×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

An artificial neural network for proton identification in HERMES data

Get Citation
WANG Si-Guang, MAO Ya-Jun and YE Hong-Xue. An artificial neural network for proton identification in HERMES data[J]. Chinese Physics C, 2009, 33(3): 217-223. doi: 10.1088/1674-1137/33/3/011
WANG Si-Guang, MAO Ya-Jun and YE Hong-Xue. An artificial neural network for proton identification in HERMES data[J]. Chinese Physics C, 2009, 33(3): 217-223.  doi: 10.1088/1674-1137/33/3/011 shu
Milestone
Received: 2008-07-03
Revised: 2008-07-30
Article Metric

Article Views(4120)
PDF Downloads(674)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, [email protected]
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

An artificial neural network for proton identification in HERMES data

    Corresponding author: WANG Si-Guang,

Abstract: 

The HERMES time-of-flight (TOF) system is used for proton identification, but must be carefully calibrated for systematic biases in the equipment. This paper presents an artificial neural network (ANN) trained to recognize protons from Λ0 decay using only raw event data such as time delay, momentum, and trajectory. To avoid the systematic errors associated with Monte Carlo models, we collect a sample of raw experimental data from the year 2000. We presume that when for a positive hadron (assigned one proton mass) and a negative hadron (assigned one π mass) the reconstructed invariant mass lies within the Λ0 resonance, the positive hadron is more likely to be a proton. Such events are assigned an output value of one during the training process; all others were assigned the output value zero.

The trained ANN is capable of identifying protons in independent experimental data, with an efficiency equivalent to the traditional TOF calibration. By modifying the threshold for proton identification, a researcher can trade off between selection efficiency and background rejection power. This simple and convenient method is applicable to similar detection problems in other experiments.

    HTML

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return