×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Systematic analysis of DJ(2580), DJ*(2650), DJ(2740), DJ*(2760), DJ(3000) and DJ*(3000) in the D meson family

  • In this work, we tentatively assign the charmed mesons DJ(2580), DJ*(2650), DJ(2740), DJ*(2760), DJ(3000) and DJ*(3000) observed by the LHCb collaboration according to their spin, parity and masses, then systematically study their strong decays to ground state charmed mesons plus pseudoscalar mesons with the 3P0 decay model. Based on these studies, we assign the DJ*(2760) as the 1D(5/2)3- state, the DJ*(3000) as the 1F(5/2)2+ or 1F(7/2)4+ state, the DJ(3000) as the 1F(7/2)3+ or 2P(1/2)1+ state in the D meson family. As a byproduct, we also study the strong decays of the states 2P(1/2)0+, 2P(3/2)2+, 3S(1/2)1-, 3S(1/2)0- etc, which will be valuable in searching for the partners of these D mesons.
      PCAS:
  • 加载中
  • [1] Aaij R et al. (LHCb collaboration). JHEP, 2013, 1309: 145[2] del Amo Sanchez P et al. Phys. Rev. D, 2010, 82: 111101[3] WANG Z G. Phys. Rev. D, 2011, 83: 014009[4] ZHONG X H. Phys. Rev. D, 2010, 82: 114014[5] CHEN B, YUAN L, ZHANG A L. Phys. Rev. D, 2011, 83: 114025[6] Colangelo P, De Fazio F, Giannuzzi F, Nicotri S. Phys. Rev. D, 2012, 86: 054024[7] WANG Z G. Phys. Rev. D, 2013, 88: 114003[8] Micu L. Nucl. Phys. B, 1969, 10: 521[9] Le Yaouanc A, Oliver L, Pene O, Raynal J-C. Phys. Rev. D, 1973, 8: 2223; Phys. Rev. D, 1974, 9: 1415; Phys. Rev. D, 1975, 11: 1272; Phys. Lett. B, 1977, 71: 397[10] Le Yaouanc A, Oliver L, Pene O, Raynal J C. Phys. Lett. B, 1977, 72: 57[11] Le Yaouanc A, Oliver L, Pene O, Raynal J C. Hadron Transitons in the Quark Model, New York: Gordon and Breach Science Publishers, 1988[12] Roberts W, Brac B S. Few-Body Syst., 1992, 11: 171[13] Capstick S, Isgur N. Phys. Rev. D, 1986, 34: 2809; Capstick S, Roberts W. Phys. Rev. D, 1994, 49: 4570[14] Blundell H G. hep-ph/9608473; Blundell H G, Godfrey S. Phys. Rev. D, 1996, 53: 3700; Blundell H G, Godfrey S, Phelps B. Phys. Rev. D, 1996, 53: 3712[15] Ackleh E S, Barnes T, Swanson E S. Phys. Rev. D, 1996, 54: 6811; Barnes T, Black N, Page P R. Phys. Rev. D, 2003, 68: 054014; Close F E, Swanson E S. Phys. Rev. D, 2005, 72: 094004; Close F E, Thomas C E, Lakhina O, Swanson E S. Phys. Lett. B, 2007, 647: 159[16] ZHOU H Q, PING R G, ZOU B S. Phys. Lett. B, 2005, 611: 123; DING G J, YAN M L. Phys. Lett. B, 2007, 657: 49[17] CHEN B, WANG D X, ZHANG A L. Phys. Rev. D, 2009, 80: 071502[18] LI D M, ZHOU S. Phys.Rev. D, 2008, 78: 054013; LI D M, JI P F, MA B. Eur. Phys. J. C, 2011, 71: 1582[19] LI D M, MA B. Phys. Rev. D, 2010, 81: 014021[20] ZHANG B, LIU X, DENG W Z, ZHU S L. Eur. Phys. J. C, 2007, 50: 617; SUN Y, SONG Q T, CHEN D Y, LIU X, ZHU S L. arXiv:1401.1595 [hep-ph][21] YANG Y C, XIA Z R, PING J L. Phys. Rev. D, 2010, 81: 094003[22] SUN Y, LIU X, Matsuki T. Phys. Rev. D, 2013, 88: 094020[23] Manohar A V, Wise M B. Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol, 2000, 10: 1; Neubert M. Phys. Rept., 1994, 245: 259[24] Beringer J et al. Phys. Rev. D, 2012, 86: 010001[25] Godfrey S, Isgur N. Phys. Rev. D, 1985, 32: 189[26] Pierro M D, Eichten E. Phys. Rev. D, 2001, 64: 114004[27] Ebert D, Faustov R N, Galkin V O. Eur. Phys. J. C, 2010, 66: 197[28] Hayne C, Isgur N. Phys. Rev. D, 1982, 25: 1944[29] Jacob M, Wick G C. Ann. Phys., 1959, 7: 404[30] Matsuki T, Morii T, Seo K. Prog. Theor. Phys., 2010, 124: 285[31] Avery P et al. Phys. Lett. B, 1994, 331: 236[32] Avery P et al. Phys. Rev. D, 1990, 41: 774[33] Albrecht H et al. Phys. Lett. B, 1989, 232: 398[34] Chekanov S et al. Eur. Phys. J. C, 2009, 60: 25
  • 加载中

Get Citation
YU Guo-Liang, WANG Zhi-Gang, LI Zhen-Yu and MENG Gao-Qing. Systematic analysis of DJ(2580), DJ*(2650), DJ(2740), DJ*(2760), DJ(3000) and DJ*(3000) in the D meson family[J]. Chinese Physics C, 2015, 39(6): 063101. doi: 10.1088/1674-1137/39/6/063101
YU Guo-Liang, WANG Zhi-Gang, LI Zhen-Yu and MENG Gao-Qing. Systematic analysis of DJ(2580), DJ*(2650), DJ(2740), DJ*(2760), DJ(3000) and DJ*(3000) in the D meson family[J]. Chinese Physics C, 2015, 39(6): 063101.  doi: 10.1088/1674-1137/39/6/063101 shu
Milestone
Received: 2014-09-28
Revised: 2015-01-13
Article Metric

Article Views(2339)
PDF Downloads(308)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, [email protected]
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Systematic analysis of DJ(2580), DJ*(2650), DJ(2740), DJ*(2760), DJ(3000) and DJ*(3000) in the D meson family

    Corresponding author: YU Guo-Liang,
    Corresponding author: WANG Zhi-Gang,

Abstract: In this work, we tentatively assign the charmed mesons DJ(2580), DJ*(2650), DJ(2740), DJ*(2760), DJ(3000) and DJ*(3000) observed by the LHCb collaboration according to their spin, parity and masses, then systematically study their strong decays to ground state charmed mesons plus pseudoscalar mesons with the 3P0 decay model. Based on these studies, we assign the DJ*(2760) as the 1D(5/2)3- state, the DJ*(3000) as the 1F(5/2)2+ or 1F(7/2)4+ state, the DJ(3000) as the 1F(7/2)3+ or 2P(1/2)1+ state in the D meson family. As a byproduct, we also study the strong decays of the states 2P(1/2)0+, 2P(3/2)2+, 3S(1/2)1-, 3S(1/2)0- etc, which will be valuable in searching for the partners of these D mesons.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return