeV at the s=1 TeV ILC. With an integrated luminosity L=8 ab1, the promising region, with approximately 150 signal events, corresponds to a narrow band in the range of 104 GeVvΔ102 GeV. Meanwhile, for MA0=600 GeV at the s=1.5 TeV CLIC, approximately 10 signal events can be produced with L=2.5 ab1. For heavier triplet scalars MA0870 GeV, although the H±±±± decay mode is allowed, the cascade decays are suppressed. A maximum event number 16 can be obtained at approximately vΔ4×104 GeV and λ40.26 for MA0=1000 GeV with L=5 ab1 at the s=3 TeV CLIC. Finally, we find that this signature is not promising for MA0=1500 GeV at the s=6 TeV MuC. Based on the benchmark scenarios, we also study the observability of this signature. In the H±±W±W±(±±) mode, one can probe MA0800(1160) GeV at future lepton colliders.

    HTML

    I.   INTRODUCTION
    • The discovery of neutrino oscillations [1-3] confirmed that neutrinos have sub-eV masses; however, the underlying mechanism behind such tiny neutrino masses is still open to question. Regarding the standard model (SM) as a low energy effective field theory, the simplest pathway to generate neutrino mass is via the Weinberg operator LLΦΦ/Λ [4]. There are three potential methods for realizing this operator at tree level [5], which correspond to the canonical type-I [6, 7], type-II [8-13], and type-III [14] seesaw. To verify whether these scenarios are realized in nature, the signatures of seesaw models have been extensively studied at colliders [15-18]. Because the conventional type-I seesaw requires heavy right-hand neutrinos NR (1014 GeV with the corresponding Yukawa coupling O(1)), this method is far beyond the ability of current and planned colliders. Therefore, we consider the type-II seesaw in this study. Other possible low scale approaches to generating a tiny neutrino mass are summarized in Refs. [19, 20].

      The type-II seesaw introduces a scalar triplet ∆ with a hypercharge Y=+2, where neutrino mass is generated by the Yukawa interaction between the lepton doublets and scalar triplet. After the spontaneous symmetry breaking of the SM Higgs doublet Φ, the trilinear term μΦTiτ2ΔΦ induces a vacuum expectation value for the neutral component of the scalar triplet with vΔμv2/M2Δ. As the scalar triplet ∆ also carries the lepton number +2, the µ-term breaks the lepton number by two units. This trilinear term is the only source of lepton number violation; thus, it should be naturally small according to 't Hooft's naturalness principle [21]. Then, for μvΔ, we can naturally have MΔv, i.e., the mass of the scalar triplet is at the electroweak scale [22].

      A distinct feature of this model is the presence of the doubly charged Higgs H±±. Assuming a degenerate mass spectrum for the scalar triplet, the typical channels used to hunt for H±± are the same-sign dilepton channel H±±±± and the same-sign diboson channel H±±W±W± [23]. For a non-degenerate case, the cascade decay channel H±±H±W± is also possible [24-27]. Corresponding signatures have been extensively studied at the LHC [28-34], HE-LHC [35-39], e+e collider [40, 41], and ep colliders [42, 43]. When vΔ<104 GeV, H±±±± is the dominant decay mode; a direct search at the LHC has already excluded the region MH±±<870 GeV [44]. In this case, the branching ratios of H±±±± are only correlated with neutrino oscillation parameters [45]. When vΔ>104 GeV, the H±±W±W± mode becomes dominant; searches for the pair production of H±± in this diboson channel have excluded MH±±<350 GeV [46, 47].

      Among the various potential collider signatures of the type-II seesaw, the same-sign tetralepton signature is unique [48, 49] and arises from the mixing of neutral Higgs bosons and their cascade decays to singly and doubly charged Higgs bosons. Previous studies [48, 49] focused on the hadron colliders as the LHC and FCC-hh with s=100 TeV; however, in this study, we analyze this signature at future lepton colliders. Considering the current lower bound on the doubly charged Higgs MH±±>350 GeV, this signature is beyond the reach of the CEPC [50]. To pair produce H±±, the collision energy should at least be higher than 700 GeV. Therefore, we take the following four benchmark scenarios to illustrate: MH±±MA0=400 GeV at the s=1 TeV ILC [51, 52], MH±±MA0=600 GeV at the s=1.5 TeV CLIC, MH±±MA0=1000 GeV at the s=3 TeV CLIC [53, 54], and MH±±MA0=1500 GeV at the s=6 TeV Muon Collider (MuC) [55, 56]. As will shown later, the cross section of the triplet scalars H0A0 at lepton colliders can be much larger than that at the LHC. Especially, for large vΔ>104 GeV, the resulting promising region of the same-sign tetralepton signature at lepton colliders is even larger than that in the direct search for H±±W±W± at the HL-LHC; this signal heavily depends on the parameters λ4 and vΔ. Hence, observation of this signal provides an appealing method of probing these two parameters.

      In this paper, Sec. II contains a brief introduction of the type-II seesaw model and a discussion on the branching ratios of the scalar triplet components and corresponding constraints. The same-sign tetralepton signals at the ILC, CLIC, and MuC are analyzed in Sec. III, and the conclusion is presented in Sec. IV.

    II.   THE MODEL
    • We concisely review the type-II seesaw in this section. Besides the SM Higgs doublet Φ, a scalar triplet ∆ is also employed, which can be denoted as

      Φ=(ϕ+Φ0),Δ=(Δ+2Δ++Δ0Δ+2),

      (1)

      where the neutral components can be further written as \Phi^{0} = \dfrac{1}{\sqrt{2}}  \left(v+\phi^{0}+{\rm i} \chi^{0}\right) and Δ0=12(vΔ+δ0+iη0), respectively, after spontaneous symmetry breaking. The Yukawa interaction that generates the tiny neutrino mass is given by

      LY=YΔ¯LcLiτ2ΔLL+ h.c. ,

      (2)

      where τ2 is the second Pauli matrix. The scalar potential involving Φ and ∆ is

      V(Φ,Δ)=m2ΦΦΦ+M2Tr(ΔΔ)+(μΦTiτ2ΔΦ+h.c.)+λ04(ΦΦ)2+λ1(ΦΦ)Tr(ΔΔ)+λ2[Tr(ΔΔ)]2+λ3Tr[(ΔΔ)2]+λ4ΦΔΔΦ.

      (3)

      Mixing between the doublet and triplet scalars leads to seven physical scalars, i.e., a doubly charged Higgs H±±, singly charged Higgs H±, CP-even Higgs bosons h and H0, and CP-odd Higgs A0, with the mixing angles specified by

      tanβ±=2vΔv,tanβ0=2vΔv,tan2α=4vΔvv2(λ1+λ4)2M2Δv2λ2M2Δ4v2Δ(λ2+λ3),

      (4)

      where M2Δ=μv2/(2vΔ). The masses of the doubly and singly charged Higgs bosons H++ and H+ are given by

      M2H++=M2Δv2Δλ3λ42v2,M2H+=(M2Δλ44v2)(1+2v2Δv2).

      (5)

      The masses of CP-even Higgs bosons h and H0 can be written as

      M2h=T211cos2α+T222sin2αT212sin2α,

      (6)

      M2H0=T211sin2α+T222cos2α+T212sin2α,

      (7)

      where T11, T22, and T12 are of the form

      T211=λ02v2,T222=M2Δ+2v2Δ(λ2+λ3),T212=2vΔvM2Δ+vΔv(λ1+λ4).

      (8)

      Finally, the CP-odd Higgs A0 has the following mass

      M2A0=M2Δ(1+4v2Δv2).

      (9)

      Constrained by the ρ parameter, vΔ1 GeV should be satisfied. Neglecting the contributions from vΔ, masses of triplet scalars have the relation

      M2H++M2H+M2H+M2H0,A014λ4v2.

      (10)

      In this paper, we consider the scenario with λ4>0, which leads to the mass spectrum MH++<MH+<MH0MA0. The mass difference between H0 and A0 plays a vital role in the production of the same-sign trilepton signature, which is controlled by vΔ as

      M2H0M2A02(λ2+λ3)v2Δ4M2Δv2v2Δ.

      (11)

      Here, we briefly discuss the decay properties of triplet scalars with the mass spectrum MH++<MH+<MH0MA0. Expressions for the partial decay widths of triplet scalars can be found in Ref. [25]. In this scenario, the doubly charged Higgs H±± is the lightest. The possible decay channels are same-sign dilepton H±±±± and same-sign diboson H±±W±W±. The branching ratios are plotted in Fig. 1 for the four benchmark cases with MA0=400, 600, 1000, and 1500 GeV. The decay widths of the dilepton H±±±± channel is proportional to 1/v2Δ, while that of the diboson H±±W±W± channel is proportional to v2Δ. Therefore, we have BR(H±±±±)1 for vΔ105 GeV and BR(H±H±±W)1 for vΔ103 GeV. Increasing the mass of H±± does not have a large impact on the results of BR(H±±). As for the singly charged Higgs H±, possible decay channels are leptonic H±±ν, bosonic H±W±Z/W±h, quarks H±tb/cs, and cascade H±H±±W. Here, we focus on the same-sign tetralepton signature related channel, i.e., the cascade decay H±H±±W. This channel is dominant in the range of 106vΔ103 GeV (105vΔ104 GeV) when MA0=400(600) GeV. As the mass of the triplet scalars increase to approximately 1000 GeV, the dominant range of this channel shrinks to vΔ5×105 GeV and the corresponding branching ratio never reaches one. Meanwhile, this channel cannot become dominant when MA0=1500 GeV because, as the triplet scalar masses increase, the phase space of cascade decay is suppressed. It has been shown that the dominant range of cascade decays H0H±W and A0H±W are similar to the channel H±H±±W [26].

      Figure 1.  (color online) The branching ratios of H++ (upper panels) and H+ (lower panels). In the left panels, the solid (dashed) lines indicate the results for MA0=400(600) GeV. In the right panels, the solid (dashed) lines indicate the results for MA0=1000(1500) GeV. Other relevant parameters are fixed as λ0=0.52, λ1,2,3=0.01, and λ4=0.3.

    • A.   Constraints

    • In this part, we briefly summarize the constraints on the type-II seesaw model. The vacuum stability requires the following bounded-from-below conditions [22, 34]:

      λ0,λ20,λ2+λ320,λ1+λ0(λ2+λ3)0,λ1+λ4+λ0(λ2+λ3)0,|λ4|λ2+λ3λ3λ00.

      (12)

      In addition, the unitarity of the S-matrix from tree-level scattering processes produces 10 further constraints on the quartic couplings [34]. However, only the following is nontrivial:

      |(3λ0+16λ2+12λ3)±(3λ016λ212λ3)2+24(2λ1+λ4)2|64π.

      (13)

      For the study of the same-sign tetralepton signature, the quartic couplings are λ0=0.52,λ1,2,3=0.01, and λ4[0.1,1], which satisfy the above stability and unitarity constraints.

      Furthermore, a nondegenerate mass spectrum is required to produce this signal, which contributes to the electroweak oblique parameters as

      S=132πlnM2H±±M2H02π[(12s2W)2ξ(M2H±±M2Z)+s4Wξ(M2H±M2Z)+ξ(M2H0M2Z)],

      (14)

      T=18πc2Ws2W[η(M2H±±M2Z,M2H±M2Z)+η(M2H±M2Z,M2H0M2Z)],

      (15)

      where the functions ξ(x) and η(x,y) can be found in Ref. [34]. The best fit values for the S and T parameters are S=0.06±0.09 and T=±0.10±0.07 with a correlation coefficient of +0.91 [57]. For instance, MA0=400GeV,λ4=1 predicts S=0.021 and T=0.029, which is allowed by the fit value.

      The charged scalars also contribute to the decay hγγ. The corresponding decay width is [58, 59]

      Γ(hγγ)=GFα2M3h1282π3|fNfcQ2fgfA1/2(τf)+gWA1(τW)+˜gH±A0(τH±)+4˜gH±±A0(τH±±)|2.

      (16)

      where Nfc=3(1) for quarks(leptons), Qf is the charge of particle f, τi=M2h/4M2i, and the loop functions are presented in Refs. [60-62]. In the limit vΔv, the Higgs couplings are

      gf1,gW1,˜gH±λ1vMWgM2H±,˜gH±±(λ1+λ42)vMWgM2H±±.

      (17)

      Provided the production cross section of h is the same as that of the SM Higgs, the signal strength is

      Rγγ=BR(hγγ)Type IIBR(hγγ)SM.

      (18)

      For MA0=400 GeV, λ1=0.01,λ4=1, the predicted signal strength Rγγ is 0.99, which is within the experimental range Rγγ=1.12±0.09 [63].

      Finally, the sensitivity to doubly charged scalars at the High-Luminosity (HL) LHC is considered. According to the results in Ref. [37], the HL-LHC can probe MH±± up to approximately 2200 GeV with L=3000fb1 in the dilepton channel H±±±±. Assuming the same selection efficiency, we simply project the diboson channel H±±W±W± result in Ref. [47] with 139fb1 into 3000fb1 and find that the HL-LHC can probe MH±±490 GeV.

    III.   SAME-SIGN TETRALEPTON SIGNATURE
    • In this section, we explore the same-sign tetralepton signature resulting from the neutral Higgs decay. First, the production cross section of H0A0 is considered. The results are shown in Fig. 2, where the cross section σ(H0A0) at the 14 TeV LHC and 100 TeV FCC-hh are also illustrated for comparison. All the results are computed using Madgraph5_aMC@NLO [64] with the UFO [65, 66] model file provided by Ref. [39]. For lepton colliders, the neutral Higgs pair H0A0 can be produced when MA0<s/2. At the 1 TeV ILC, the cross section σ(H0A0) is larger than that at the 14 TeV LHC in the range of 300MA0470 GeV. For 380MA0610 GeV (610MA01200 GeV), the 1.5 TeV (3 TeV) CLIC generates the largest cross section among lepton colliders. Notably, σ(H0A0) at the 3 TeV CLIC can be two orders of magnitude larger than that at the LHC for MA01000 GeV. When MA01200 GeV, the 6 TeV MuC becomes one of the best options; in the range of 1700MA02700 GeV, σ(H0A0) at the 6 TeV MuC is even larger than that at the 100 TeV FCC-hh.

      Figure 2.  (color online) Production cross section of H0A0 at various colliders. The solid red, black, green, and blue lines are the results from the 1 TeV ILC, 1.5 TeV CLIC, 3 TeV CLIC, and 6 TeV MuC, respectively. The dashed cyan and pink lines are the results from the 14 TeV LHC and 100 TeV FCC-hh.

      At the 1 TeV ILC with MA0=400 GeV, this signal is generated via the tetraboson process

      e+eH0A0H±WH±WH±±WH±±W+WW4W±+X,

      (19)

      with the leptonic decay W±±ν(=e,μ). Note that the dilepton decay H±±±± has already been excluded by a direct search at the LHC. Because the typical mass splitting between triplet scalars for the same-sign tetralepton signature is of the order of O(GeV), the final states from off-shell W decay are difficult to detect. Such a signature occurs owing to the interference effect between H0 and A0, which is sizable when δM=MH0MA0ΓH0/A0. The cross section for this signal is calculated by [48]

      σW(4±+X)=σ(e+eH0A0)×(2+x21+x2x21+x2)×BR(H0/A0H±W)2×BR(H±H±±W)2×BR(H±±W±W±)2×BR(W±±ν)4,

      (20)

      where x=δM/ΓH0/A0. The initial cross section σ(e+eH0A0) is approximately 10 fb at the 1 TeV ILC with MA0=400 GeV. In the left panel of Fig. 3, we show the product of the BRs in the above process. As shown in Fig. 1, BR(H±±W±W±) is quickly suppressed for vΔ<104 GeV, which corresponds to the left boundary; the right one is determined by the cascade decay branching ratios BR(H±H±±W). Therefore, a larger λ4 leads to a larger mass splitting and hence a wider range of vΔ [27].

      Figure 3.  (color online) (left panel) Product of the branching ratios BRWBR(H0/A0H±W)2×BR(H±H±±W)2×BR(H±±W±W±)2×BR(W±ν)4 for the process e+eH0A0 with a mass of A0 fixed as MA0=400 GeV. (right panel) Event number N of the same-sign tetralepton signature 4±+X for the mass MA0=400 GeV from e+eH0A0 and subsequent decays at the s=1 TeV ILC with L=8 ab1.

      In the right panel of Fig. 3, we show the expected event number for the same-sign tetralepton signature at the 1 TeV ILC with an integrated luminosity L=8ab1. A detector level simulation with Delphes [67] is also performed, where only pT(±)>10 GeV and |η(±)|<2.5 are required. The total cut efficiency applied is ceff=0.6 for MA0=400 GeV. The promising region in the λ4vΔ plane fills a narrow band, where the maximum event number can reach approximately 160. Such a narrow band is formed mainly owing to the interference effect between H0 and A0. For a fixed value of vΔ, the mass splitting δM is then determined. A certain value of λM4 resulting in a suitable cascade decay width, i.e., x=δM/ΓH0/A01, leads to the maximum event number. If λ4>λM4, ΓH0/A0 will increase; thus, x will decrease, and the final event number will also decrease. Considering that, for a small mass splitting of the triplet scalars ΔMλ4v2/(8MA0), the cascade decay's dominant width ΓH0/A0ΔM5 and δMv2Δ, it is easy to derive the relation λ4v2/5Δ by taking δMΓH0/A0.

      Furthermore, we consider MH0MA0=600 GeV at the s=1.5 TeV CLIC. In this scenario, H±±W±W± is again the only allowed decay mode; therefore, the tetralepton signal is also generated via the process in Eq. (19). The product of the BRs and corresponding event number are shown in Fig. 4. Compared to the previous scenario with MA0=400 GeV, the dominant region of BRW decreases for MA0=600 GeV, e.g.,104vΔ102GeV. With an integrated luminosity of 2.5ab1, approximately 10 signal events occur at the 1.5 TeV CLIC with MA0=600 GeV at best. Therefore, this scenario is marginally promising.

      Figure 4.  (color online) Same as Fig. 3 but for MH0MA0=600 GeV at the s=1.5 TeV CLIC with luminosity L=2.5 ab1.

      Now, the same-sign tetralepton signature at the 3 TeV CLIC is considered. In this scenario, we set MA0=1000 GeV, and the same-sign dilepton decay H±±± is allowed. Therefore, in addition to the tetraboson process in Eq. (19), we also have the direct tetralepton channel

      e+eH0A0H±WH±WH±±WH±±W+WW4±+X.

      (21)

      The corresponding cross section is then calculated as

      σ(4±+X)=σ(e+eH0A0)×(2+x21+x2x21+x2)×BR(H0/A0H±W)2

      ×BR(H±H±±W)2×BR(H±±±±)2.

      (22)

      In the upper left panel of Fig. 5, we show the product of the BRs in the direct tetralepton decay process BR. As shown in Fig. 1, the cascade decays are suppressed for vΔ105 GeV with MA0=1000 GeV; hence, we do not show the region vΔ<105 GeV. The right boundary corresponds to the area where BR(H±±±±) is suppressed. For λ4>0.5, there is a large parameter space where the product of the BRs reaches its maximum: 0.25. In the upper right panel of Fig. 5, the product of the BRs in the diboson process BRW is also shown. Comparing with the region of MA0=400 GeV in Fig. 3, the region of MA0=1000 GeV is much smaller. For instance, when the product of the BRs is larger than 0.002, λ40.5 and 104vΔ103 GeV are required. This is because, for a heavier scalar triplet, the branching ratios of cascade decays are suppressed.

      Figure 5.  (color online) (upper left panel) Product of the branching ratios BRBR(H0/A0H±W)2×BR(H±H±±W)2×BR(H±±±±)2 for the process e+eH0A0 with MA0=1000GeV. (upper right panel) Product of the branching ratios BRWBR(H0/A0H±W)2×BR(H±H±±W)2×BR(H±±W±W±)2×BR(W±ν)4. (lower panel) Event number N of the same-sign tetralepton signature 4±+X for the mass MH0MA0=1000GeV from e+eH0A0 and subsequent decays at the s=3 TeV CLIC with luminosity L=5 ab1.

      In the lower panel of Fig. 5, we show the expected event number for the same-sign tetralepton signature at the 3 TeV CLIC with an integrated luminosity L=5ab1. Here, the expected event number is the sum of the diboson decay process in Eq. (20) and the dilepton decay process in Eq. (22). In a small area at approximately vΔ4×104 GeV and λ40.26, we have the maximum number 16, where the dominant contribution is from H±±±±. Meanwhile, the H±±W±W± dominant tail region with 104vΔ103 GeV only predicts a total event number of less than three; thus, this long tail region is not promising.

      Finally, we consider the same-sign tetralepton signature at the 6 TeV MuC. The corresponding production processes at the muon collider are

      μ+μH0A0H±WH±WH±±WH±±W+WW4W±(±ν)+X,

      (23)

      μ+μH0A0H±WH±WH±±WH±±W+WW4±+X.

      (24)

      The production cross section is obtained by simply replacing σ(e+eH0A0) in Eq. (20) and Eq. (22) with σ(μ+μH0A0). In the upper panels of Fig. 6, we show the product of the BRs in the direct tetralepton and tetraboson decay processes with MA0=1500 GeV. To realize a relatively large BR value, λ4 must be larger than 0.8. However, such a large λ4 leads to an excessively large mass splitting of the triplet scalars; hence, the interference factor x is suppressed. In the lower panel of Fig. 6, we show the total event number for the same-sign tetralepton signature at the 6 TeV MuC with an integrated luminosity L=10ab1. It is clear that the event number is always smaller than three. Therefore, the same-sign tetralepton signature is not promising at the MuC for MA0=1500 GeV.

      Figure 6.  (color online) Same as Fig. 5, but for MH0MA0=1500GeV from the process μ+μH0A0 at the s=6 TeV MuC with luminosity L=10 ab1.

      Based on the above benchmarks, we discuss the significance of the same-sign tetralepton signature at various lepton colliders. Notably, as the discovery channel for type-II seesaw, the direct production of the doubly charged scalar pair H++H is the best option. The same-sign tetralepton signature is a promising channel for probing the other scalars for a certain parameter space with MH±±<MH±<MH0MA0. To estimate the observability of this signal at lepton colliders, we calculate the maximum event number NMax and corresponding significance SMax. The significance S is calculated as [68, 69]

      S=2((N+B)log(1+NB)N),

      (25)

      where we assume B=1 for the background event. The dominant background arises from the electron charge-flip in the opposite-sign four electron signature e+ee+e(4e). The cross section of 4e at the 1 TeV ILC is 3.6 fb. According to Ref. [70], the charge misidentification probabilities vary between 0.01% and 0.8% with the BDT method. Taking 0.4% as the average value, the background event is approximately 0.46 with 8ab1 at the 1 TeV ILC. For higher collision energies, the cross section of 4e decreases, but the misidentification rate increases for higher electron transverse energies. Therefore, taking the background event to be approximately B=1 is a conservative estimation.

      The results are shown in Fig. 7. It is clear that, with an increase in MA0, the maximum event number rapidly decreases. For the same-sign tetralepton originating from the tetraboson 4W±, the discovery regions for the 1 TeV ILC, 1.5 TeV CLIC, 3 TeV CLIC, and 6 TeV MuC are MA0 480, 620, 800, 710 GeV, respectively. Even in the future, when the HL-LHC will not observe H±± in the diboson decay mode, the possibility to observe this signature in the mass range MA0[490,800] GeV at the CLIC remains. Moreover, if we consider an additional contribution from the direct teralepton channel 4±, the 3 TeV CLIC and 6 TeV MuC can probe MA0 1100, 1160 GeV, respectively. However, taking into account the future results from the HL-LHC, if no clear observation of H±± is obtained, the 1 TeV ILC will have no signature; also, there will be no direct tetralepton signal 4± at the 3 TeV CLIC and 6 TeV MuC.

      Figure 7.  (color online) The maximum event number NMax (left) and corresponding significance SMax of the same-sign tetralepton signature. The cyan and purple regions are excluded by the H±W±W± and H±±±± search at present, and the future exclusion limits at the HL-LHC are indicated by the dashed cyan and purple lines.

      The implication of the above bounds are now considered. The most promising scenario is the observation of H±± with MH++ 1 TeV in upcoming experiments. Then, the observation of the same-sign tetralepton signature at the 3 TeV CLIC will determine the coupling λ4 and triplet VEV vΔ according to Fig. 5. In contrast, if this signal is observed in the 4W± channel, we obtain a strong relation between λ4 and vΔ, as shown in Fig. 3. In this scenario, the VEV vΔ could be further fixed when λ4 is determined by the measurement of mass splitting between H±± and H±. In the worst case, i.e., if no same-sign tetralepton signal is observed at future lepton colliders, H±± should be heavier than 800 GeV under certain relations between λ4 and vΔ.

    IV.   CONCLUSION
    • In this study, we investigate the novel same-sign tetra-lepton signature in type-II seesaw at future lepton colliders (including the 1 TeV ILC, 3 TeV CLIC, and 6 TeV MuC). The signature arises from the mixing of the associated production of Higgs fields H0A0 followed by the cascade decays H0/A0H±W, H±H±±W, and H±±±±/W±W± with W±±ν. There are two important parameters λ4 and vΔ closely related to this signature, where λ4 controls the mass splitting of the triplet scalars and vΔ determines the decay mode of H±±.

      First, we consider a low mass benchmark scenario with MA0=400 GeV at the 1 TeV ILC. In this case, H±±W±W± is the only viable decay mode. The production cross section of the process e+eH0A0 varies around 10 fb. The promising region corresponds to a narrow band in the range 104vΔ102 GeV. With an integrated luminosity L=8ab1, we find that a neutral Higgs with a mass of approximately 400GeV can lead to roughly 150 events at the ILC. Then, we study the scenario MA0=600 GeV at the 1.5 TeV ILC, where approximately 10 events can be produced with L=2.5ab1. For heavier triplet scalars, we consider MA0=1000 GeV at the 3 TeV CLIC, where the cross section σ(e+eH0A0) is approximately 2 fb. Although this value is roughly two orders of magnitude larger than that at the 14 TeV LHC, the cascade decay branching ratios are suppressed for small λ4 values. This leads to a mismatch between the cascade decays and the interference effect. A maximum event number 16 can be obtained at approximately vΔ4×104 GeV and λ40.26 with an integrated luminosity L=5ab1 at the CLIC. In this high mass scenario, the H±±±± decay mode is the dominant contribution to the same-sign tetralepton signature. If the triplet scalars are even heavier than 1 TeV (e.g.,MA0=1500 GeV), the cascade decays will be heavily suppressed. With an integrated luminosity L=10ab1 at the 6 TeV MuC, there are three signal events at best. Therefore, this signature is not promising at the MuC.

      Based on the above benchmarks, we consider the significance of this signature. In the H±±W±W± decay mode, the promising region of the tetraboson 4W± is 350MA0800 GeV at lepton colliders. Meanwhile, in the H±±±± decay mode, the promising region of the direct tetralepton 4± is 870MA01160 GeV. If no doubly charged scalar H±± is observed at future HL-LHCs, the direct 4± channel will not be examined at lepton colliders. However, one can still probe this signal in the mass range MA0[490, 800] GeV in the 4W± channel at the CLIC.

Reference (70)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return