×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Spin-dependent γ softness or triaxiality in even-even 132-138Nd nuclei

  • The properties of γ instability in rapidly rotating even-even 132-138Nd isotopes have been investigated using the pairing-deformation self-consistent total-Routhian-surface calculations in a deformation space of (β2, γ, β4). It is found that even-even 134-138Nd nuclei exhibit triaxiality in both ground and excited states, even up to high-spin states. The lightest isotope possesses a well-deformed prolate shape without a γ deformation component. The current numerical results are compared with previous calculations and available observables such as quadrupole deformation β2 and the feature of γ-band levels, showing basically a general agreement with the observed trend of γ correlations (e.g. the pattern of the odd-even energy staggering of the γ band). The existing differences between theory and experiment are analyzed and discussed briefly.
      PCAS:
  • 加载中
  • [1] Stránsk P, Frank A, Bijker R. J. Phys.: Conf. Ser., 2011, 322: 012018[2] degrd S W, Hagemann G B, Jensen D R et al. Phys. Rev. Lett., 2001, 86: 5866-5869[3] Bengtsson R, Frisk H, May F R et al. Nucl. Phys. A, 1984, 415: 189-214[4] Starosta K, Koike T, Chiara C J et al. Phys. Rev. Lett., 2001, 86: 971-974[5] Zamfir N V, Casten R F. Phys. Lett. B, 1991, 260: 265-270[6] Davydov A S, Filippov G F. Nucl. Phys., 1958, 8: 237-249[7] Wilets L, Jean M. Phys. Rev., 1956, 102: 788-796[8] Bender M, Heenen P H, Reinhard P G. Rev. Mod. Phys., 2003, 75: 121-180[9] Frauendorf S. Rev. Mod. Phys., 2001, 73: 463-514[10] LI Z P, Nikšić T, Vretenar D et al. Phys. Rev. C, 2010, 81: 064321[11] YAO J M, MENG J, RING P et al. Phys. Rev. C, 2009, 79: 044312[12] Bhat G H, Dar W A, Sheikh J A et al. Phys. Rev. C, 2014, 89: 014328[13] SHEN S F, ZHENG S J, XU F R et al. Phys. Rev. C, 2011, 84: 044315[14] LI H J, XIAO Z G, ZHU S J et al. Phys. Rev. C, 2013, 87: 057303[15] CHEN Y S, Frauendorf S, Leander G A. Phys. Rev. C, 1983, 28: 2437-2445[16] Saito T R, Saito N, Starosta K et al. Phys. Lett. B, 2008, 669: 19-23[17] WANG H L, LIU H L, XU F R et al. Prog. Theo. Phys., 2012, 128: 363-371[18] WANG H L, LIU H L, XU F R. Phys. Scr., 2012, 86: 035201[19] Petrache C M, Bazzacco D, Lunardi S et al. Phys. Lett. B, 1996, 387: 31-36[20] Mukhopadhyay S, Almehed D, Garg U et al. Phys. Rev. C, 2008, 78: 034311[21] Petrache C M, Bianco G L, Ward D et al. Phys. Rev. C, 1999, 61: 011305(R)[22] Wadsworth R, O'Donnell J M, Watson D L et al. Nucl. Phys., 1988, 14: 239-251[23] Angelis G D, Cardona M A, Poli M D et al. Phys. Rev. C, 1994, 49: 2990-2999[24] Paul E S, Beausang C W, Fossan D B et al. Phys. Rev. C, 1987, 36: 1853-1859[25] Kortelahti M O, Kern B D, Braga R A et al. Phys. Rev. C, 1990, 42: 1267-1278[26] Petrache C M, Frauendorf S, Matsuzaki M et al. Phys. Rev. C, 2012, 86: 044321[27] Satula W, Wyss R, Magierski P. Nucl. Phys. A, 1994, 578: 45-61[28] XU F R, Satula W, Wyss R. Nucl. Phys. A, 2000, 669: 119-134[29] Myers W D, Swiatecki W J. Nucl. Phys., 1966, 81: 1-60[30] Ćwiok S, Dudek J, Nazarewicz W et al. Comp. Phys. Comm., 1987, 46: 379-399[31] Greiner W, Maruhn J A. Nuclear Models, Berlin: Springer, 1996. 108-115[32] Nazarewicz W, Wyss R, Johnson A. Nucl. Phys. A, 1989, 503: 285-330[33] Strutinsky V M. Nucl. Phys. A, 1967, 95: 420-442[34] Pradhan H C, Nogami Y, Law J. Nucl. Phys. A, 1973, 201: 357-368[35] Mmller P, Nix J R. Nucl. Phys. A, 1992, 536: 20-60[36] Sakamoto H, Kishimoto T. Phys. Lett. B, 1990, 245: 321-324[37] Mmller P, Nix J R, Myers W D et al. At. Data Nucl. Data Tables, 1995, 59: 185-381[38] Mmller P, Bengtsson R, Carlsson B G et al. At. Data Nucl. Data Tables, 2008, 94: 758-782[39] Raman S, Nestor Jr. C W, Tikkanen P. At. Data Nucl. Data Tables, 2001, 78: 1-128[40] Kern B D, Mlekodaj R L, Leander G A et al. Phys. Rev. C, 1987, 36: 1514-1521[41] Petrache C M, SUN Y, Bazzacco D et al. Nucl. Phys. A, 1997, 617: 249-264[42] //www.nndc.bnl.gov/[43] Watanabe H, Yamaguchi K, Odahara et al. Phys. Lett. B, 2011, 704: 270-275[44] Gizon J, Gizon A, Diamond R M et al. Nucl. Phys., 1978, 4: L171-L175[45] McCutchan E A, Bonatsos D, Zamfir N V et al. Phys. Rev. C, 2007, 76: 024306[46] Toh Y, Chiara C J, McCutchan E A et al. Phys. Rev. C, 2013, 87: 041304(R)
  • 加载中

Get Citation
CHAI Qing-Zhen, WANG Hua-Lei, YANG Qiong and LIU Min-Liang. Spin-dependent γ softness or triaxiality in even-even 132-138Nd nuclei[J]. Chinese Physics C, 2015, 39(2): 024101. doi: 10.1088/1674-1137/39/2/024101
CHAI Qing-Zhen, WANG Hua-Lei, YANG Qiong and LIU Min-Liang. Spin-dependent γ softness or triaxiality in even-even 132-138Nd nuclei[J]. Chinese Physics C, 2015, 39(2): 024101.  doi: 10.1088/1674-1137/39/2/024101 shu
Milestone
Received: 2014-04-25
Revised: 1900-01-01
Article Metric

Article Views(2176)
PDF Downloads(224)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, [email protected]
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Spin-dependent γ softness or triaxiality in even-even 132-138Nd nuclei

    Corresponding author: WANG Hua-Lei,

Abstract: The properties of γ instability in rapidly rotating even-even 132-138Nd isotopes have been investigated using the pairing-deformation self-consistent total-Routhian-surface calculations in a deformation space of (β2, γ, β4). It is found that even-even 134-138Nd nuclei exhibit triaxiality in both ground and excited states, even up to high-spin states. The lightest isotope possesses a well-deformed prolate shape without a γ deformation component. The current numerical results are compared with previous calculations and available observables such as quadrupole deformation β2 and the feature of γ-band levels, showing basically a general agreement with the observed trend of γ correlations (e.g. the pattern of the odd-even energy staggering of the γ band). The existing differences between theory and experiment are analyzed and discussed briefly.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return