×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Continuum effect in resonance spectra of neutron-rich oxygen isotopes

  • Starting from the CD-Bonn potential, we have performed Gamow shell-model calculations for neutron-rich oxygen isotopes, investigating excitation spectra and their resonant properties. The Gamow shell model is based on the Berggren ensemble, which is capable of treating the continuum effect reasonably in weakly bound or unbound nuclei. To calculate heavier-mass oxygen isotopes, we choose 16O as a frozen core in the Gamow shell-model calculations. The first 2+ excitation energies of the even-even O isotopes are calculated, and compared with those obtained by the conventional shell model using the empirical USDB interaction. The continuum effect is proved to play an important role in the shell evolution near the drip line. We also discuss the effect of the Berggren contour choice. We improve the approximation in the contour choice to give more precise calculations of resonance widths.
      PCAS:
  • 加载中
  • [1] Y. Kondo and et al, Phys. Rev. Lett., 116:102503(2016)
    [2] E. Caurier, F. Nowacki, A. Poves and J. Retamosa, Phys. Rev. C, 58:2033-2040(1998)
    [3] C. R. Hoffman and et al, Phys. Rev. Lett., 100:152502(2008)
    [4] C. Yuan, T. Suzuki, T. Otsuka, F. Xu, and N. Tsunoda, Phys. Rev. C, 85:064324(2012)
    [5] B. A. Brown and W. A. Richter, Phys. Rev. C, 74:034315(2006)
    [6] M. Kowalska and et al, Phys. Rev. C, 77:034307(2008)
    [7] R. Kanungo and et al, Phys. Rev. Lett., 102:152501(2009)
    [8] K. Tshoo and et al, Phys. Rev. Lett., 109:022501(2012)
    [9] S. R. Stroberg, H. Hergert, J. D. Holt, S. K. Bogner, and A. Schwenk, Phys. Rev. C, 93:051301(2016)
    [10] K. Hagino and H. Sagawa, Phys. Rev. C, 90:027303(2014)
    [11] K. Hagino and H. Sagawa, Phys. Rev. C, 89:014331(2014)
    [12] L. V. Grigorenko and M. V. Zhukov, Phys. Rev. C, 91:064617(2015)
    [13] R. Id Betan, R. J. Liotta, N. Sandulescu, and T. Vertse, Phys. Rev. Lett., 89:042501(2002)
    [14] K. Bennaceur, J. Dobaczewski, and M. Płoszajczak, Phys. Rev. C, 60:034308(1999)
    [15] N. Michel, W. Nazarewicz, and M. Płoszajczak, Phys. Rev. C, 82:044315(2010)
    [16] I. Rotter, Reports on Progress in Physics, 54(4):635(1991)
    [17] A. Volya and V. Zelevinsky, Phys. Rev. C, 74:064314(2006)
    [18] N. Michel, W. Nazarewicz, M. Płoszajczak, and K. Bennaceur, Phys. Rev. Lett., 89:042502(2002)
    [19] W. Fritsch, R. Lipperheide, and U. Wille, Nuclear Physics A, 241(1):79-108(1975)
    [20] N. Michel, W. Nazarewicz, M. Płoszajczak, and J. Okołowicz, Phys. Rev. C, 67:054311(2003)
    [21] Z. Sun, Q. Wu, Z. Zhao, B. Hu, S. Dai, and F. Xu. Physics Letters B, 769:227-232(2017)
    [22] R. Machleidt, Phys. Rev. C, 63:024001(2001)
    [23] S. Bogner, T. Kuo, and A. Schwenk, Physics Reports, 386(1):1-27(2003)
    [24] K. Takayanagi, Nuclear Physics A, 852(1):61-81(2011)
    [25] N. Tsunoda, K. Takayanagi, M. Hjorth-Jensen, and T. Otsuka, Phys. Rev. C, 89:024313(2014)
    [26] N. Michel, W. Nazarewicz, and M. Płoszajczak, Phys. Rev. C, 70:064313(2004)
    [27] Y. Jaganathen, R. M. I. Betan, N. Michel, W. Nazarewicz, and M. Płoszajczak, Phys. Rev. C, 96:054316(2017)
    [28] G. Hagen, M. Hjorth-Jensen, G. R. Jansen, R. Machleidt, and T. Papenbrock, Phys. Rev. Lett., 108:242501(2012)
    [29] G. Papadimitriou, J. Rotureau, N. Michel, M. Płoszajczak, and B. R. Barrett, Phys. Rev. C, 88:044318(2013)
    [30] I. J. Shin, Y. Kim, P. Maris, J. P. Vary, C. Forssn, J. Rotureau, and N. Michel, Journal of Physics G:Nuclear and Particle Physics, 44(7):075103(2017)
    [31] J. Dudek, Z. Szymański, and T. Werner, Phys. Rev. C, 23:920-925(1981)
    [32] R. Machleidt and D. Entem, Physics Reports, 503(1):1-75(2011)
  • 加载中

Get Citation
Si-Jie Dai, Fu-Rong Xu, Jian-Guo Li, Bai-Shan Hu and Zhong-Hao Sun. Continuum effect in resonance spectra of neutron-rich oxygen isotopes[J]. Chinese Physics C, 2018, 42(11): 114106. doi: 10.1088/1674-1137/42/11/114106
Si-Jie Dai, Fu-Rong Xu, Jian-Guo Li, Bai-Shan Hu and Zhong-Hao Sun. Continuum effect in resonance spectra of neutron-rich oxygen isotopes[J]. Chinese Physics C, 2018, 42(11): 114106.  doi: 10.1088/1674-1137/42/11/114106 shu
Milestone
Received: 2018-07-28
Fund

    Supported by the National Key RD Program of China (2018YFA0404401), the National Natural Science Foundation of China (11320101004, 11575007), the China Postdoctoral Science Foundation (2018M630018), the CUSTIPEN (China-U.S. Theory Institute for Physics with Exotic Nuclei) funded by the U.S. Department of Energy, Office of Science (DESC0009971), and High-performance Computing Platform of Peking University

Article Metric

Article Views(1602)
PDF Downloads(18)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, [email protected]
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Continuum effect in resonance spectra of neutron-rich oxygen isotopes

  • 1.  School of Physics, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
  • 2. School of Physics, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
  • 3. Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
Fund Project:  Supported by the National Key RD Program of China (2018YFA0404401), the National Natural Science Foundation of China (11320101004, 11575007), the China Postdoctoral Science Foundation (2018M630018), the CUSTIPEN (China-U.S. Theory Institute for Physics with Exotic Nuclei) funded by the U.S. Department of Energy, Office of Science (DESC0009971), and High-performance Computing Platform of Peking University

Abstract: Starting from the CD-Bonn potential, we have performed Gamow shell-model calculations for neutron-rich oxygen isotopes, investigating excitation spectra and their resonant properties. The Gamow shell model is based on the Berggren ensemble, which is capable of treating the continuum effect reasonably in weakly bound or unbound nuclei. To calculate heavier-mass oxygen isotopes, we choose 16O as a frozen core in the Gamow shell-model calculations. The first 2+ excitation energies of the even-even O isotopes are calculated, and compared with those obtained by the conventional shell model using the empirical USDB interaction. The continuum effect is proved to play an important role in the shell evolution near the drip line. We also discuss the effect of the Berggren contour choice. We improve the approximation in the contour choice to give more precise calculations of resonance widths.

    HTML

Reference (32)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return