×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Confronting the DAMPE excess with the scotogenictype-II seesaw model

  • The DArk Matter Particle Explorer (DAMPE) has observed a tentative peak at E~1.4 TeV in the cosmic-ray electron spectrum. In this paper, we interpret this excess in the scotogenic type-II seesaw model. This model extends the canonical type-II seesaw model with dark matter (DM) candidates and a loop-induced vacuum expectation value of the triplet scalars, v△, resulting in small neutrino masses naturally even for TeV scale triplet scalars. Assuming a nearby DM subhalo, the DAMPE excess can be explained by DM annihilating into a pair of triplet scalars which subsequently decay to charged lepton final states. Spectrum fitting of the DAMPE excess indicates it potentially favors the inverted neutrino mass hierarchy. We also discuss how to evade associated neutrino flux in our model.
      PCAS:
  • 加载中
  • [1] G. Ambrosi et al (DAMPE Collaboration), arXiv:1711.10981[astro-ph.HE]
    [2] X. J. Huang, Y. L. Wu, W. H. Zhang, and Y. F. Zhou, arXiv:1712.00005[astro-ph.HE]
    [3] A. Fowlie, Phys. Lett. B, 780:181 (2018) doi:10.1016/j.physletb.2018.03.006[arXiv:1712.05089[hep-ph]]
    [4] F. Aharonian et al (H.E.S.S. Collaboration), Phys. Rev. Lett., 101:261104 (2008)[arXiv:0811.3894[astro-ph]] F. Aharonian et al (H.E.S.S. Collaboration), Astron. Astrophys., 508:561 (2009)[arXiv:0905.0105[astro-ph.HE]]
    [5] Q. Yuan et al, arXiv:1711.10989[astro-ph.HE]
    [6] Y. Bai and J. Berger, JHEP, 1408:153 (2014)[arXiv:1402.6696[hep-ph]]
    [7] Y. Z. Fan, W. C. Huang, M. Spinrath, Y. L. S. Tsai, and Q. Yuan, Phys. Lett. B, 781:83 (2018) doi:10.1016/j.physletb.2018.03.066[arXiv:1711.10995[hep-ph]]
    [8] P. H. Gu and X. G. He, arXiv:1711.11000[hep-ph] G. H. Duan, L. Feng, F. Wang, L. Wu, J. M. Yang, and R. Zheng, arXiv:1711.11012[hep-ph] L. Zu, C. Zhang, L. Feng, Q. Yuan, and Y. Z. Fan, arXiv:1711.11052[hep-ph] Y. L. Tang, L. Wu, M. Zhang, and R. Zheng, arXiv:1711.11058[hep-ph] W. Chao and Q. Yuan, arXiv:1711.11182[hep-ph] P. H. Gu, arXiv:1711.11333[hep-ph] P. Athron, C. Balazs, A. Fowlie, and Y. Zhang, arXiv:1711.11376[hep-ph] J. Cao, L. Feng, X. Guo, L. Shang, F. Wang, and P. Wu, arXiv:1711.11452[hepph] G. H. Duan, X. G. He, L. Wu, and J. M. Yang, arXiv:1711.11563[hep-ph] X. Liu and Z. Liu, arXiv:1711.11579[hepph] X. J. Huang, Y. L. Wu, W. H. Zhang, and Y. F. Zhou, arXiv:1712.00005[astro-ph.HE] W. Chao, H. K. Guo, H. L. Li, and J. Shu, arXiv:1712.00037[hep-ph] Y. Gao and Y. Z. Ma, arXiv:1712.00370[astro-ph.HE] J. S. Niu, T. Li, R. Ding, B. Zhu, H. F. Xue, and Y. Wang, arXiv:1712.00372[astroph.HE] P. H. Gu, arXiv:1712.00922[hep-ph] T. Nomura and H. Okada, arXiv:1712.00941[hep-ph] R. Zhu and Y. Zhang, arXiv:1712.01143[hep-ph] K. Ghorbani and P. H. Ghorbani, arXiv:1712.01239[hep-ph] J. Cao, L. Feng, X. Guo, L. Shang, F. Wang, P. Wu, and L. Zu, arXiv:1712.01244[hepph] F. Yang and M. Su, arXiv:1712.01724[astro-ph.HE]
    [9] S. Kanemura and H. Sugiyama, Phys. Rev. D, 86:073006 (2012)[arXiv:1202.5231[hep-ph]]
    [10] P. Fileviez Perez, T. Han, G. y. Huang, T. Li, and K. Wang, Phys. Rev. D, 78:015018 (2008)[arXiv:0805.3536[hep-ph]]
    [11] I. Gogoladze, N. Okada, and Q. Shafi, Phys. Lett. B, 679:237 (2009)[arXiv:0904.2201[hep-ph]]
    [12] P. S. B. Dev, D. K. Ghosh, N. Okada, and I. Saha, Phys. Rev. D, 89:095001 (2014)[arXiv:1307.6204[hep-ph]]
    [13] C. H. Chen and T. Nomura, JHEP, 1409:120 (2014)[arXiv:1404.2996[hep-ph]]
    [14] C. H. Chen, C. W. Chiang, and T. Nomura, Phys. Lett. B, 747:495 (2015)[arXiv:1504.07848[hep-ph]]
    [15] C. H. Chen, C. W. Chiang, and T. Nomura, arXiv:1712.00793[hep-ph]
    [16] T. Li, N. Okada, and Q. Shafi, Phys. Lett. B, 779:130 (2018) doi:10.1016/j.physletb.2018.02.006[arXiv:1712.00869[hepph]]
    [17] E. Ma, Phys. Rev. Lett., 115(1):011801 (2015)[arXiv:1502.02200[hep-ph]]
    [18] S. Fraser, C. Kownacki, E. Ma, and O. Popov, Phys. Rev. D, 93(1):013021 (2016)[arXiv:1511.06375[hep-ph]]
    [19] S. Y. Guo, Z. L. Han, and Y. Liao, Phys. Rev. D, 94(11):115014 (2016)[arXiv:1609.01018[hep-ph]]
    [20] C. Bonilla, J. W. F. Valle, and J. C. Romao, Phys. Rev. D, 91(11):113015 (2015)[arXiv:1502.01649[hep-ph]]
    [21] W. Wang and Z. L. Han, Phys. Rev. D, 94(5):053015 (2016)[arXiv:1605.00239[hep-ph]]
    [22] W. Wang, R. Wang, Z. L. Han, and J. Z. Han, arXiv:1705.00414[hep-ph]
    [23] W. Wang and Z. L. Han, Phys. Rev. D, 92:095001 (2015)[arXiv:1508.00706[hep-ph]]
    [24] A. Arhrib, R. Benbrik, M. Chabab, G. Moultaka, M. C. Peyranere, L. Rahili, and J. Ramadan, Phys. Rev. D, 84:095005 (2011)[arXiv:1105.1925[hep-ph]]
    [25] Z. L. Han, R. Ding, and Y. Liao, Phys. Rev. D, 91:093006 (2015)[arXiv:1502.05242[hep-ph]]
    [26] Z. L. Han, R. Ding, and Y. Liao, Phys. Rev. D, 92(3):033014 (2015)[arXiv:1506.08996[hep-ph]]
    [27] A. Melfo, M. Nemevsek, F. Nesti, G. Senjanovic, and Y. Zhang, Phys. Rev. D, 85:055018 (2012)[arXiv:1108.4416[hep-ph]]
    [28] M. Aaboud et al (ATLAS Collaboration), arXiv:1710.09748[hep-ex] G. Aad et al (ATLAS Collaboration), JHEP, 1503:041 (2015)[arXiv:1412.0237[hep-ex]]
    [29] C. Patrignani et al (Particle Data Group], Chin. Phys. C, 40:no. 10, 100001 (2016).
    [30] A. G. Akeroyd, M. Aoki, and H. Sugiyama, Phys. Rev. D, 79:113010 (2009)[arXiv:0904.3640[hep-ph]] T. Fukuyama, H. Sugiyama, and K. Tsumura, JHEP, 1003:044 (2010)[arXiv:0909.4943[hep-ph]]
    [31] I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, I. MartinezSoler, and T. Schwetz, JHEP, 1701:087 (2017)[arXiv:1611.01514[hep-ph]]
    [32] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, and B. Fuks, Comput. Phys. Commun., 185:2250 (2014)[arXiv:1310.1921[hep-ph]]
    [33] G. BWlanger, F. Boudjema, A. Pukhov, and A. Semenov, Comput. Phys. Commun., 192:322 (2015)[arXiv:1407.6129[hepph]]
    [34] P. A. R. Ade et al (Planck Collaboration), Astron. Astrophys., 594:A13 (2016)[arXiv:1502.01589[astro-ph.CO]]
    [35] D. S. Akerib et al (LUX Collaboration), Phys. Rev. Lett., 118(2):021303 (2017)[arXiv:1608.07648[astro-ph.CO]]
    [36] E. Aprile et al (XENON Collaboration), Phys. Rev. Lett., 119(18):181301 (2017)[arXiv:1705.06655[astro-ph.CO]]
    [37] X. Cui et al (PandaX-Ⅱ Collaboration), Phys. Rev. Lett., 119(18):181302 (2017)[arXiv:1708.06917[astro-ph.CO]]
    [38] Y. Zhao, K. Fang, M. Su, and M. C. Miller, arXiv:1712.03210[astro-ph.HE]
    [39] J. Alwall et al, JHEP, 1407:079 (2014) doi:10.1007/JHEP07(2014)079[arXiv:1405.0301[hep-ph]]
    [40] M. G. Aartsen et al (IceCube Collaboration), Eur. Phys. J. C, 77(9):627 (2017) doi:10.1140/epjc/s10052-017-5213-y[arXiv:1705.08103[hep-ex]]
    [41] M. Cirelli et al, JCAP, 1103:051 (2011); JCAP, 1210:E01 (2012)[arXiv:1012.4515[hep-ph]]
    [42] J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J., 462:563 (1996)[astro-ph/9508025]
    [43] J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J., 490:493 (1997)[astro-ph/9611107]
    [44] A. W. Strong and I. V. Moskalenko, Astrophys. J., 509:212 (1998)[astro-ph/9807150]
    [45] I. V. Moskalenko and A. W. Strong, Astrophys. J., 493:694 (1998)[astro-ph/9710124]
    [46] M. Aguilar et al (AMS Collaboration), Phys. Rev. Lett., 113:121102 (2014)
    [47] S. Abdollahi et al (Fermi-LAT Collaboration), Phys. Rev. D, 95(8):082007 (2017)[arXiv:1704.07195[astro-ph.HE]]
  • 加载中

Get Citation
Ran Ding, Zhi-Long Han, Lei Feng and Bin Zhu. Confronting the DAMPE excess with the scotogenictype-II seesaw model[J]. Chinese Physics C, 2018, 42(8): 083104. doi: 10.1088/1674-1137/42/8/083104
Ran Ding, Zhi-Long Han, Lei Feng and Bin Zhu. Confronting the DAMPE excess with the scotogenictype-II seesaw model[J]. Chinese Physics C, 2018, 42(8): 083104.  doi: 10.1088/1674-1137/42/8/083104 shu
Milestone
Received: 2018-04-10
Article Metric

Article Views(1624)
PDF Downloads(43)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, [email protected]
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Confronting the DAMPE excess with the scotogenictype-II seesaw model

  • 1.  Center for High Energy Physics, Peking University, Beijing 100871, China
  • 2.  School of Physics and Technology, University of Jinan, Jinan 250022, China
  • 3.  Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China
  • 4.  Department of Physics, Yantai University, Yantai 264005, China

Abstract: The DArk Matter Particle Explorer (DAMPE) has observed a tentative peak at E~1.4 TeV in the cosmic-ray electron spectrum. In this paper, we interpret this excess in the scotogenic type-II seesaw model. This model extends the canonical type-II seesaw model with dark matter (DM) candidates and a loop-induced vacuum expectation value of the triplet scalars, v△, resulting in small neutrino masses naturally even for TeV scale triplet scalars. Assuming a nearby DM subhalo, the DAMPE excess can be explained by DM annihilating into a pair of triplet scalars which subsequently decay to charged lepton final states. Spectrum fitting of the DAMPE excess indicates it potentially favors the inverted neutrino mass hierarchy. We also discuss how to evade associated neutrino flux in our model.

    HTML

Reference (47)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return