Detailed derivation of the ³P⁰ strong decay model applied to baryons*

T. Aguilar^{1†} A. Capelo-Astudillo¹ M. Conde-Correa¹ A. Duenas-Vidal^{1‡} P. G. Ortega^{2,3§} J. Segovia^{4‡}

¹Departamento de Física, Escuela Politécnica Nacional, Quito 170143, Ecuador

²Departamento de Física Fundamental, Universidad de Salamanca, E-37008 Salamanca, Spain

3 Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, E-37008 Salamanca, Spain ⁴Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, E-41013 Sevilla, Spain

Abstract: We provide an in-detail derivation, through the ${}^{3}P_0$ pair creation model, of the transition matrix for a batend the same formalism to the baryon sector, focusing on the $\Delta(1232) \rightarrow \pi N$ strong decay width because all hadobtaining a quite compatible result with experiment for the calculated $\Delta(1232) \rightarrow \pi N$ decay width. Despite necessitryon decaying into a meson-baryon system. The meson's analysis was successfully conducted in Ref. [\[1\]](#page-13-2) and we exrons involved in the reaction are very well established, the two hadrons in the final state are stable avoiding further analysis, all quarks are light and so equivalent, and the decay width of the process is relatively well measured. Taking advantage of a very common Rayleigh-Ritz variational method for solving the 2- and 3-body Schödinger boundstate equation in which the hadron's radial wave functions are expanded in terms of a Gaussian basis, the expression of the invariant matrix element can be related with the mean-square radii of hadrons involved in the decay. We use their experimental measures in such a way that only the strength of the quark-antiquark pair creation from the vacuum is a free parameter. This is then taken from our previous study of strong decay widths in the meson sector [\[1\]](#page-13-2), ating the calculation of additional baryon strong decays, it appears that a feasible avenue towards a unified description of both baryon and meson strong decay widths within a single constituent quark model framework may be attainable. Finally, this research work has been developed in setting the stage for a novel raft of applications to exotic hadrons, *i.e.* the description of baryon's coupling to meson-baryon thresholds, one of the mechanism that is thought to be responsible of providing either a large renormalization to naive states or genuine dynamically-generated meson-baryon molecules. an in-detail derivation, through the ${}^{2}P_{0}$ pair creation model, of the the son-baryon system. The meson's analysis was successfully conducted to to baryon sector, focusing on the $\Delta(1232) \rightarrow \pi N$ strong decay uction a

Keywords: Baryon strong decays, 3P0 decay model, Quark model

DOI:

I. INTRODUCTION

One of the main goals of nuclear and particle physics communities is the understanding of hadrons in terms of the elementary excitations of quantum chromo-dynamics (QCD), which are quarks and gluons (The interested reader is referred to the Particle Data Group and its topical mini-reviews [[2\]](#page-13-0)). QCD is well understood in its high energy regime, where perturbative theoretical calculations has been contrasted with many experimental results since QCD's birth, 50 years ago; however, hadrons live in its non-perturbative regime where, *a priori*, low-level rules produce high-level phenomena with enormous apparent complexity[[3\]](#page-13-1). That is to say, for instance, that less-than 2% of a nucleon's mass can be attributed to the so-called current-quark masses that appear in QCD's Lagrangian, a phenomenon known as dynamical chiral symmetry breaking (DCSB). Another important non-perturbative effect is color confinement which basically states that quarks and gluons (color objects) are not those degrees-of-freedom readily accessible via experiment; *i.e.*, they are confined inside hadrons.

This complexity makes hadron spectroscopy, the collection of readily accessible states constituted from gluons and quarks, the starting point for all further investigations. A very successful classification scheme for hadrons in terms of their valence quarks and antiquarks is the so-called quark model [\[4,](#page-14-0) [5](#page-14-1)], which basically separates

Received 6 May 2024; Accepted 29 October 2024

* Work partially financed by the Escuela Politécnica Nacional under projects PIS-22-04 and PIM 19-01; EU Horizon 2020 research and innovation program, STRONG-2020 project, under grant agreement no. 824093; Ministerio Español de Ciencia e Innovación under grant nos. PID2022-141910NB-I00 and PID2022- 140440NB-C22; Junta de Andalucía under contract no. PAIDI FQM-370

[†] E-mail: telmo.aguilar@epn.edu.ec

[‡] E-mail: alvaro.duenas@epn.edu.ec

 \S E-mail: pgortega@usal.es

[♮] E-mail: jsegovia@upo.es

^{©2024} Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.

hadrons in quark-antiquark (meson) and three-quark (baryon) configurations. The quark model, and its more modern variations and extensions, have received experimental verification beginning in the late 1960s and, despite some caveats, they have been demonstrated to be very valuable. For instance, the phenomenological quark models represent a reliable theoretical approach to hadron spectra in heavy quark sectors, are flexible enough in order to extend their applicability to exotic matter, and allow to compute easily electromagnetic, weak and strong reactions whose predictions have turned to be very useful for experimental searches.

Among the wide range of chiral quark models developed in the last 50 years [6], our theoretical framework is a QCD-inspired constituent quark model (CQM) proposed in Ref. [\[7\]](#page-14-3) and extensively reviewed in Refs. [[8,](#page-14-4) [9\]](#page-14-5). Moreover, the CQM has been recently applied with success to conventional mesons containing heavy quarks, describing a wide range of physical observables that concern spectra $[10, 11]$ $[10, 11]$ $[10, 11]$ $[10, 11]$ $[10, 11]$, strong decays $[12, 13]$, hadronic transitions [\[14,](#page-14-10) [15\]](#page-14-11) as well as electromagnetic and weak reactions[[16](#page-14-12), [17](#page-14-13)]. Besides, the interested reader could appreciate that the naive model has been extended to describe meson-meson molecules [18] and compact multiquark systems [\[19](#page-14-15)]. magnetic, weak and stong
we turned to be very useful
in 1996, Blundell *et al.* ar
f chiral quark models de-
ay widths to fit the streng
[6], our theoretical frame-
value which is frequently
tituent quark model (CQM) [30]

nomenological ${}^{3}P_0$ model to the description of baryon usual wisdom, the only free parameter of the ${}^{3}P_0$ model Trying to extend our CQM in the baryon sector, three steps must be taken: (i) the computation of baryon spectra, (ii) the modeling of a baryon decaying strongly into a meson plus another baryon and (iii) the description of baryon-meson interactions, and their resulting bound- and resonance-states, from the quark–(anti-)quark forces dictated by CQM. All of them are underway, see for example the advances [don](#page-14-16)e [in](#page-14-17) the third case by one of us in, for instance, Refs.[[20](#page-14-16), [21\]](#page-14-17), but the first that has been completed by our group is the extension of the phe[str](#page-13-2)ong decays. In fact, the same decay model was used in [[1\]](#page-13-2) to calculate the total strong decay widths of mesons which belong to heavy quark sectors. Therein, a global fit of the experimental data showed that, contrarily to the depends on the meson sector and thus the scale-dependent strength follows a logarithmic behavior with respect the typi[ca](#page-13-2)l scale of the particular meson sector (Eq. (10) in Ref. [[1\]](#page-13-2)).

[[22\]](#page-14-18) formulated the ${}^{3}P_0$ model in the 1960s as a way to [wor](#page-14-20)k of Carlitz and Kislinger based on $SU(6)_w$ theory Hadron strong decay is a complex non-perturbative process that has not yet been described from first prin[cipl](#page-14-18)es of QCD. In the search for ways to explain it, Micu obtain hadron's decay rates using the corresponding wave functions and a strength parameter as the only needed inputs. His approach was innovative for its simplicity and the few assu[mpt](#page-14-19)ions that were made. A few years later, Le Yaouanc [[23](#page-14-19)] *et al.* developed Micu's model using the [[24\]](#page-14-20). Remarkable features of this work were the assump-

following years, the ${}^{3}P_0$ model was widely used to detains, and thus can be simplified to, the ${}^{3}P_0$ model making it even more famous. Recent variants of the ${}^{3}P_0$ modtion that constituent quarks drive the decay process and the use of harmonic oscillator wave functions to find analytic expressions of the terms fitted by Micu from experiment. The only free parameter was then the so-called pair-creation constant, *γ*. The work of Le Yaouanc *et al.* allowed to calculate many ratios between decay widths of mesons and baryons [\[25\]](#page-14-21), popularizing the model. In the scribe decay properties of hadrons, such as charmonium states [\[26,](#page-14-22) [27\]](#page-14-23). In 1982 Hayne *et al.* improved the analytic expression corresponding to the transition matrix [[28](#page-14-24)]. In 1996, Blundell *et al.* analyzed the data of various decay widths to fit the strength parameter *γ* [\[29\]](#page-14-25), finding a value which is frequently used in modern works such as [30], but other values can be possible [\[31−](#page-14-27)[41](#page-14-28)], depending on the specific details. In addition, parallel work in the flux-tube pair creation model [\[42\]](#page-14-29) showed that it conel modify the pair production vertex [[43](#page-14-30)] or modulate the spatial dependence of the pair-production amplitude [\[44\]](#page-14-31).

into a meson-baryon system using the ${}^{3}P_0$ strong decay of the $\Delta(1232) \rightarrow \pi N$ decay width; comparing it with the This work consists on finding an in-detail analytical expression for the transition matrix of a baryon decaying model to parametrize the needed quark-antiquark pair creation from the vacuum and Gaussian expansions of the hadron wave functions in order to simplify the evaluation of matrix elements, and express them in terms of the measured hadron sizes. The strength *γ* of the decay interaction is fixed to our previous evaluation of meson strong decays [1] in order to provide a free-parameter prediction experimental value provide us an assessment of our calculation and the possible extension of our decay model from the meson sector to the baryon one.

the ${}^{3}P_0$ model and how to obtain the transition matrix, $\Delta(1232) \rightarrow \pi N$, specifying the data used. In this section, This manuscript is organized as follows. After this introduction, Sec. II is devoted to a detailed description of starting from the initial and final hadron states and the transition operator. A few assumptions are made to simplify the expression, the limitations of these are specified. Section III provides an application of the model presented, obtaining the decay width of the process the quark-antiquark pair creation constant, *γ*, for baryons seems to follow the analytic expression presented in [[1\]](#page-13-2) for mesons. Finally, we summarize and draw some conclusions in Sec. IV.

II. THE ³P₀ MODEL APPLIED TO BARYONS

Among this kind of models, the so-called ${}^{3}P_0$ strong de-The quark-antiquark pair creation models consist on a phenomenological way to describe hadron strong decays. cay model is the most popular and basically states that the quark-antiquark pair, created from the vacuum, must con-

 $J^{PC} = 0^{++}$ quantum numbers. Another important property of the ${}^{3}P_0$ model is that it takes into account only diaserve the vacuum's angular momentum, parity and charge conjugation, *viz.* the quark-antiquark pair must have grams in which the quark-antiquark pair separates into different final hadrons. This was originally motivated by experimental observations and it is known as the Okubo-Zweig-Iizuka(OZI)-rule[[45](#page-14-32)[−47\]](#page-14-33) which tells us that the disconnected diagrams are more suppressed than the connected ones.

meson+baryon strong decays as represented in panel (a) The model defined as above describes baryon into of [Fig. 1](#page-3-0). It thus has an associated transition operator given by

$$
T = -3\gamma' \sum_{\mu,\nu} \int d^3 p_\mu d^3 p_\nu \left[\mathcal{Y}_1 \left(\frac{\vec{p}_\mu - \vec{p}_\nu}{2} \right) \otimes (s_\mu s_\nu)_1 \right]_0
$$

$$
\times a_\mu^\dagger(\vec{p}_\mu) b_\nu^\dagger(\vec{p}_\nu) \delta^{(3)}(\vec{p}_\mu + \vec{p}_\nu'), \tag{1}
$$

3-dimensional Dirac delta function, $\delta^{(3)}(\vec{p_1} + \vec{p_y})$, assures $\mathcal{Y}_l(\vec{p}) = p^l Y_l(\hat{p})$ is the solid harmonic that characterizes the angular momentum $(l = 1)$ of the pair created; one can also observe that it is coupled to the spin-1 of the pair in order to give total angular momentum $J = 0$. Meanwhile, γ' is the only unknown constant of the ${}^{3}P_{0}$ model which where μ is the quark and ν is the antiquark created. The the conservation of momenta and the function characterizes the strength of the quark-antiquark pair creation from the vacuum and it is normally fitted to the data. Besides, it is important to note that this transition operator is a non-relativistic reduction of an interacting Hamiltonian involving [D](#page-13-2)irac quark fields that describes solve describes baryon into

as represented in panel (a)

as represented in panel (a)

where k_0 is the relative m

with respect to the initial

lus of the invariant matrix

lus of the invariant matrix
 $\left(\frac{\vec{p}_{\mu} - \$

√ the production process [[1\]](#page-13-2); observe therein that the $\sqrt{3}$ is replaced by 3 when going from meson decays to baryon ones, since the term must cancel out with the color contribution.

The decay width of the process can be calculated using the following relation:

$$
\Gamma_{A \to BC} = 2\pi \frac{E_B(k_0)E_C(k_0)}{m_A k_0} \sum_{J_{BC},l} |M_{A \to BC}|^2, \tag{2}
$$

where k_0 is the relative moment[um](#page-14-34) of the final products all possible values of J_{BC} and relative angular molar momentum of the decaying baryon, J_A . with respect to the initial state [[48](#page-14-34)]. The squared modulus of the invariant matrix element must be summed over mentum *l* whose inner product is equal to the total angu-

In order to calculate the invariant matrix element that appears in the formula of the decay width,

$$
\mathcal{M}_{A \to BC} = \delta^{(3)}(\vec{K}_0) \langle BC|T|A \rangle, \tag{3}
$$

where \vec{K}_0 is the center-of-mass momentum of the decaying baryon, one needs to establish expressions for the initial and final states:

$$
|A\rangle = \sum_{M_{L_A},M_{S_A}} \langle L_A M_{L_A} S_A M_{S_A} | J_A M_{J_A} \rangle
$$

$$
\times \int d^3 p_{\alpha} d^3 p_{\beta} d^3 p_{\eta} \delta^{(3)} (\vec{P}_A - \vec{K}_A) \chi_A C_A
$$

$$
\times I_A \phi_A (\vec{p}_{\alpha}, \vec{p}_{\beta}, \vec{p}_{\eta}) a_{\alpha}^{\dagger} (\vec{p}_{\alpha}) a_{\beta}^{\dagger} (\vec{p}_{\beta}) a_{\eta}^{\dagger} (\vec{p}_{\eta}) |0\rangle, \tag{4}
$$

$$
|BC\rangle = \int d^3 K_B d^3 K_C \sum_{m,M_B,M_C,M_{I_B},M_{I_C}} \langle J_{BC} M_{BC} Im | J_A M_A \rangle \delta^{(3)}(\vec{K} - \vec{K}_0) \delta(k - k_0) \frac{Y_{lm}(\hat{k})}{k} \langle J_B M_B J_C M_C | J_{BC} M_{BC} \rangle
$$

$$
\langle I_B M_{I_B} I_C M_{I_C} | I_{BC} M_{I_{BC}} \rangle \times \int d^3 p_\delta d^3 p_\epsilon d^3 p_\zeta d^3 p_\tau \delta^{(3)}(\vec{K}_B - \vec{P}_B) \delta^{(3)}(\vec{K}_C - \vec{P}_C)
$$

$$
\times \chi_B C_B I_B \phi_B(\vec{p}_\sigma, \vec{p}_\zeta, \vec{p}_\epsilon) a_\sigma^\dagger(\vec{p}_\sigma) a_\zeta^\dagger(\vec{p}_\zeta) a_\epsilon^\dagger(\vec{p}_\epsilon) \chi_C C_C I_C \phi_C(\vec{p}_\delta, \vec{p}_\tau) a_\delta^\dagger(\vec{p}_\zeta) b_\tau^\dagger(\vec{p}_\tau) |0\rangle.
$$
 (5)

In the equations above, the [fu](#page-14-34)nctions $\phi_{A,B,C}$ are the the hadron in momentum space; moreover, the $\chi_{A,B,C}$, $C_{A,B,C}$ and $T_{A,B,C}$ are, respectively, the spin, color and cay. In the final state $|BC\rangle$, the internal products assure Fourier transforms of the hadron's wave functions in coordinate space, these describe the probability of finding isospin wave functions of the hadrons involved in the dethe conservation of angular momentum and isospin between the baryon and meson in the final state, but also its coupling with the initial baryon state.

The invariant matrix element, $M_{A\rightarrow BC}$, is a product of a color factor, a flavor factor and a spin-space overlap integral, *i.e.*

$$
M_{A\to BC} = I_{Color} I_{Flavor} I_{Spin-space},
$$
 (6)

in such a way that each component can be calculated separately.

a baryon as an sphere of radius $\langle r \rangle$; a particular set of Jacobi coordinates, (ρ, λ) , for the quarks in a baryon is also shown. **Fig. 1.** *Panel (a)* Feynman diagram for a baryon, A, decaying into a baryon, *B*, and a meson, *C*. *Panel (b)* Schematic representation of

A. The spin-space contribution

Before discussing the spin-space contribution, one needs to disentangle how many equivalent Feynman diagrams contribute to the same process, *i.e.* the symmetry factor. Focusing on the ladder operators that appear in Eqs. (1), (4) and (5), where combined adequately, we arrive at the following expression:

$$
\langle 0|b_{\tau}(\vec{p}_{\tau})a_{\delta}(\vec{p}_{\delta})a_{\epsilon}(\vec{p}_{\epsilon})a_{\zeta}(\vec{p}_{\zeta})a_{\sigma}(\vec{p}_{\sigma})a_{\mu}^{\dagger}(\vec{p}_{\mu})b_{\nu}^{\dagger}(\vec{p}_{\nu})a_{\alpha}^{\dagger}(\vec{p}_{\alpha})a_{\beta}^{\dagger}(\vec{p}_{\beta})a_{\eta}^{\dagger}(\vec{p}_{\eta})|0\rangle. \tag{7}
$$

This product of creation and annihilation operators can be simplified. Since quarks are fermions, we use the anticommutation relations of the ladder operators,

$$
\{a_r(\vec{p}), a_s^{\dagger}(\vec{p}')\} = a_r(\vec{p})a_s^{\dagger}(\vec{p}') + a_s^{\dagger}(\vec{p}')a_r(\vec{p}) = \delta_{rs}\delta^{(3)}(\vec{p} - \vec{p}'),
$$
\n(8)

$$
\{a_r(\vec{p}), b_s^{\dagger}(\vec{p}')\} = \{a_r(\vec{p}), b_s(\vec{p}')\} = \{a_r^{\dagger}(\vec{p}), b_s(\vec{p}')\} = \{a_r^{\dagger}(\vec{p}), b_s^{\dagger}(\vec{p}')\} = 0,
$$
\n(9)

$$
\{a_r(\vec{p}), a_s(\vec{p}')\} = \{a_r^{\dagger}(\vec{p}), a_s^{\dagger}(\vec{p}')\} = \{b_r(\vec{p}), b_s(\vec{p}')\} = \{b_r^{\dagger}(\vec{p}), b_s^{\dagger}(\vec{p}')\} = 0,
$$
\n(10)

and arrange them in normal ordering to arrive at

$$
\langle 0|b_{\tau}a_{\sigma}a_{\zeta}a_{\epsilon}a_{\delta}a_{\mu}^{\dagger}b_{\nu}^{\dagger}a_{\alpha}^{\dagger}a_{\beta}^{\dagger}a_{\eta}^{\dagger}|0\rangle = \delta_{\tau\nu}\delta_{\delta\mu}\delta_{\epsilon\alpha}\delta_{\zeta\beta}\delta_{\sigma\eta} - \delta_{\tau\nu}\delta_{\delta\mu}\delta_{\epsilon\alpha}\delta_{\zeta\beta}\delta_{\zeta\eta} - \delta_{\tau\nu}\delta_{\delta\mu}\delta_{\zeta\alpha}\delta_{\epsilon\beta}\delta_{\sigma\eta} - \delta_{\tau\nu}\delta_{\epsilon\mu}\delta_{\delta\alpha}\delta_{\zeta\beta}\delta_{\sigma\eta} + \delta_{\tau\nu}\delta_{\delta\mu}\delta_{\zeta\alpha}\delta_{\sigma\beta}\delta_{\epsilon\eta} + \delta_{\tau\nu}\delta_{\delta\mu}\delta_{\sigma\alpha}\delta_{\epsilon\beta}\delta_{\zeta\eta} + \delta_{\tau\nu}\delta_{\epsilon\mu}\delta_{\delta\alpha}\delta_{\sigma\beta}\delta_{\zeta\eta} + \delta_{\tau\nu}\delta_{\epsilon\mu}\delta_{\zeta\alpha}\delta_{\delta\beta}\delta_{\sigma\eta} + \delta_{\tau\nu}\delta_{\zeta\mu}\delta_{\delta\alpha}\delta_{\epsilon\beta}\delta_{\sigma\eta} - \delta_{\tau\nu}\delta_{\delta\mu}\delta_{\sigma\alpha}\delta_{\zeta\beta}\delta_{\epsilon\eta} - \delta_{\tau\nu}\delta_{\epsilon\mu}\delta_{\zeta\alpha}\delta_{\sigma\beta}\delta_{\delta\eta} - \delta_{\tau\nu}\delta_{\epsilon\mu}\delta_{\sigma\alpha}\delta_{\delta\beta}\delta_{\zeta\eta} - \delta_{\tau\nu}\delta_{\zeta\mu}\delta_{\delta\alpha}\delta_{\sigma\beta}\delta_{\epsilon\eta} - \delta_{\tau\nu}\delta_{\zeta\mu}\delta_{\epsilon\alpha}\delta_{\delta\beta}\delta_{\sigma\eta} - \delta_{\tau\nu}\delta_{\sigma\mu}\delta_{\delta\alpha}\delta_{\epsilon\beta}\delta_{\zeta\eta} + \delta_{\tau\nu}\delta_{\epsilon\mu}\delta_{\sigma\alpha}\delta_{\delta\beta}\delta_{\zeta\eta} + \delta_{\tau\nu}\delta_{\zeta\mu}\delta_{\epsilon\alpha}\delta_{\sigma\beta}\delta_{\delta\eta} + \delta_{\tau\nu}\delta_{\zeta\mu}\delta_{\epsilon
$$

 $\delta_{ab}\delta^{(3)}(\vec{p}_a-\vec{p}_b)\equiv\delta_{ab}$. Note here that we have done an abuse of notation,

Each term is a different process that can be represented by a Feynman diagram. Following the OZI-rule, those

terms with the factor $\delta_{\delta\mu}$ can be eliminated since the created quark and antiquark go into the same final hadron, the remaining ones are pictorially shown in [Fig. 2](#page-4-0). If all quarks and antiquarks involved in the baryon strong de-

Fig. 2. Decay process for a Baryon. Below each diagram the notation d_{ab} characterises the diagram using the quark (*a*) that begins in the baryon and ends in the meson and the quark (*b*) that comes from the pair created and ends in the baryon.

cay are indistinguishable, as in the case of $\Delta \rightarrow \pi N$, the diagrams can be taken as equivalent. Therefore, the final result may be written as

$$
\langle 0|b_{\tau}a_{\sigma}a_{\zeta}a_{\epsilon}a_{\delta}a_{\mu}^{\dagger}b_{\nu}^{\dagger}a_{\alpha}^{\dagger}a_{\beta}^{\dagger}a_{\eta}^{\dagger}|0\rangle = -18\delta_{\tau\nu}\delta_{\epsilon\mu}\delta_{\zeta\alpha}\delta_{\sigma\beta}\delta_{\delta\eta}.
$$
 (12)

If this equivalence between quarks and antiquarks do not hold, the contribution of different diagrams differs between them but do not change the subsequent expressions significantly and thus one may straightforwardly extend the computation below to describe these cases.

mentum and spin, (\mathcal{J}) , and the other deals with linear momenta, (E) , Now, the spin-space contribution can be separated in two terms, one collects the coupling of angular mo-

$$
I_{Spin-space} = 54\gamma' \sum_{L_{BC},L,S} \mathcal{J}(A \to BC)\mathcal{E}(A \to BC). \tag{13}
$$

S. Therefore, the initial form of $J(A \rightarrow BC)$ is The hadron's total angular momentum, *J*, represents a coupling between its angular momentum, *L*, and its spin,

$$
\mathcal{J}(A \to BC) = \left\{ [L_B S_B]_{J_B} [L_C S_C]_{J_C} \right\}_{J_{BC}}^* \left\{ [L_{BC} S]_{J_{BC}} l \right\}_{J_A}^* \times \left\{ [L_A S_A]_{J_A} [11]_0 \right\}_{J_A},
$$
\n(14)

where the extra $[11]_0$ is added to take into account the quantum numbers of the quark-antiquark pair created from the vacuum. Note also that complex conjugate symbols affect to final states as expected.

hadron's individual $L-S$ coupling into *J*. The final expression must have a total angular momentum (*L*), inner total spin (S) , inner sum of all the spins of the particles. Equation (14) is a matrix element written in terms of sum of all the angular momenta of the particles, and a These final angular momentum and spin must be then coupled to the total angular momentum of the decaying baryon. These transformations can be done using Wigner symbols [\[49\]](#page-14-35): $U_{BC} I_{J_A}^*$ where Π_l =
 (14) this relation
 (14) this relation
 (14) created can
 (14) this relation
 (14) created can
 (14) created can
 (14) created can
 (14) created can
 (14) (15) (16) (17)

$$
\{[L_1S_1]_{J_1}, [L_2S_2]_{J_2}\}_{J_T} = \sum_{L_T, S_T} \Pi_{J_1, J_2, L_T, S_T} \left\{ \begin{array}{ccc} L_1 & S_1 & J_1 \\ L_2 & S_2 & J_2 \\ L_T & S_T & J_T \end{array} \right\}
$$
\n
$$
\times \{[L_1L_2]_{L_T}, [S_1S_2]_{S_T}\}_{J_T}, \tag{15}
$$

√ where $\Pi_l = \sqrt{2l+1}$ is used to simplify the notation. With this relation the couplings of the initial state and the pair created can be changed as

$$
\{[L_A S_A]_{J_A}[11]_0\}_{J_A} = \sum_{L,S} \Pi_{L,S,J_A,0} \left\{ \begin{array}{ccc} L_A & S_A & J_A \\ 1 & 1 & 0 \\ L & S & J_A \end{array} \right\}
$$
\n
$$
\times \{[L_A 1]_L [S_A 1]_S\}_{J_A} . \tag{16}
$$

Since the 9*J*-symbol contain a zero in [one](#page-14-35) of its components, it can be reduced to a 6*J*-symbol [\[49\]](#page-14-35):

$$
\left\{ [L_A S_A]_{J_A} [11]_0 \right\}_{J_A} = \sum_{L_S} (-1)^{S+J_A+L_A+1} \frac{\Pi_{L,S}}{\sqrt{3}} \times \left\{ \begin{array}{cc} L & S & J_A \\ S_A & L_A & 1 \end{array} \right\} \left\{ [L_A 1]_L [S_A 1]_S \right\}_{J_A}.
$$
\n(17)

A similar transformation can be done for the final state,

1 *L-S* coupling into *J*. The final ex-
\ne a total angular momentum (*L*), inner
\nglular momenta of the particles, and a
\nr sum of all the spins of the particles.
\nall angular momentum and spin must be then
\nr normalum and spin must be the
\nall angular momentum of the decaying
\nsformations can be done using Wigner
\n
$$
I_{L_T} = \sum_{L_T, S_T} \Pi_{J_1, J_2, L_T, S_T} \begin{bmatrix} L_1 & S_1 & J_1 \\ L_2 & S_2 & J_2 \\ L_T & S_T & J_T \end{bmatrix} \begin{bmatrix} L_1 & S_1 & J_1 \\ L_2 & S_2 & J_2 \\ L_T & S_T & J_T \end{bmatrix} \times \begin{bmatrix} L & S & J_A \\ S_A & L_A & 1 \end{bmatrix} \{ [L_A1]_L[S_A1]_S \}_{J_A}
$$
\n
$$
\times \begin{bmatrix} L & S & J_A \\ S_A & L_A & 1 \end{bmatrix} \{ [L_A1]_L[S_A1]_S \}_{J_A}
$$
\n
$$
\times \begin{bmatrix} L & S & J_A \\ S_A & L_A & 1 \end{bmatrix} \{ [L_A1]_L[S_A1]_S \}_{J_A}
$$
\n
$$
\times \begin{bmatrix} L & S & J_A \\ S_A & L_A & 1 \end{bmatrix} \{ [L_A1]_L[S_A1]_S \}_{J_A}
$$
\n
$$
\times \begin{bmatrix} L & S & J_A \\ S_A & L_A & 1 \end{bmatrix} \{ [L_A1]_L[S_A1]_S \}_{J_A}
$$
\n
$$
\times \begin{bmatrix} L & S & J_A \\ S_A & L_A & 1 \end{bmatrix} \{ [L_A1]_L[S_A1]_S \}_{J_A}
$$
\n
$$
\times \begin{bmatrix} L & S & J_B \\ S_A & L_A & 1 \end{bmatrix} \{ [L_A1]_L[S_A1]_S \}_{J_A}
$$
\n
$$
\times \begin{bmatrix} L & S & J_B \\ S_A & L_A & 1 \end{bmatrix} \{ [L_A1]_L[S_A1]_S \}_{J_A}
$$
\n
$$
\times \begin{bmatrix} L & S & J_A \\ S_A & L_A & 1 \end{bmatrix} \{ [L_A1]_L[S_A1]_S \}_{J_A}
$$
\n
$$
\times \begin{bmatrix} L & S & J_A \\ S_A & L
$$

where the conservation of spin is used, simplifying $S_{BC} = S$. The baryon and meson in the final state have a relative angular momentum between them denoted by *l*; reordering terms as indicated in [\[49\]](#page-14-35), we arrive at:

$$
\{[L_{BC}S\,]_{J_{BC}}l\}_{J_A}^* = (-1)^{L_{BC}+S-J_{BC}} \{[SL_{BC}]_{J_{BC}}l\}_{J_A}^*
$$
\n
$$
= (-1)^{L_{BC}+S-J_{BC}} \sum_{L} (-1)^{L_{BC}+S+J_A+I} \Pi_{L,J_{BC}} \left\{ \begin{array}{ccc} S & L_{BC} & J_{BC} \\ l & J_A & L \end{array} \right\} \{S [L_{BC}l]_{L}\}_{J_A}^*
$$
\n
$$
= \sum_{L} (-1)^{2L_{BC}+2S+J_A+I-J_{BC}} \Pi_{L,J_{BC}} \left\{ \begin{array}{ccc} S & L_{BC} & J_{BC} \\ l & J_A & L \end{array} \right\} (-1)^{S+L-J_A} \{[L_{BC}l]_{L}S\}_{J_A}^*
$$
\n
$$
= \sum_{L} (-1)^{S+L+I-J_{BC}} \Pi_{L,J_{BC}} \left\{ \begin{array}{ccc} S & L_{BC} & J_{BC} \\ l & J_A & L \end{array} \right\} \{[L_{BC}l]_{L}S\}_{J_A}^*, \tag{19}
$$

The spin couplings can be also simplified in the following; the corresponding matrix element,

$$
\{ [s_{\mu}s_{\beta}s_{\alpha}]_{S_{B}} [s_{\nu}s_{\eta}]_{S_{C}} \}_{S}^{*} \{ [s_{\alpha}s_{\beta}s_{\eta}]_{S_{A}} [s_{\mu}s_{\nu}]_{1} \}_{S}, \qquad (20)
$$

has been written taking into account the delta-functions of Eq. (12). Now, because the couplings are binary

ordered. Using the Jacobi coordinate system (ρ, λ) shown operations, the spins of the quarks inside baryons must be in panel (b) of [Fig. 2](#page-4-0), the named ρ -spin can be introduced,

$$
s_{\rho} = s_{\alpha} \otimes s_{\beta},\tag{21}
$$

as the spin of the non-interacting quarks during the decay, *i.e.* those quarks that do not change their properties in the process. Then, the spin of the baryons as follows,

$$
\begin{aligned} \left[s_{\alpha}s_{\beta}s_{\eta}\right]_{S_A} &= \left[s_{\rho}s_{\eta}\right]_{S_A},\\ \left[s_{\mu}s_{\beta}s_{\alpha}\right]_{S_B} &= \left[s_{\mu}\left(s_{\beta}s_{\alpha}\right)_{s_{\rho}}\right]_{S_B} = (-1)^{s_{\alpha}+s_{\beta}+s_{\mu}-S_B}\left[s_{\rho}s_{\mu}\right]_{S_B}, \end{aligned} \tag{22}
$$

and so the spin conservation can be expressed using a

9*J*-symbol,

$$
\{[s_{\mu}s_{\beta}s_{\alpha}]_{S_{B}}[s_{\nu}s_{\eta}]_{S_{C}}\}_{S}^{*}\{[s_{\alpha}s_{\beta}s_{\eta}]_{S_{A}}[s_{\mu}s_{\nu}]_{1}\}_{S}
$$
\n
$$
=(-1)^{s_{\alpha}+s_{\beta}+s_{\mu}+s_{\nu}+s_{\eta}-S_{B}-S_{C}}\Pi_{S_{B},S_{C},S_{A},1}\left\{\begin{array}{ccc} s_{\rho} & s_{\mu} & S_{B} \\ s_{\eta} & s_{\nu} & S_{C} \\ S_{A} & 1 & S \end{array}\right\}.
$$
\n(23)

for $\mathcal{J}(A \rightarrow BC)$ looks like Once all couplings are modified, the final expression

1. (a)
$$
B = \frac{1}{2} \int_{0}^{2} (A \rightarrow BC) = (-1)^{3/2-S_B-S_C+L_A+L+l+J_A-J_{BC}} \prod_{L_{BC},L,L,J_B,L \in J_B \subset S, A, S, B, S, C, S, S}
$$

\n1. (a)
$$
\begin{aligned}\n &\text{1. } S & J_A \\
 & S & J_A \\
 & S & J_A \\
 & S & J_A\n \end{aligned}
$$

\n2. (a)
$$
\begin{aligned}\n &\text{1. } S & J_A \\
 & S & J_B \\
 & S & J_B \\
 & S & J_B\n \end{aligned}
$$

\n3. (a)
$$
\begin{aligned}\n &\text{1. } S & J_B \\
 & S & J_B \\
 & S & J_B\n \end{aligned}
$$

\n4. (a)
$$
\begin{aligned}\n &\text{1. } S & J_B \\
 & S & J_B \\
 & S & J_B\n \end{aligned}
$$

\n5. (a)
$$
\begin{aligned}\n &\text{1. } S & J_B \\
 & S & J_B\n \end{aligned}
$$

\n6. (a)
$$
\begin{aligned}\n &\text{1. } S & J_B \\
 & S & J_B\n \end{aligned}
$$

\n7. (b)
$$
\begin{aligned}\n &\text{1. } S & J_B \\
 & J_B\n \end{aligned}
$$

\n8. (a)
$$
\begin{aligned}\n &\text{1. } S & J_B \\
 & J_B\n \end{aligned}
$$

\n9. (a)
$$
\begin{aligned}\n &\text{1. } S & J_B\n \end{aligned}
$$

\n10. (a)
$$
\begin{aligned}\n &\text{1. } S & J_B\n \end{aligned}
$$

\n11. (a)
$$
\begin{aligned}\n &\text{1. } S & J_B\n \end{aligned}
$$

\n22. (b)
$$
\begin{aligned}\n &\text{1. } S & J_B\n \end{aligned}
$$

\n22. (c) <math display="</p>

The remaining term to be calculated is the linear momentum contribution, whose initial expression is

$$
\mathcal{E}(A \to BC) = \int d^3 K_B d^3 K_C d^3 p_\alpha d^3 p_\beta d^3 p_\gamma d^3 p_\nu
$$

\n
$$
\times \delta^{(3)}(\vec{K} - \vec{K}_0) \delta^{(3)}(\vec{K}_A - \vec{P}_A) \delta^{(3)}(\vec{K}_B - \vec{P}_B) \delta^{(3)}(\vec{K}_C - \vec{P}_C) \delta^{(3)}(\vec{p}_\mu + \vec{p}_\nu) \frac{\delta(k - k_0)}{k}
$$

\n
$$
\times \left\{ \left[\phi_B(\vec{p}_\sigma, \vec{p}_\zeta, \vec{p}_\epsilon) \phi_C(\vec{p}_\delta, \vec{p}_\tau) \right]_{L_{BC}} Y_l(\hat{k}) \right\}_{L}^* \left\{ \phi_A(\vec{p}_\alpha, \vec{p}_\beta, \vec{p}_\eta) \mathcal{Y}_1 \left(\frac{\vec{p}_\mu - \vec{p}_\nu}{2} \right) \right\}_{L}. \tag{25}
$$

This expression can be simplified defining a new set of coordinates:

$$
\vec{P_A} = \vec{p}_{\alpha} + \vec{p}_{\beta} + \vec{p}_{\eta}, \qquad \vec{P_C} = \vec{p}_{\delta} + \vec{p}_{\tau}, \n\vec{p}_{\rho_A} = \frac{\omega_{\beta} \vec{p}_{\alpha} - \omega_{\alpha} \vec{p}_{\beta}}{\omega_{\alpha \beta}}, \qquad \vec{p}_C = \frac{\omega_{\delta} \vec{p}_{\tau} - \omega_{\tau} \vec{p}_{\delta}}{\omega_{\delta \tau}}, \n\vec{p}_{\lambda_A} = \frac{\omega_{\eta} (\vec{p}_{\alpha} + \vec{p}_{\beta}) - \omega_{\alpha \beta} \vec{p}_{\eta}}{\omega_{\alpha \beta \eta}}, \qquad \vec{P} = \vec{p}_{\mu} + \vec{p}_{\nu}, \n\vec{P_B} = \vec{p}_{\zeta} + \vec{p}_{\sigma} + \vec{p}_{\epsilon}, \qquad \vec{p} = \frac{\vec{p}_{\mu} - \vec{p}_{\nu}}{2}, \n\vec{p}_{\rho_B} = \frac{\omega_{\sigma} \vec{p}_{\zeta} - \omega_{\zeta} \vec{p}_{\sigma}}{\omega_{\zeta \sigma}}, \qquad \vec{K} = \vec{K}_B + \vec{K}_C, \n\vec{p}_{\lambda_B} = \frac{\omega_{\epsilon} (\vec{p}_{\zeta} + \vec{p}_{\sigma}) - \omega_{\zeta \sigma} \vec{p}_{\epsilon}}{\omega_{\zeta \sigma \epsilon}}, \qquad \vec{k} = \frac{\omega_{C} \vec{K}_B - \omega_{B} \vec{K}_C}{\omega_{BC}}, \quad (26)
$$

where it is important to note that baryons need to define two relative momenta while for mesons only one relative momentum is sufficient. Additionally, we have introduce a so-called reduced mass convention which redefines all masses in terms of a reference one, *m*,

$$
\omega_{\alpha} = \frac{m_{\alpha}}{m}, \qquad \omega_{\alpha\beta} = \omega_{\alpha} + \omega_{\beta}.
$$
 (27)

The delta functions related with momenta provide an additional set of conditions,

$$
\vec{K} = \vec{K}_0 = \vec{K}_A = \vec{P}_A = 0, \n\vec{K}_B = \vec{P}_B, \n\vec{K}_C = \vec{P}_C, \n\vec{p}_\mu + \vec{p}_\nu = \vec{P} = 0,
$$
\n(28)

where it is important to note that the center-of-mass of baryon *A* is taken as the center of mass of the interaction. Now, the equivalences in momenta eliminate some integrals and the reaming variables can be written in terms of the following ones:

$$
\vec{p} = \vec{p}_{\mu} = -\vec{p}_{\nu},
$$
\n
$$
\vec{k} = \vec{p}_{\lambda_A} + \vec{p},
$$
\n
$$
\vec{p}_{\rho} = \vec{p}_{\rho_A} = \vec{p}_{\rho_B}. \tag{29}
$$

Then, the simplified expression for $\mathcal{E}(A \rightarrow BC)$ is

$$
\mathcal{E}(A \to BC) = \int d^3 p d^3 k d^3 p_\rho \frac{\delta(k - k_0)}{k^{l+1}} \times \left\{ \left[\phi_B(\vec{p}_\sigma, \vec{p}_\zeta, \vec{p}_e) \phi_C(\vec{p}_\delta, \vec{p}_\tau) \right]_{L_{BC}} \mathcal{Y}_l(\hat{k}) \right\}_{L}^* \times \left\{ \phi_A(\vec{p}_\alpha, \vec{p}_\beta, \vec{p}_\eta) \mathcal{Y}_1 \left(\frac{\vec{p}_\mu - \vec{p}_\nu}{2} \right) \right\}_{L} . \tag{30}
$$

Continuing with the calculation, the hadron wave functions can be separated in radial and angular parts,

$$
A \rightarrow BC = \int d^{3}p d^{3}kd^{3}p_{\rho} \frac{\delta(k-k_{0})}{k^{l+1}} \times \left\{ \left[\phi_{B}(\vec{p}_{\sigma}, \vec{p}_{\zeta}, \vec{p}_{\epsilon}) \phi_{C}(\vec{p}_{\delta}, \vec{p}_{\tau}) \right]_{L_{BC}} \mathbf{y}_{I}(\hat{k}) \right\}_{L}^{*} \qquad f_{\lambda_{B}}(\vec{p}_{\lambda_{B}}) = \sum_{i} d_{i}^{\lambda_{B}} \exp \left(\frac{\phi_{A}(\vec{p}_{\alpha}, \vec{p}_{\beta}, \vec{p}_{\eta}) \mathbf{y}_{I} \left(\frac{\vec{p}_{\mu} - \vec{p}_{\nu}}{2} \right)}{\mathbf{x} \left\{ \phi_{A}(\vec{p}_{\alpha}, \vec{p}_{\beta}, \vec{p}_{\eta}) \mathbf{y}_{I} \left(\frac{\vec{p}_{\mu} - \vec{p}_{\nu}}{2} \right) \right\}_{L} \qquad (30)
$$
\n\nContinuing with the calculation, the hadron wave
\ntions can be separated in radial and angular parts,
\n
$$
\phi_{A}(\vec{p}_{\alpha}, \vec{p}_{\beta}, \vec{p}_{\eta}) = f_{\lambda_{A}}(\vec{p}_{\lambda_{A}}) f_{\rho}(\vec{p}_{\rho}) \left[\mathbf{y}_{L_{\lambda_{A}}}(\vec{p}_{\lambda_{A}}) \mathbf{y}_{L_{\rho}}(\vec{p}_{\rho}) \right]_{L_{A}}, \qquad f_{C}(\vec{p}_{C}) = \sum_{i} d_{i}^{C} \exp \left(-\frac{\phi_{i}^{C}}{2} \right)
$$
\n\nwhere the constants could be
\n
$$
\phi_{B}(\vec{p}_{\sigma}, \vec{p}_{\zeta}, \vec{p}_{\epsilon}) = f_{\lambda_{B}}(\vec{p}_{\lambda_{B}}) f_{\rho}(\vec{p}_{\rho}) \left[\mathbf{y}_{L_{\lambda_{B}}}(\vec{p}_{\lambda_{B}}) \mathbf{y}_{L_{\rho}}(\vec{p}_{\rho}) \right]_{L_{B}}, \qquad \text{hadron spectra or fitted to\n
$$
(30), \text{ we arrive at}
$$
\n
$$
\mathcal{E}(A \rightarrow BC) = \sum_{i \neq i} d_{i}^{\lambda_{A}} d_{j}^{\lambda_{B}} (d_{i}^{\rho})^{2} d_{i}^{C}
$$
$$

$$
f_{\rm{max}}(x)
$$

where the solid spherical harmonics take into account the Jacobi coordinate decomposition of a baryon system and the radial parts are assumed to be Gaussian functions,

 $\phi_c(\vec{p}_c) = f_c(\vec{p}_c) \mathcal{Y}_{L_c}(\vec{p}_c),$ (33)

$$
f_{\lambda_A}(\vec{p}_{\lambda_A}) = \sum_i d_i^{\lambda_A} \exp\left(-\frac{\lambda_{Ai}}{2}p_{\lambda_A}^2\right), \qquad (34)
$$

$$
f_{\lambda_B}(\vec{p}_{\lambda_B}) = \sum_{j} d_j^{\lambda_B} \exp\left(-\frac{\lambda_{Bj}}{2} p_{\lambda_B}^2\right), \qquad (35)
$$

$$
f_{\rho}(\vec{p}_{\rho}) = \sum_{k} d_{k}^{\rho} \exp\left(-\frac{\rho_{k}}{2}p_{\rho}^{2}\right), \qquad (36)
$$

$$
f_C(\vec{p}_C) = \sum_{l'} d_{l'}^C \exp\left(-\frac{C_{l'}}{2}p_C^2\right),\tag{37}
$$

 $\phi_C(\vec{p}_C) = f_C(\vec{p}_C) \mathcal{Y}_{L_C}$

where the solid spherica

Jacobi coordinate decon

the radial parts are assur
 $f_{\lambda_A}(\vec{p}_{\lambda_A}) = \sum_i d_i^{\lambda_A} e^{i\theta}$
 $f_{\lambda_B}(\vec{p}_{\lambda_B}) = \sum_i d_i^{\lambda_B} e^{i\theta}$

(30)
 $f_P(\vec{p}_P) = \sum_k d_k^{\alpha_B} e^{i\theta}$

(where the constants could be computed theoretically from hadron spectra or fitted to experimental data of hadron radii.1) The limits of the sums are fixed according to the precision required. Inserting the above expressions in Eq. (30), we arrive at

$$
\mathcal{E}(A \to BC) = \sum_{ijkl} d_i^{\lambda_A} d_j^{\lambda_B} (d_k^{\rho})^2 d_{\nu}^C
$$

$$
\times \int d^3 p d^3 k d^3 p_{\rho} \frac{\delta(k - k_0)}{k^{l+1}} \exp \left(-\frac{1}{2} [\lambda_{Ai} p_{\lambda_A}^2 + \lambda_{Bj} p_{\lambda_B}^2 + \rho_k p_{\rho}^2 + C_{\nu} p_{C}^2] \right)
$$

$$
\times \left\{ \left[\left[\mathcal{Y}_{L_{\lambda_B}} (\vec{p}_{\lambda_B}) \mathcal{Y}_{L_{\rho}} (\vec{p}_{\rho}) \right]_{L_B} \mathcal{Y}_{L_C} (\vec{p}_C) \right]_{L_{BC}} \mathcal{Y}_{l} (\vec{k}) \right\}_{L}^* \left\{ \left[\mathcal{Y}_{L_{\lambda_A}} (\vec{p}_{\lambda_A}) \mathcal{Y}_{L_{\rho}} (\vec{p}_{\rho}) \right]_{L_A} \mathcal{Y}_{1} (\vec{p}) \right\}_{L}. \tag{38}
$$

do that we define $\vec{q} = \vec{p} - x\vec{k}$, where *x* could be any number; note also that *p* and p_{ρ} continue to be variables of the We need now that all functions of Eq. (38) be expressed in terms of the integration variables. In order to integral. Therefore,

$$
\vec{p}_{\lambda_A} = (1 - x)\vec{k} - \vec{q}, \n\vec{p}_{\lambda_B} = \left(\frac{\omega_\mu}{\omega_{\alpha\beta\mu}} - x\right)\vec{k} - \vec{q}, \n\vec{p}_C = \left(\frac{\omega_\mu}{\omega_{\eta\mu}} - x\right)\vec{k} - \vec{q}.
$$
\n(39)

The terms are squared,

$$
p_{\lambda_A}^2 = (1 - x)^2 k^2 + q^2 - 2(1 - x)\vec{k} \cdot \vec{q},
$$

\n
$$
p_{\lambda_B}^2 = \left(\frac{\omega_\mu}{\omega_{\alpha\beta\mu}} - x\right)^2 k^2 + q^2 - 2\left(\frac{\omega_\mu}{\omega_{\alpha\beta\mu}} - x\right)\vec{k} \cdot \vec{q},
$$

\n
$$
p_C^2 = \left(\frac{\omega_\mu}{\omega_{\eta\mu}} - x\right)^2 k^2 + q^2 - 2\left(\frac{\omega_\mu}{\omega_{\eta\mu}} - x\right)\vec{k} \cdot \vec{q},
$$
 (40)

and replaced in the exponential argument as

¹⁾ In order to test this theoretical calculation we are going to follow the second strategy and we leave the microscopic calculation of the wave functions for a later publication because we have not yet developed the program that would calculate eigenenergies and eigenfunctions of baryons.

$$
\lambda_{Ai}p_{\lambda_A}^2 + \lambda_{Bj}p_{\lambda_B}^2 + C_l p_C^2 = k^2 \left[\lambda_{Ai} (1-x)^2 + \lambda_{Bj} \left(\frac{\omega_\mu}{\omega_{\alpha\beta\mu}} - x \right)^2 + C_l \left(\frac{\omega_\mu}{\omega_{\eta\mu}} - x \right)^2 \right] + q^2 \left[\lambda_{Ai} + \lambda_{Bj} + C_l \right]
$$

$$
-2\vec{k} \cdot \vec{q} \left[\lambda_{Ai} (1-x) + \lambda_{Bj} \left(\frac{\omega_\mu}{\omega_{\alpha\beta\mu}} - x \right) + C_l \left(\frac{\omega_\mu}{\omega_{\eta\mu}} - x \right) \right].
$$
(41)

Now, in order to eliminate the $\vec{k} \cdot \vec{q}$ term, *x* is fixed to the following value,

value,
\n
$$
\lambda_{Ai} + \lambda_{Bj} \frac{\omega_{\mu}}{\omega_{\alpha\beta\mu}} + C_l \frac{\omega_{\mu}}{\omega_{\eta\mu}}
$$
\n
$$
x = \frac{\lambda_{Ai} + \lambda_{Bj} + C_l}{\lambda_{Ai} + \lambda_{Bj} + C_l}.
$$
\n(42)
\n
$$
2D = \lambda_{Ai} (1 - x)^2 + C_l \frac{\omega_{\mu}}{\omega_{\eta\mu}}
$$
\n(43) are defined we

To simplify more the notation, the parameters

$$
A = \lambda_{Ai} + \lambda_{Bj} \frac{\omega_{\mu}}{\omega_{\alpha\beta\mu}} + C_l \frac{\omega_{\mu}}{\omega_{\eta\mu}},
$$
\n(43)

$$
2B = \lambda_{Ai} + \lambda_{Bj} + C_l, \qquad (44)
$$

$$
2D = \lambda_{Ai}(1-x)^2 + \lambda_{Bj} \left(\frac{\omega_{\mu}}{\omega_{\alpha\beta\mu}} - x\right)^2 + C_l \left(\frac{\omega_{\mu}}{\omega_{\eta\mu}} - x\right)^2, \quad (45)
$$

 $x = \frac{A}{24}$ are defined, where $x = \frac{x}{2B}$. Therefore, the linear momentum contribution can be now written as

$$
x = \frac{\lambda_{Ai} + \lambda_{Bj} \frac{\omega_{\mu}}{\omega_{\alpha\beta\mu}} + C_l \frac{\omega_{\mu}}{\omega_{\eta\mu}}}{\lambda_{Ai} + \lambda_{Bj} + C_l}.
$$
\n(42)\n
\n2D = $\lambda_{Ai}(1 - x)^2 + \lambda_{Bj} \left(\frac{\omega_{\mu}}{\omega_{\alpha\beta\mu}} - x\right)^2 + C_l \left(\frac{\omega_{\mu}}{\omega_{\eta\mu}} - x\right)^2$, (45)\n
\n6) For the notation, the parameters\n
\n
$$
\frac{\omega_{\mu}}{\omega_{\alpha\beta\mu}} + C_l \frac{\omega_{\mu}}{\omega_{\eta\mu}},
$$
\n(43) are defined, where $x = \frac{A}{2B}$. Therefore, the linear momentum contribution can be now written as\n
\n
$$
\mathcal{E}(A \to BC) = \sum_{ijkl} d_i^{\lambda_A} d_j^{\lambda_B} (d_k^{\rho})^2 d_{i'}^{\rho} \int d^3 q d^3 k d^3 p_{\rho} \frac{\delta(k - k_0)}{k^{i+1}} \exp\left(-Bq^2 - Dk^2 - \frac{\rho_k}{2}p_{\rho}^2\right)
$$
\n
$$
\times \left\{\left[\left[\mathcal{Y}_{L_{i_B}}(\vec{p}_{\lambda_{i_B}})\mathcal{Y}_{L_{\rho}}(\vec{p}_{\rho})\right]_{L_{i_B}} \mathcal{Y}_{L_{c}}(\vec{p}_{\sigma})\right]_{L_{i_{BC}}} \mathcal{Y}_{L}(\vec{k})\right\}_{L}^* \left\{\left[\mathcal{Y}_{L_{i_A}}(\vec{p}_{\lambda_A})\mathcal{Y}_{L_{\rho}}(\vec{p}_{\rho})\right]_{L_{A}} \mathcal{Y}_{L}(\vec{p})\right\}_{L},
$$
\n(46)\n
\ncond line of Eq. (46) is still not expressed in terms of the integration variables. In order to do this, the prop-
\nrical harmonics and couplings between angular momenta must be used [49] in such a way that\n
\n
$$
\mathcal{Y}_{L_{\rho}}(\vec{p}_{\rho})\Big|_{L_{A}} \mathcal{Y}_{L}(\vec{p}_{\rho})\Big|_{L_{A}} \mathcal{Y}_{L}(\vec{p}_{\rho})\left[\mathcal{Y}_{L_{A}}(L_{i_{A}}L_{i_{A}}L_{i_{A}}L_{i_{A}}L_{i_{A}}L_{i
$$

but the second line of Eq. (46) is still not expressed in terms of the integration variables. In order to do this, the properties of spherical harmonics and couplings between angular momenta must be used [49] in such a way that

$$
\left\{\left[\mathbf{y}_{L_{\lambda_{A}}}(\vec{p}_{\lambda_{A}})\mathbf{y}_{L_{\rho}}(\vec{p}_{\rho})\right]_{L_{A}}\mathbf{y}_{1}(\vec{p})\right\}_{L}=\sum_{l_{1},l_{2},l_{3},l_{4},l_{5}}B_{L_{\lambda_{A}}-l_{1},1-l_{2}}^{l_{3}}C_{L_{\lambda_{A}}}^{l_{1}}\Pi_{L_{A},L_{\lambda_{A}},l_{3},l_{4},l_{5},1}(1-x)^{l_{1}}x^{l_{2}}(-1)^{L+L_{A}+L_{\lambda_{A}}-l_{1}+1}k^{l_{1}+l_{2}-l_{4}}q^{L_{\lambda_{A}}-l_{1}-l_{2}-l_{5}+1}
$$
\n
$$
\times\left\{\begin{array}{cc} \mathbf{1}_{1} & \mathbf{1}_{2} \\ \mathbf{1}_{2} & \mathbf{1}_{2} & \mathbf{1}_{2} & \mathbf{1}_{3} & \mathbf{1}_{3} \end{array}\right\}\left\{\mathbf{y}_{L_{\rho}}(\vec{p}_{\rho})\left[\mathbf{y}_{l_{4}}(\vec{k})\mathbf{y}_{l_{5}}(\vec{q})\right]_{l_{3}}\right\}_{L},\tag{47}
$$

where we have defined the following coefficients

$$
B_{a,b}^{c} = (-1)^{c} \sqrt{\frac{(2a+1)(2b+1)}{4\pi}} \begin{pmatrix} a & b & c \ 0 & 0 & 0 \end{pmatrix}, \qquad C_{b}^{a} = \sqrt{\frac{4\pi(2a+1)!}{(2b+1)!(2(a-b)+1)!}}.
$$
(48)

The remaining term becomes

$$
\begin{split}\n&\left\{\left[\left[\mathbf{y}_{L_{\lambda_{B}}}(\vec{p}_{\lambda_{B}})\mathbf{y}_{L_{\rho}}(\vec{p}_{\rho})\right]_{L_{B}}\mathbf{y}_{L_{C}}(\vec{p}_{C})\right]_{L_{BC}}\mathbf{y}_{l}(\vec{k})\right\}_{L} \\
&= \sum_{l_{6},l_{7},l_{8},l_{9},l_{10},l_{11},l_{12}} B_{l_{6},l_{7}}^{l_{10}} B_{L_{\lambda_{B}}-l_{6},L_{C}-l_{7}}^{l_{12}} B_{l_{9},l_{7}}^{l_{12}} C_{l_{6}}^{L_{\lambda_{B}}} C_{l_{7}}^{L_{\lambda}} \times \Pi_{L_{BC},L_{B},L_{C},L_{\lambda_{B}},l_{8},l_{9},l_{10},l_{11},l_{12}}\left(\frac{\omega_{\mu}}{\omega_{\alpha\beta\mu}}-x\right)^{l_{6}}\left(\frac{\omega_{\mu}}{\omega_{\eta\mu}}-x\right)^{l_{7}} \\
&\times (-1)^{L_{BC}+L_{B}+L_{\lambda_{B}}+L_{\rho}+L-l_{6}-l_{7}+l_{10}+l_{12}} k^{l_{1}+l_{6}+l_{7}-l_{12}} q^{L_{\lambda_{B}}+L_{C}-l_{6}-l_{7}-l_{10}} \left\{\begin{array}{c} L_{\lambda_{B}} & L_{\rho} & L_{B} \\ L_{BC} & L_{C} & l_{8} \end{array}\right\} \left\{\begin{array}{c} L_{\rho} & l_{8} & L_{BC} \\ l & L & L & l_{11} \end{array}\right\} \\
&\times \left\{\begin{array}{c} l_{10} & l_{9} & l_{8} \\ l & l_{11} & l_{12} \end{array}\right\} \left\{\begin{array}{c} l_{6} & L_{\lambda_{B}} - l_{6} & L_{\lambda_{B}} \\ l_{7} & L_{C}-l_{7} & L_{C} \\ l_{9} & l_{10} & l_{8} \end{array}\right\} \left\{\mathcal{Y}_{L_{\rho}}(\vec{p}_{\rho}) \left[\mathcal{Y}_{l_{12}}(\vec{k})\mathcal{Y}_{l_{10}}(\vec{q})\right]_{l_{11}}\right\}_{L} .\n\end{split} \tag{49}
$$

We arrive then to the expression of the linear momentum contribution

$$
\mathcal{E}(A \to BC) = \sum_{ijkl} d_i^{k_A} d_j^{k_B} (d_k^p)^2 d_F^c \int d^3 q d^3 k d^3 p_\rho \frac{\delta(k - k_0)}{k^{l+1}} \exp\left(-Bq^2 - Dk^2 - \frac{\rho_k}{2} p_\rho^2\right)
$$

\n
$$
\times \sum_{l_1, l_2, \ldots, l_{11}, l_{22}} B_{l_1, l_2}^{k_1} B_{l_{2, j_4}}^{l_2} I_{l_{11}, l_2} B_{l_0, l_3}^{l_3} B_{l_{2, j_4}}^{l_4} I_{l_3} I_{l_2} I_{l_3} I_{l_4} I_{l_5} I_{l_6} I_{l_7} I_{l_8} I_{l_7} I_{l_8} I_{l_9} I_{l_9} I_{l_1} I_{l_1} I_{l_1} I_{l_2} I_{l_1} I_{l_2} I_{l_3} I_{l_4} I_{l_5} I_{l_6} I_{l_7} I_{l_8} I_{l_7} I_{l_8} I_{l_9} I_{l_9} I_{l_1} I_{l_1} I_{l_2} I_{l_4} I_{l_4} I_{l_5} I_{l_4} I_{l_7} I_{l_8} I_{l_7} I_{l_8} I_{l_9} I_{l_9} I_{l_1} I_{l_1} I_{l_1} I_{l_2} I_{l_4} I_{l_4} I_{l_5} I_{l_4} I_{l_4} I_{l_5} I_{l_6} I_{l_7} I_{l_8} I_{l_9} I_{
$$

in which the angular integrals can be solved using the orthogonality of spherical harmonics as follows [[49](#page-14-35)]:

$$
\int d^3q d^3k d^3p_{\rho} \left\{ \mathbf{y}_{L_{\rho}}(\vec{p}_{\rho}) \left[\mathbf{y}_{l_{12}}(\vec{k}) \mathbf{y}_{l_{10}}(\vec{q}) \right]_{l_{11}} \right\}_{L}^* \left\{ \mathbf{y}_{L_{\rho}}(\vec{p}_{\rho}) \left[\mathbf{y}_{l_4}(\vec{k}) \mathbf{y}_{l_5}(\vec{q}) \right]_{l_3} \right\}_{L}
$$
\n
$$
= \delta_{L_{\rho},L_{\rho}} \delta_{l_{12},l_4} \delta_{l_{10},l_5} \delta_{l_{11},l_3} \delta_{L,L} \int dq dk dp_{\rho} q^{2+l_5+l_{10}} k^{2+l_4+l_{12}} p_{\rho}^{2+2l_{\rho}}.
$$
\n(51)

Additionally, the radial integrals can be simplified using the Gamma function when the exponential term is taken into account. The integral over *q* becomes

$$
\int_0^\infty dq \, e^{-Bq^2} q^{Lc + L_{\lambda_A} + L_{\lambda_B} - l_1 - l_2 - l_5 - l_6 - l_7 + l_8' + 3}
$$
\n
$$
= \frac{1}{2} B^{-\frac{1}{2}(L_c + L_{\lambda_A} + L_{\lambda_B} - l_1 - l_2 - l_6 - l_7 + 4)}
$$
\n
$$
\times \Gamma \left(\frac{1}{2} (L_c + L_{\lambda_A} + L_{\lambda_B} - l_1 - l_2 - l_6 - l_7 + 4) \right).
$$
\n(52)

The same can be made for the integral over p_ρ ,

$$
\int dp_{\rho} e^{-\frac{\rho_k}{2}p_{\rho}^2} p_{\rho}^{2+2L_{\rho}} = \frac{1}{2} \left(\frac{\rho_k}{2}\right)^{-\frac{1}{2}(2L_{\rho}+3)} \Gamma\left(\frac{1}{2}(2L_{\rho}+3)\right), (53)
$$

delta-function $\delta(k - k_0)$. and the integral over *k* can be simplified using the

Threfore, the lineal momentum contribution has the final expression

$$
\mathcal{E}(A \to BC) = \sum_{ijkl} d_i^{\lambda_A} d_j^{\lambda_B} (d_k^{\rho})^2 d_l^C \exp(-Dk_0^2) \sum_{l_1, l_2, \dots, l_8, l_9} B_{l_1, l_2}^{l_4} B_{L_{\lambda_A} - l_1, 1 - l_2}^{l_5} B_{l_6, l_7}^{l_5} B_{L_{\lambda_B} - l_6, L_{C} - l_7}^{l_4} B_{l_9, l}^{l_4} C_{l_1}^{l_4} C_{l_2}^{l_5} C_{l_6}^{l_6}
$$
\n
$$
\times \Pi_{L_{BC}, L_{A}, L_{B}, L_{C}, L_{\lambda_A}, L_{\lambda_B}, l_3, l_3, l_4, l_4, l_5, l_5, l_8, l_8, l_9, 1}(1-x)^{l_1} x^{l_2} \left(\frac{\omega_\mu}{\omega_{\alpha \beta \mu}} - x\right)^{l_6} \left(\frac{\omega_\mu}{\omega_{\eta \mu}} - x\right)^{l_7}
$$
\n
$$
\times (-1)^{L_{BC} + L_{A} + L_{B} + L_{\lambda_A} + L_{\lambda_B} + L_{P} - l_1 - l_6 - l_7 + l_5 + l_4 + 1} (2)^{L_p - \frac{1}{2}} k_0^{l_1 + l_2 + l_6 + l_7 + 1} B^{-\frac{1}{2} (L_{C} + L_{\lambda_A} + L_{\lambda_B} - l_1 - l_2 - l_6 - l_7 + 4)} \rho_{\bar{k}}^{-\frac{1}{2} (2L_p + 3)}
$$
\n
$$
\times \left\{ L_{BC} - L_{C} - L_{B} \right\} \left\{ L_{\rho} - L_{B} - L_{B} \right\} \left\{ L_{\rho} - L_{B} - L_{B} \right\} \left\{ L_{B} - L_{B} - L_{B
$$

where the limits of the sums can be obtained using triangular conditions of the Wigner symbols.

B. The color contribution

Concerning the color matrix element, this can be written as

$$
\mathcal{I}_{Color} = \langle C_{B} C_{C} | C_{A} \rangle = \langle C (\epsilon \sigma \zeta) C (\delta \tau) | C (\alpha \beta \eta) C (\mu \nu) \rangle, \quad (55)
$$

where the color function of the pair created is added. In order to calculate this contribution, the color function of the baryons and mesons must be known:

$$
C(\alpha\beta\eta) = \frac{1}{\sqrt{6}} \sum_{\alpha\beta\eta} \varepsilon_{\alpha\beta\eta} = \frac{1}{\sqrt{6}} (r_{\alpha}g_{\beta}b_{\eta} - r_{\alpha}b_{\beta}g_{\eta} + g_{\alpha}b_{\beta}r_{\eta} - g_{\alpha}r_{\beta}b_{\eta} + b_{\alpha}r_{\beta}g_{\eta} - b_{\alpha}g_{\beta}r_{\eta}),
$$
 (56)

$$
C(\delta \tau) = \frac{1}{\sqrt{3}} \sum_{\delta \tau} \delta_{\delta \tau} = \frac{1}{\sqrt{3}} (r_{\delta} \overline{r}_{\tau} + g_{\delta} \overline{g}_{\tau} + b_{\delta} \overline{b}_{\tau}). \tag{57}
$$

Since mesons are made of a quark and antiquark a Kronecker delta is enough to describe the color function. On the other hand, the baryon must have an antisymmetric color wave function, this make the Levi-Civita symbol sufficient to describe the color of the system. the pair created is added. In the other in order to simplify the

ution, the color function of as already done for spin,
 $\frac{1}{\sqrt{6}}(r_{\alpha}g_{\beta}b_{\eta}-r_{\alpha}b_{\beta}g_{\eta}$
 $\frac{1}{\sqrt{6}}(r_{\alpha}g_{\beta}b_{\eta}-r_{\alpha}b_{\beta}g_{\eta})$
 $\frac{1}{\sqrt{$

The color wave functions are replaced in Eq. (55), taking into account the particle equivalences of Eq. (12), the color contribution becomes

$$
I_{Color} = \frac{1}{18} \sum_{\alpha\beta\eta} \sum_{\mu\nu} \sum_{\epsilon\sigma\zeta} \sum_{\delta\tau} \varepsilon_{\alpha\beta\eta} \delta_{\mu\nu} \varepsilon_{\epsilon\sigma\zeta} \delta_{\delta\tau}
$$

\n
$$
= \frac{1}{18} \sum_{\alpha\beta\eta\mu} \sum_{\epsilon\sigma\zeta\delta} \varepsilon_{\alpha\beta\eta} \varepsilon_{\epsilon\sigma\zeta} \delta_{\delta\mu} \delta_{\epsilon\mu} \delta_{\zeta\alpha} \delta_{\sigma\beta} \delta_{\delta\eta}
$$

\n
$$
= \frac{1}{18} \sum_{\alpha\beta\eta} \sum_{\delta} \varepsilon_{\alpha\beta\eta} \varepsilon_{\delta\beta\alpha} \delta_{\delta\eta}
$$

\n
$$
= \frac{1}{18} \sum_{\alpha\beta\eta} \varepsilon_{\alpha\beta\eta} \varepsilon_{\eta\beta\alpha} . \tag{58}
$$

Now, the product of Levi-Civita tensors can be simplified as

$$
\sum_{\alpha\beta\eta}\varepsilon_{\alpha\beta\eta}\varepsilon_{\eta\beta\alpha}=-6\,,\tag{59}
$$

arriving at

$$
\mathcal{I}_{Color} = -\frac{1}{3} \,. \tag{60}
$$

This term cancels with the 3 put by hand in the transition operator, Eq. (1).

C. The flavor contribution

The flavor matrix element may be written as

$$
\mathcal{I}_{Sabor} = \langle [(t_{\mu}t_{\beta}t_{\alpha})I_B(t_{\nu}t_{\eta})I_C]I_A| [(t_{\alpha}t_{\beta}t_{\eta})I_A(t_{\mu}t_{\nu})0]I_A \rangle. \tag{61}
$$

In order to simplify this expression, the flavor of the non-interacting quarks (α and β) inside baryons is defined as already done for spin,

$$
t_{\rho} = t_{\alpha} \otimes t_{\beta}.
$$
 (62)

Thus, the final expression to be calculated is

$$
\overline{I}_{Sabor} = (-1)^{t_a + t_{\beta} + t_{\mu} - I_B} (-1)^{t_{\gamma} + t_{\eta} - I_C}
$$
\n
$$
\times \langle [(t_{\rho}t_{\mu})I_B(t_{\eta}t_{\nu})I_C]I_A|[(t_{\rho}t_{\eta})I_A(t_{\mu}t_{\nu})0]I_A \rangle. \tag{63}
$$

This can be re-written using a 9*J*-symbol as

$$
I_{Sabor} = (-1)^{t_{\alpha} + t_{\beta} + t_{\mu} - I_B} (-1)^{t_{\nu} + t_{\eta} - I_C} \Pi_{I_B, I_C, I_A, 0} \begin{pmatrix} t_{\rho} & t_{\mu} & I_B \\ t_{\eta} & t_{\nu} & I_C \\ I_A & 0 & I_A \end{pmatrix} .
$$
 (64)

Since the 9*J*-symbol has a zero in one of its components, it can be simplified into a 6J-symbol,

$$
I_{Sabor} = (-1)^{t_{\alpha}+t_{\beta}+t_{\mu}+t_{\eta}+t_{\rho}+I_A-I_B} \frac{\Pi_{I_B,I_C}}{\Pi_{t_{\mu}}} \left\{ \begin{array}{cc} t_{\eta} & I_C & t_{\mu} \\ I_B & t_{\rho_A} & I_A \end{array} \right\}, (65)
$$

where the equivalence of $t_{\mu} = t_{\nu}$ is used.

III. RESULTS

Once we have shown a detailed derivation of the analytical expression for the decay width, and transition matrix, of a baryon decaying strongly into a meson plus another baryon, it is time to provide an example of calculation in order to check the correctness of it. Besides, one of our long-term goals is to provide a unified picture of mesons and baryons decayingst[ro](#page-13-2)ngly, from our previous analysis in the meson sector [\[1\]](#page-13-2).

 $\Delta(1232)$ baryon decaying strongly into a pion $(\pi(140))$ plus a nucleon $(N(940))$. This is because (i) all hadrons The most convenient example for our test is the involved in the reaction are very well establishe[d i](#page-13-0)n the Particle Listings of Particle Data Group (PDG) [\[2\]](#page-13-0); (ii) the two hadrons in the final state are stable avoiding addi-

branching fraction of the $\Delta(1232) \rightarrow \pi N$ strong decay measured experimentally, with a value between 114MeV and $120 \,\text{MeV}$ [\[2\]](#page-13-0).¹⁾ tional complications in the computation related with taking into account decay widths of the products; (iii) all constituent quarks inside hadrons are either *u*- or *d*quarks and, since isospin symmetry is well fulfilled in QCD, one can assume all as equivalent quarks; (iv) the channel is 99.4% which constitutes almost the total decay width; and (v) the total decay width is relatively well inside hadrons are either *u* or denote
in the (*ρ.a*) inside hadrons are either *u* or denoted by the political infinite different constitutes almost the total de-
the cual decay of the A-baryon is made total de-
total

4 this make different species with different charges and As we have already mentioned, the Δ -baryon is made of up (u) and down (d) quarks in different combinations, decay channels. This species an their properties can be resumed in the following table,

on is $\Delta(1232)$ ⁻. Therefore, the properties of all the had-In order to calculate the decay width, the properties of the initial and final hadrons must be fixed. To simplify, and without loss of generality, the studied decaying baryrons involved in the reaction are listed as (a constituent quark model description of hadrons is assumend):

Using the experimental masses, the transferred momentum of the reaction can be calculated:

$$
k_0 = \frac{\sqrt{\left(m_A^2 - (m_B - m_C)^2\right)\left(m_A^2 - (m_B + m_C)^2\right)}}{2m_A} = 226 \,\text{MeV}.
$$
\n(66)

Having fixed the target reaction to be studied, let us now disentangle some relevant couplings needed to provide a final numerical result. For example, the coupling of angular momenta in the final state can be deduced as follows

$$
J_{BC} = J_B \otimes J_C = \frac{1}{2}
$$
 and $L_{BC} = L_B \otimes L_C = 0.$ (67)

For the other values is necessary a little more of work. For instance, the baryons have two internal momenta that comes form the $(\rho \lambda)$ -Jacobi coordinates, they should fulfill

$$
L_{\lambda_A} \otimes L_{\rho} = 0,
$$

\n
$$
L_{\lambda_B} \otimes L_{\rho} = 0,
$$
\n(68)

which dictate that

$$
L_{\lambda_A} = L_{\lambda_B} = L_\rho, \qquad (69)
$$

and we assume that all are zero. Besides, the final hadrons have a relative angular momentum, *l*, which must be taken into account to assure the conservation of angular momentum,

$$
\vec{J}_A = \vec{J}_{BC} + \vec{l} \quad \Rightarrow \quad \frac{3}{2} = \left| \frac{1}{2} \otimes l \right|, \tag{70}
$$

having two possible values,

$$
l = 1 \text{ or } l = 2. \tag{71}
$$

During the calculation the Wigner symbols eliminate any of the values that do not comply with the triangular conditions.

with spin $1/2$ and s_ρ must be maintained since it is the Concerning spin coupling, the quarks are fermions total spin of the two spectator quarks. Therefore, the next decomposition is made,

$$
S_A = \frac{3}{2} = \left(\frac{1}{2} \otimes \frac{1}{2}\right)_1 \otimes \frac{1}{2} = \left(s_\alpha \otimes s_\beta\right)_{s_\rho} \otimes s_\eta,
$$

\n
$$
S_B = \frac{1}{2} = \left(\frac{1}{2} \otimes \frac{1}{2}\right)_1 \otimes \frac{1}{2} = \left(s_\alpha \otimes s_\beta\right)_{s_\rho} \otimes s_\mu,
$$

\n
$$
S_C = 0 = \frac{1}{2} \otimes \frac{1}{2} = s_\eta \otimes s_\nu.
$$
\n(72)

equal to 1 in order to provide correctly the Δ 's quantum numbers and thus this requires the same value of s_p in the Note that the spin of the spectator quarks must be nucleon. Similar reasoning is made for the isospin couplings:

$$
I_A = \frac{3}{2} = \left(\frac{1}{2} \otimes \frac{1}{2}\right)_1 \otimes \frac{1}{2} = \left(t_\alpha \otimes t_\beta\right)_{t_\rho} \otimes t_\eta,
$$

\n
$$
I_B = \frac{1}{2} = \left(\frac{1}{2} \otimes \frac{1}{2}\right)_1 \otimes \frac{1}{2} = \left(t_\alpha \otimes t_\beta\right)_{t_\rho} \otimes t_\mu,
$$

\n
$$
I_C = 1 = \frac{1}{2} \otimes \frac{1}{2} = t_\eta \otimes t_\nu.
$$
\n(73)

¹⁾ Note the use of the so-called natural units, $\hbar = c = 1$.

In order to estimate the coefficients that appear in the Gaussian expansion of the hadron's wave functions, some analysis is needed. The Gaussian form for the meson can be assumed to be,

$$
f(\vec{p}_C) = d^C e^{-\frac{C}{2}p_C^2},
$$
\n(74)

where only one term of the sum is used in order to simplify the calculation. The form of the Gaussian function gives the next relation between the variance and the coefficient,

$$
\sigma^2 = \frac{1}{C} \,. \tag{75}
$$

Then, the following approximation can be done for the hadron's radius,

$$
\langle r^2 \rangle \approx \frac{(\hbar c)^2}{\sigma^2},\tag{76}
$$

where $\hbar c = 0.197327 \,\text{GeV}$ fm is added to have the correct units. This is the relationship that we are going to use between hadron's coefficient and its size.

The Gaussian expansion for a baryon is different since it has two components. Following Ref. [50] the next function is used,

$$
f(\vec{p}_{\lambda}, \vec{p}_{\rho}) = \left[\frac{2b^2}{\pi}\right]^{\frac{3}{4}} e^{-b^2 \vec{p}_{\rho}^2} \left[\frac{2\alpha b^2}{\pi}\right]^{\frac{3}{4}} e^{-\alpha b^2 \vec{p}_{\lambda}^2},\qquad(77)
$$

where α depends on quark masses as

$$
\alpha = \frac{m_1 m_2 (m_1 + m_2 + m_3)}{m_3 (m_1 + m_2)^2},\tag{78}
$$

which is equal to $3/4$ in our case. Equation (77) shows us two important aspects: (i) the computation of the baryon radius in terms of its Gaussian's standard deviation and (ii) the relation the unit uppear in the control of the con

$$
d^C = \left[\frac{2C}{\pi}\right]^{3/4}.\tag{79}
$$

Now, we are in the position of computing the coefficients necessary for the transition matrix (see Eqs. (42)- (45)),

$$
A = \frac{9\langle r_A \rangle^2 + 3\langle r_B \rangle^2 + 2\langle r_C \rangle^2}{4(\hbar c)^2},
$$
\n(80)

$$
B = \frac{9\langle r_A \rangle^2 + 9\langle r_B \rangle^2 + 4\langle r_C \rangle^2}{8(\hbar c)^2},
$$
\n(81)

$$
x = \frac{9\langle r_A \rangle^2 + 3\langle r_B \rangle^2 + 2\langle r_C \rangle^2}{9\langle r_A \rangle^2 + 9\langle r_B \rangle^2 + 4\langle r_C \rangle^2},\tag{82}
$$

$$
D = \frac{1}{2} \left(\frac{9 \langle r_A \rangle^2}{4(\hbar c)^2} (1 - x)^2 + \frac{9 \langle r_B \rangle^2}{4(\hbar c)^2} \left(\frac{1}{3} - x \right)^2 + \frac{\langle r_C \rangle^2}{(\hbar c)^2} \left(\frac{1}{2} - x \right)^2 \right),
$$
(83)

and the product of the amplitudes,

$$
d_i^{\lambda_A} d_i^{\lambda_B} (d_k^{\rho})^2 d_l^C = \rho_k^{\frac{3}{2}} \left[\left(\frac{2}{\pi} \right)^5 \left(\frac{81 \langle r_A \rangle^2 \langle r_B \rangle^2 \langle r_C \rangle^2}{16 \langle \hbar c \rangle^6} \right) \right]^{\frac{3}{4}}. \quad (84)
$$

Note that $\rho_k^{\frac{3}{2}}$ cancels with the $\rho_k^{-\frac{3}{2}}$ that appears in the spin-space component, Eq. (54).

free paramter of the ${}^{3}P_0$ decay model, γ' , that character-The final constant that needs to be known is the onlyizes the strength of the quark-antiquark pair creation from the vacuum. Following Ref. [[1\]](#page-13-2), the next relation can be used to calculate this constant,

$$
\gamma' = \sqrt{2^5 \pi} \cdot \frac{\gamma_0}{\log\left(\frac{\mu}{\mu_\gamma}\right)},\tag{85}
$$

where $\gamma_0 = 0.81 \pm 0.02$ and $\mu_{\gamma} = 49.84 \pm 2.58$ MeV are con-Ref. [1], we have $\mu = m_q/2 = 313 \text{ MeV}/2 = 156.5 \text{ MeV}$, with m_q the value of the constituent light quark mass in stants fitted to the total strong decay widths of mesons, and μ represents the quark sector to which the decaying hadron belongs. For the example at hand, the Δ-baryon belongs to the light quark sector; therefore, following our model, and 1 the variance and the coef-

and the product of the ε
 $\frac{1}{C}$ $\frac{1}{C}$ $\frac{1}{C}$. (75) $d_i^{\lambda_A} d_i^{\lambda_B} (d_k^{\rho})^2 d_i^{\rho} = \rho_k^{\frac{3}{2}} \left[\left(\frac{2}{\pi} \right) \right]$

oximation can be done for
 $\frac{\hbar c^2}{\sigma^2}$, (76) free paramter of the $\frac{3}{2}$

$$
\gamma' = \sqrt{16\pi} \approx 7.09. \tag{86}
$$

All together provide the following value for the decay width

$$
\Gamma(\Delta(1232)^{-} \rightarrow n(940) + \pi(140)^{-}) = 113.32 \,\text{MeV},\qquad (87)
$$

 PDG [\[2\]](#page-13-0), *viz.* Γ_{Δ(1232)} = (114 − 120)MeV and so $\Gamma_{\Delta(1232)\to N\pi} = (113-119) \text{MeV}$. This result is quite remarktion of the ${}^{3}P_{0}$ decay model using just the ex[pe](#page-13-0)rimental whic[h](#page-13-0) is just at, or below, the minimum given by the able since, in some sense, it is a free-parameter predicvalues of the hadron's radii reported in Ref[. \[](#page-13-2)[2](#page-13-0)] and the scale-dependent strength determined in Ref. [\[1\]](#page-13-2).

To contrast this result, in the literature, the γ' value usually u[sed](#page-14-25) is the one obtained in the fitting made by Blundell [[29](#page-14-25)]. Since this value is fixed for meson decays,

√ it must be divided by $\sqrt{3}$ to extrapolate it for baryon decays.¹⁾ Therefore, the next value of γ' can be used,

$$
\gamma' = \frac{13.4}{\sqrt{3}},\tag{88}
$$

having a decay width of

$$
\Gamma(\Delta(1232)^{-} \to n(940) + \pi(140)^{-}) = 134.95 \,\text{MeV},\qquad(89)
$$

al development of the ${}^{3}P_{0}$ model for baryon decays seems which is slightly higher than the experimental interval but relatively correct [[2\]](#page-13-0), confirming that the analyticcorrect and the radii of the involved hadrons also well estimated.

differences in the $\Delta \rightarrow \pi N$ strong decay due to the pos-Note herein that, since this is a strong Δ -baryon decay, the only variation among charge channels lies in the corresponding Clebsch-Gordan coefficient, and possible final states. Theoretically, this implies that each charge channel can be calculated independently. However, from an experimental standpoint, once one channel is known, the others are of no practical interest. This characteristic is evident in the Particle Data Group (PDG), where the sible charge states are not documented, and a single value is provided.

IV. SUMMARY

³P₀ quark-antiquark pair creation model. This work have shown how to obtain in detail the transition matrix element for a baryon decaying strongly into a meson and another baryon through the well-known

tor, focusing on the $\Delta(1232) \rightarrow \pi N$ strong decay width be-Since one of our long-term goals is to provide a unified picture of mesons and baryons from our chiral quark model, one important feature is to describe under the same umbrella meson and baryons strong decays. The meson's study was conducted in Ref. [\[1](#page-13-2)] and we have wanted to extend the same formalism to the baryon seccause all hadrons involved in the reaction are very well established, the two hadrons in the final state are stable avoiding further analysis, all quarks are light and equivalent, and the decay width of the process is relatively well measured.

It is safe to say that the core concept of the ${}^{3}P_0$ decay

quantum numbers $J^{PC} = 0^{++}$, followed by the recombina-While we aim for the ${}^{3}P_0$ model to capture at least the model remains robust: the dominant strong decays of mesons – and by extension, baryons – are driven by the creation of a quark-antiquark pair from the vacuum, with tion of this quark and antiquark into separate final states. most fundamental aspects of all strong decays of mesons and baryons, we acknowledge that fully describing the finer details is a challenging, if not unattainable, task. This is the essence of what we mean by "unification".

 $\Delta(1232) \rightarrow \pi N$ decay width. Taking advantage of a Gaussian expansion method for the hadron's radial wave functions, the expression of the invariant matrix element can be simplified into a sum of multiple terms composed basically on some numerical values, wave function coefficients and Wigner symbols. Those wave function coefficients can be determined from the mean-square radii of involved hadrons, and we have used their experimental measures in such a way that the only one free parameter is the strength of the quark-antiquark pair creation from the vacuum. This has been taken from our previous study of strong decay widths in the meson sector [1] and we have obtained a quite compatible result with experiment for the calculated Fins is the essence of what
an the experimental inter-
onfirming that the andytic-
onfirming that the andytic-
the hadron's radial was
delet for baryon decays seems
olved hadrons also well es-
alues, wave function coeffic

stance, the ${}^{3}P_{0}$ decay model. It is in this context where our derivation of the ${}^{3}P_0$ decay model for baryons ac-The past two decades have witnessed a golden age of meson spectroscopy. Worldwide experimental facilities have reported many new exotic charmonium- and bottomonium-like hadrons, which are collectively called XYZ states, whose nature is still not clear. It is expected that the same puzzling situation will appear in the baryon sector in the near future, with some pentaquark signals already reported by the LHCb@CERN. This work has been developed in setting one of the three steps towards a novel raft of quark model applications to exotic baryons. Within the quark model framework, exotic baryons as meson-baryon molec[ules](#page-14-37) should be explained by basically the diagonalization of a matrix which has three blocks (i) baryons[pec](#page-14-37)trum, (ii) meson-baryon states formed by the residual interactions between the quarks which constitute the involved hadrons and (iii) the coupling of baryon and meson-baryon sectors through, for inquires its relevance, [with](#page-14-37) some steps already done in the meson-baryon block [\[51\]](#page-14-37) and we are working on the first item where baryon wavefunctions will be obtained.

References

- [1] J. Segovia, D. R. Entem, and F. Fernández, *[Phys. Lett. B](https://doi.org/10.1016/j.physletb.2012.08.005)* **[715](https://doi.org/10.1016/j.physletb.2012.08.005)**[,](https://doi.org/10.1016/j.physletb.2012.08.005) [322](https://doi.org/10.1016/j.physletb.2012.08.005) [\(2012\),](https://doi.org/10.1016/j.physletb.2012.08.005) arXiv: [1205.2215\[hep-ph\]](https://arxiv.org/abs/1205.2215)
- R. L. Workman *et al*. (Particle Data Group), PTEP **2022**, 083C01 (2022) [2]
- J. Papavassiliou, [J. Phys. Conf. Se](https://doi.org/10.1088/1742-6596/631/1/012006)r[.](https://doi.org/10.1088/1742-6596/631/1/012006) **[631](https://doi.org/10.1088/1742-6596/631/1/012006)**[,](https://doi.org/10.1088/1742-6596/631/1/012006) [012006](https://doi.org/10.1088/1742-6596/631/1/012006) [\(2015\)](https://doi.org/10.1088/1742-6596/631/1/012006), arXiv: [1503.04212\[hep-ph\]](https://arxiv.org/abs/1503.04212) [3]

¹⁾ The difference is just related with the color factor when going from Meson → Meson + Meson process to the Baryon → Baryon + Meson one.

- [4] M. Gell-Mann, [Phys. Lett.](https://doi.org/10.1016/S0031-9163(64)92001-3) **[8](https://doi.org/10.1016/S0031-9163(64)92001-3)**[,](https://doi.org/10.1016/S0031-9163(64)92001-3) [214](https://doi.org/10.1016/S0031-9163(64)92001-3) [\(1964\)](https://doi.org/10.1016/S0031-9163(64)92001-3)
- G. Zweig, Developments in the quark theory of hadrons, CERN Report No.8182/TH.401, CERN Report No.8419/TH.412 (1964). [5]
- [6] F. Fernández and J. Segovia, [Symmetry](https://doi.org/10.3390/sym13020252) **[13](https://doi.org/10.3390/sym13020252)**[,](https://doi.org/10.3390/sym13020252) [252](https://doi.org/10.3390/sym13020252) [\(2021\)](https://doi.org/10.3390/sym13020252)
- J. Vijande, F. Fernandez, and A. Valcarce, [J. Phys. G](https://doi.org/10.1088/0954-3899/31/5/017) **[31](https://doi.org/10.1088/0954-3899/31/5/017)**[,](https://doi.org/10.1088/0954-3899/31/5/017) [481](https://doi.org/10.1088/0954-3899/31/5/017) [\(2005\),](https://doi.org/10.1088/0954-3899/31/5/017) arXiv: [hep-ph/0411299](https://arxiv.org/abs/0411299) [7]
- A. Valcarce, H. Garcilazo, F. Fernandez, and P. Gonzalez, [Rept. Prog. Phys.](https://doi.org/10.1088/0034-4885/68/5/R01) **[68](https://doi.org/10.1088/0034-4885/68/5/R01)**[,](https://doi.org/10.1088/0034-4885/68/5/R01) [965](https://doi.org/10.1088/0034-4885/68/5/R01) [\(2005\)](https://doi.org/10.1088/0034-4885/68/5/R01), arXiv: [hep-ph/0502173](https://arxiv.org/abs/0502173) [8]
- J. Segovia, D. R. Entem, F. Fernandez, and E. Hernandez, Int. J. Mod. Phys. E **22**, 1330026 (2013), arXiv: [1309.6926\[hep-ph\]](https://arxiv.org/abs/1309.6926) [9]
- J. Segovia, P. G. Ortega, D. R. Entem, and F. Fernández, [Phys. Rev. D](https://doi.org/10.1103/PhysRevD.93.074027) **[93](https://doi.org/10.1103/PhysRevD.93.074027)**[,](https://doi.org/10.1103/PhysRevD.93.074027) [074027](https://doi.org/10.1103/PhysRevD.93.074027) [\(2](https://doi.org/10.1103/PhysRevD.93.074027)016), arXiv: 1601.05093[hep[ph\]](https://arxiv.org/abs/1601.05093) [10]
- J. Segovia, D. R. Entem, and F. Fernandez, Phys. Rev. D **[91](https://doi.org/10.1103/PhysRevD.91.094020)**[,](https://doi.org/10.1103/PhysRevD.91.094020) [094020](https://doi.org/10.1103/PhysRevD.91.094020) [\(2015\),](https://doi.org/10.1103/PhysRevD.91.094020) arXiv: [1502.03827\[hep-ph\]](https://arxiv.org/abs/1502.03827) [11]
- J. Segovia, A. M. Yasser, D. R. Entem, and F. Fernandez, [Phys. Rev. D](https://doi.org/10.1103/PhysRevD.80.054017) **[80](https://doi.org/10.1103/PhysRevD.80.054017)**[,](https://doi.org/10.1103/PhysRevD.80.054017) [054017](https://doi.org/10.1103/PhysRevD.80.054017) [\(2009\)](https://doi.org/10.1103/PhysRevD.80.054017) [12]
- J. Segovia, D. R. Entem, and F. Fernandez, Nucl. Phys. A **[915](https://doi.org/10.1016/j.nuclphysa.2013.07.004)**[,](https://doi.org/10.1016/j.nuclphysa.2013.07.004) [125](https://doi.org/10.1016/j.nuclphysa.2013.07.004) [\(2013\),](https://doi.org/10.1016/j.nuclphysa.2013.07.004) arXiv: [1301.2592\[hep-p](https://arxiv.org/abs/1301.2592)h] $\lceil 13 \rceil$
- J. Segovia, D. R. Entem, and F. Fernández, Phys. Rev. D **[91](https://doi.org/10.1103/PhysRevD.91.014002)**[,](https://doi.org/10.1103/PhysRevD.91.014002) [014002](https://doi.org/10.1103/PhysRevD.91.014002) [\(2015\),](https://doi.org/10.1103/PhysRevD.91.014002) arXiv: [1409.7079\[hep-p](https://arxiv.org/abs/1409.7079)h] [14]
- J. Segovia, F. Fernandez, and D. R. Entem, Few Body Syst. **[57](https://doi.org/10.1007/s00601-016-1063-7)**[,](https://doi.org/10.1007/s00601-016-1063-7) [275](https://doi.org/10.1007/s00601-016-1063-7) [\(2016\)](https://doi.org/10.1007/s00601-016-1063-7), arXiv: [1507.01607\[hep-p](https://arxiv.org/abs/1507.01607)h] $[15]$
- J. Segovia, C. Albertus, D. R. Entem, F. Fernandez, E. Hernandez, and M. A. Perez-Garcia, Phys. Rev. D **84**[,](https://doi.org/10.1103/PhysRevD.84.094029) [094029](https://doi.org/10.1103/PhysRevD.84.094029) [\(2011\)](https://doi.org/10.1103/PhysRevD.84.094029), arXiv: [1107.4248\[hep](https://arxiv.org/abs/1107.4248)-ph] [16]
- J. Segovia, D. R. Entem, and F. Fernandez, [Phys. Rev. D](https://doi.org/10.1103/PhysRevD.83.114018) **[83](https://doi.org/10.1103/PhysRevD.83.114018)**[,](https://doi.org/10.1103/PhysRevD.83.114018) [114018](https://doi.org/10.1103/PhysRevD.83.114018) [\(2011\)](https://doi.org/10.1103/PhysRevD.83.114018) $[17]$
- P. G. Ortega, D. R. Entem, and F. Fernandez, J. Phys. G **40**[,](https://doi.org/10.1088/0954-3899/40/6/065107) [065107](https://doi.org/10.1088/0954-3899/40/6/065107) [\(2013\)](https://doi.org/10.1088/0954-3899/40/6/065107), arXiv: [1205.1699\[hep](https://arxiv.org/abs/1205.1699)-ph] [18]
- G. Yang, J. Ping, and J. Segovia, [Symmetry](https://doi.org/10.3390/sym12111869) **12**, 1869 [\(2020\),](https://doi.org/10.3390/sym12111869) arXiv: [2009.00238\[hep](https://arxiv.org/abs/2009.00238)-ph] [19]
- P. G. Ortega, D. R. Entem, and F. Fernandez, [Phys. Lett. B](https://doi.org/10.1016/j.physletb.2012.12.025) **[718](https://doi.org/10.1016/j.physletb.2012.12.025)**[,](https://doi.org/10.1016/j.physletb.2012.12.025) [1381](https://doi.org/10.1016/j.physletb.2012.12.025) [\(2013\)](https://doi.org/10.1016/j.physletb.2012.12.025), arXiv: [1210.2633\[hep](https://arxiv.org/abs/1210.2633)-ph] [20]
- P. G. Ortega, D. R. Entem, and F. Fernández, [Phys. Rev. D](https://doi.org/10.1103/PhysRevD.90.114013) **[90](https://doi.org/10.1103/PhysRevD.90.114013)**[,](https://doi.org/10.1103/PhysRevD.90.114013) [114013](https://doi.org/10.1103/PhysRevD.90.114013) [\(2014\)](https://doi.org/10.1103/PhysRevD.90.114013) [21]
- [22] L. Micu, [Nucl. Phys. B](https://doi.org/10.1016/0550-3213(69)90039-X) **[10](https://doi.org/10.1016/0550-3213(69)90039-X)**[,](https://doi.org/10.1016/0550-3213(69)90039-X) [521](https://doi.org/10.1016/0550-3213(69)90039-X) [\(1969\)](https://doi.org/10.1016/0550-3213(69)90039-X)
- A. Le Yaouanc, L. Oliver, O. Pene, and J. C. Raynal, [Phys.](https://doi.org/10.1103/PhysRevD.8.2223) [Rev. D](https://doi.org/10.1103/PhysRevD.8.2223) **[8](https://doi.org/10.1103/PhysRevD.8.2223)**[,](https://doi.org/10.1103/PhysRevD.8.2223) [2223](https://doi.org/10.1103/PhysRevD.8.2223) [\(1973\)](https://doi.org/10.1103/PhysRevD.8.2223) [23]
- [24] R. D. Carlitz and M. Kislinger, Phys. Rev. D **2**, 336 (1970)
- A. Le Yaouanc, L. Oliver, O. Pene, and J. C. Raynal, [Phys.](https://doi.org/10.1103/PhysRevD.9.1415) [Rev. D](https://doi.org/10.1103/PhysRevD.9.1415) **[9](https://doi.org/10.1103/PhysRevD.9.1415)**[,](https://doi.org/10.1103/PhysRevD.9.1415) [1415](https://doi.org/10.1103/PhysRevD.9.1415) [\(1974\)](https://doi.org/10.1103/PhysRevD.9.1415) [25]
- A. Le Yaouanc, L. Oliver, O. Pene, and J. C. Raynal, [Phys.](https://doi.org/10.1016/0370-2693(77)90250-7) [Lett. B](https://doi.org/10.1016/0370-2693(77)90250-7) **[71](https://doi.org/10.1016/0370-2693(77)90250-7)**[,](https://doi.org/10.1016/0370-2693(77)90250-7) [397](https://doi.org/10.1016/0370-2693(77)90250-7) [\(1977\)](https://doi.org/10.1016/0370-2693(77)90250-7) [26]
- A. Le Yaouanc, L. Oliver, O. Pene, and J. C. Raynal, [Phys.](https://doi.org/10.1016/0370-2693(77)90062-4) [Lett. B](https://doi.org/10.1016/0370-2693(77)90062-4) **[72](https://doi.org/10.1016/0370-2693(77)90062-4)**[,](https://doi.org/10.1016/0370-2693(77)90062-4) [57](https://doi.org/10.1016/0370-2693(77)90062-4) [\(1977\)](https://doi.org/10.1016/0370-2693(77)90062-4) [27]
- [28] C. Hayne and N. Isgur, [Phys. Rev. D](https://doi.org/10.1103/PhysRevD.25.1944) **[25](https://doi.org/10.1103/PhysRevD.25.1944)**[,](https://doi.org/10.1103/PhysRevD.25.1944) [1944](https://doi.org/10.1103/PhysRevD.25.1944) [\(1982\)](https://doi.org/10.1103/PhysRevD.25.1944)
- H. G. Blundell and S. Godfrey, [Phys. Rev. D](https://doi.org/10.1103/PhysRevD.53.3700) **[53](https://doi.org/10.1103/PhysRevD.53.3700)**[,](https://doi.org/10.1103/PhysRevD.53.3700) [3700](https://doi.org/10.1103/PhysRevD.53.3700) [\(1996\),](https://doi.org/10.1103/PhysRevD.53.3700) arXiv: [hep-ph/9508264](https://arxiv.org/abs/9508264) [29]
- J.-J. Guo, P. Yang, and A. Zhang, [Phys. Rev. D](https://doi.org/10.1103/PhysRevD.100.014001) **[100](https://doi.org/10.1103/PhysRevD.100.014001)**[,](https://doi.org/10.1103/PhysRevD.100.014001) [014001](https://doi.org/10.1103/PhysRevD.100.014001) [\(2019\),](https://doi.org/10.1103/PhysRevD.100.014001) arXiv: [1902.07488\[hep-ph\]](https://arxiv.org/abs/1902.07488) [30]
- E. S. Ackleh, T. Barnes, and E. S. Swanson, [Phys. Rev. D](https://doi.org/10.1103/PhysRevD.54.6811) **[54](https://doi.org/10.1103/PhysRevD.54.6811)**[,](https://doi.org/10.1103/PhysRevD.54.6811) [6811](https://doi.org/10.1103/PhysRevD.54.6811) [\(1996\)](https://doi.org/10.1103/PhysRevD.54.6811), arXiv: [hep-ph/9604355](https://arxiv.org/abs/9604355) [31]
- T. Barnes, N. Black, and P. R. Page, [Phys. Rev. D](https://doi.org/10.1103/PhysRevD.68.054014) **[68](https://doi.org/10.1103/PhysRevD.68.054014)**[,](https://doi.org/10.1103/PhysRevD.68.054014) [054014](https://doi.org/10.1103/PhysRevD.68.054014) [\(2003\),](https://doi.org/10.1103/PhysRevD.68.054014) arXiv: [nucl-th/0208072](https://arxiv.org/abs/0208072) [32]
- B. Desplanques, A. Nicolet, and L. Theussl, Relationship of the P-3(0) decay model to other strong decay models, in *9th International Conference on the Structure of Baryons* (2002) pp. 421–424, arXiv: nucl-th/0204026. [33]
- T. Barnes, S. Godfrey, and E. S. Swanson, [Phys. Rev. D](https://doi.org/10.1103/PhysRevD.72.054026) **[72](https://doi.org/10.1103/PhysRevD.72.054026)**[,](https://doi.org/10.1103/PhysRevD.72.054026) 054026 [\(2005\),](https://doi.org/10.1103/PhysRevD.72.054026) arXiv: [hep-ph/0505002](https://arxiv.org/abs/0505002) [34]
- D. T. da Silva, M. L. L. da Silva, J. N. de Quadros, and D. Hadjimichef, [Phys. Rev.](https://doi.org/10.1103/PhysRevD.78.076004) D **[78](https://doi.org/10.1103/PhysRevD.78.076004)**[,](https://doi.org/10.1103/PhysRevD.78.076004) [076004](https://doi.org/10.1103/PhysRevD.78.076004) [\(2008\)](https://doi.org/10.1103/PhysRevD.78.076004), arXiv: 0810.0293[hep[-p](https://arxiv.org/abs/0810.0293)h] [35]
- T. Gutsche, V. E. Lyubovitskij, and M. C. Tichy, [Phys. Rev.](https://doi.org/10.1103/PhysRevD.79.014036) D **79**, 014036 (2009), arXiv: [0811.0668\[hep-ph\]](https://arxiv.org/abs/0811.0668) [36]
- J. Ferretti and E. Santopinto, [Phys. Rev. D](https://doi.org/10.1103/PhysRevD.90.094022) **[90](https://doi.org/10.1103/PhysRevD.90.094022)**[,](https://doi.org/10.1103/PhysRevD.90.094022) [094022](https://doi.org/10.1103/PhysRevD.90.094022) [\(2014\)](https://doi.org/10.1103/PhysRevD.90.094022), arXiv: [1306.2874\[hep-ph\]](https://arxiv.org/abs/1306.2874) [37]
- X. Chen, Z. Yan, and J. Ping, [Int. J. Mod. Phys.](https://doi.org/10.1142/S0217751X14501759) A **[29](https://doi.org/10.1142/S0217751X14501759)**[,](https://doi.org/10.1142/S0217751X14501759) 1450175 [\(2014\)](https://doi.org/10.1142/S0217751X14501759) [38]
- G.-L. Yu, Z.-G. Wang, and Z.-Y. Li, [Chin. Phys. C](https://doi.org/10.1088/1674-1137/39/6/063101) **[39](https://doi.org/10.1088/1674-1137/39/6/063101)**[,](https://doi.org/10.1088/1674-1137/39/6/063101) 063101 [\(2015\),](https://doi.org/10.1088/1674-1137/39/6/063101) arXiv: [1402.5955\[hep-ph\]](https://arxiv.org/abs/1402.5955) [39]
- G. L. Yu, Z. G. Wang, and Z. Y. Li, Chin. Phys. C **42**, 4 (2018), arXiv: [1704.06763\[hep-ph\]](https://arxiv.org/abs/1704.06763) [40]
- J. N. de Quadros, D. T. da Silva, M. L. L. da Silva, and D. Hadjimichef, [Phys. Rev. C](https://doi.org/10.1103/PhysRevC.101.025203) **[101](https://doi.org/10.1103/PhysRevC.101.025203)**[,](https://doi.org/10.1103/PhysRevC.101.025203) [025203](https://doi.org/10.1103/PhysRevC.101.025203) [\(2020\),](https://doi.org/10.1103/PhysRevC.101.025203) arXiv: 2001.08708[he[p-ph\]](https://arxiv.org/abs/2001.08708) [41]
- [42] R. Kokoski and N. Isgur, [Phys. Rev. D](https://doi.org/10.1103/PhysRevD.35.907) **[35](https://doi.org/10.1103/PhysRevD.35.907)**[,](https://doi.org/10.1103/PhysRevD.35.907) [907](https://doi.org/10.1103/PhysRevD.35.907) [\(1987\)](https://doi.org/10.1103/PhysRevD.35.907)
- W. Roberts and B. Silvestre-Brac, [Phys. Rev. D](https://doi.org/10.1103/PhysRevD.57.1694) **[57](https://doi.org/10.1103/PhysRevD.57.1694)**[,](https://doi.org/10.1103/PhysRevD.57.1694) [1694](https://doi.org/10.1103/PhysRevD.57.1694) (1998), arXiv: hep[-ph/9708235](https://arxiv.org/abs/9708235) [43]
- X. Chen, J. Ping, C. D. Roberts, and J. Segovia, [Phys. Rev.](https://doi.org/10.1103/PhysRevD.97.094016) D **97**, 094016 [\(2018\),](https://doi.org/10.1103/PhysRevD.97.094016) arXiv: [1712.04457\[nucl-th\]](https://arxiv.org/abs/1712.04457) [44]
- [45] S. Okubo, Phys. Lett. **5**, [165](https://doi.org/10.1016/S0375-9601(63)92548-9) [\(1963\)](https://doi.org/10.1016/S0375-9601(63)92548-9)
- G. Zweig, An SU(3) model for strong interaction symmetry and its breaking. Version 2, in *DEVELOPMENTS IN THE QUARK THEORY OF HADRONS. VOL. 1. 1964 - 1978*, edited by D. B. Lichtenberg and S. P. Rosen (1964) pp. 22–101. [46] 1. Bank, and F. Fernandez, [P](https://arxiv.org/abs/1205.1699)hys. Rev. D

2016), arXiv: 1601.05093[hep-

1. Bank, M. L. L. 2016), arXiv: 1601.05093[hep-

1. Bank, M. L. L. Bank, M. L. L. Bank, M. L. L. Phys. Rev. D

1. Guts[c](https://doi.org/10.1088/1674-1137/39/6/063101)he, Phys. Rev. D

2. D. R. En[t](https://doi.org/10.1103/PhysRevD.79.014036)
	- [47] J. Iizuka, [Prog. Theor. Phys. Suppl.](https://doi.org/10.1143/PTPS.37.21) **[37](https://doi.org/10.1143/PTPS.37.21)**[,](https://doi.org/10.1143/PTPS.37.21) [21](https://doi.org/10.1143/PTPS.37.21) [\(1966\)](https://doi.org/10.1143/PTPS.37.21)
	- [48] S. Capstick and W. Roberts, [Phys. Rev. D](https://doi.org/10.1103/PhysRevD.47.1994) **[47](https://doi.org/10.1103/PhysRevD.47.1994)**[,](https://doi.org/10.1103/PhysRevD.47.1994) [1994](https://doi.org/10.1103/PhysRevD.47.1994) [\(1993\)](https://doi.org/10.1103/PhysRevD.47.1994)
	- D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, *Quantum Theory of Angular Momentum* (World Scientific, 1988). [49]
	- U. Straub, Z.-Y. Zhang, K. Brauer, A. Faessler, S. B. Khadkikar, and G. Lubeck, [Nucl. Phys. A](https://doi.org/10.1016/0375-9474(88)90092-9) **[483](https://doi.org/10.1016/0375-9474(88)90092-9)**[,](https://doi.org/10.1016/0375-9474(88)90092-9) [686](https://doi.org/10.1016/0375-9474(88)90092-9) [\(1988\)](https://doi.org/10.1016/0375-9474(88)90092-9) [50]
	- model analysis of the $\overline{K}N$ interaction, (2024), arXiv: M. Conde-Correa, T. Aguilar, A. Capelo-Astudillo, A. Duenas-Vidal, J. Segovia, and P. G. Ortega, A chiral quark 2407.01759[hepph]. [51]