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Abstract: In this paper, we propose a method of fixing the leading behaviors of three dimensional geometries from
the  dual  CFT2 entanglement  entropies.  We employ  only  the  holographic  principle  and  do  not  use  any  assumption
about the AdS/CFT correspondence and bulk geometry. Our strategy involves using both UV and IR-like CFT2 en-
tanglement entropies to fix the bulk geodesics. With a simple trick, the metric can be extracted from the geodesics.
As examples,  we fix the leading behaviors of  the pure AdS3 metric from the entanglement entropies of  free CFT2

and,  more  importantly,  the  BTZ  black  hole  from  the  entanglement  entropies  of  finite  temperature  CFT2. Con-
sequently, CFT2 with finite size or topological defects can be determined through simple transformations. Following
the same steps, in principle, the leading behaviors of all three dimensional (topologically distinct) holographic clas-
sical geometries from the dual CFT2 entanglement entropies can be fixed.

Keywords: holographic entanglement entropy, BTZ black hole, bulk geometries reconstruction

DOI: 10.1088/1674-1137/ad93b8        CSTR: 32044.14.ChinesePhysicsC.49025106

 

I.  INTRODUCTION

H =HA⊗HB

ρA = TrHBρ

S A = −TrHA

(
ρA logρA

)
S A = S B

As  a  manifestation  of  the  non-local  property  of
quantum mechanics, quantum entanglement has attracted
considerable  interest  in  recent  years.  The  entanglement
entropy (EE)  measures  the  correlation  between  subsys-
tems  and  is  one  of  the  most  distinct  characteristics  of
quantum systems. Considering the simplest configuration,
a quantum system is divided into two subsystems: A and
B.  Thus,  the  total  Hilbert  space  is  decomposed  into

. Tracing out the degrees of freedom of the
region B,  one  obtains  the  reduced  density  matrix  of  the
region A: . The EE of region A is evaluated us-
ing the von Neumann entropy . It is
clear that .

d+1 d d+1

d = 2

Motivated  by  the  AdS/CFT  correspondence  [1],  and
the Bekenstein-Hawking entropy of black holes, Ryu and
Takayanagi (RT)  proposed  to  identify  the  minimal  sur-
face  area  ending  on  the d dimensional  boundary  of
AdS  with the EE of CFT  on the boundary of AdS
[2−4].  In  the  case  of ,  the  minimal  surfaces  are
geodesics,  and  the  RT formula  was  verified  extensively.
For follow-ups and references, please refer to a recent re-
view [5]. The  success  of  the  RT formula  leads  to  an  in-

spiring conjecture that gravity can be interpreted as emer-
gent structures, determined by the quantum entanglement
of  the  dual  CFT [6, 7].  This  idea  was  further  developed
by Maldacena and Susskind to conjecture an equivalence
of  Einstein-Rosen  bridge  (ER)  and  Einstein-Podolsky-
Rosen (EPR) experiment [8], namely, ER=EPR. To justi-
fy  these  conjectures,  we  must  answer  one  question:  Can
the dual bulk geometry, specifically the metric, be rebuilt
from given CFT EEs?

d

S O(2,d)

Although the  dual  geometries  are  conventionally  be-
lieved to  be  asymptotic  AdS,  no  perfect  method  yet  ex-
ists  to  fix  the  leading  behaviors  of  the  dual  geometries
from the EEs of CFTs. One might believe fixing the lead-
ing behavior of the dual geometry from a CFT  is trivial
because  they  must  possess  the  same  symmetry.
This is not true as all CFTs share the same symmetry, and
so  do  the  dual  geometries.  The  symmetry  argument  is  a
necessary but  not  a  sufficient  condition to  determine the
dual  geometry  of  a  CFT.  However,  the  more  important
aspect  is  precisely  the  sufficient  condition, i.e.,  deriving
the  dual  geometries  from  CFTs.  In  other  words,  the
simple symmetry  argument  cannot  carry  beyond  the  va-
cuum configuration. Therefore, another systematic meth-
od applicable to all excited states must be determined. Of
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course, because we aim to fix the leading behaviors of the
dual geometries,  we cannot assume the geometries satis-
fying  any  dynamic  equation,  say,  the  Einstein  equation.
The  dynamic  equation  should  also  be  derived  from  the
CFT information. The literature reveals several attempts,
but  none  of  them  can  truly  rebuild  the  dual  geometries
unambiguously.  The  tensor  network  can  only  construct
the  discrete  AdS  [9]. Another  major  method  utilizes  in-
tegral geometry. The concept of kinematic space is intro-
duced,  and  the  kinematic  space  of  AdS3 is  argued  to  be
dS2, which can be read off from the Crofton form defined
as  the  second  derivatives  with  respect  to  two  different
points of the given EE of CFT2 [10]. However, proof has
not been provided that AdS3 is  the only option to obtain
dS2 as the  kinematic  space.  Moreover,  this  method  ap-
plies only to the static scenario naturally.

We  can  easily  foresee  that  our  journey  to  discover
geometry reconstruction is hindered by two difficulties:
 

•  It  is  a standard homework to calculate the minimal
surface from the metric.  Now that the CFT EE is identi-
fied with the minimal surface, to obtain the geometry, we
must extract the metric from the minimal surfaces, which
appears to be forbidden.
 

d

d+1 d+1

d = 2

• Reducing a higher dimensional theory to a lower di-
mensional  one  is  often  not  difficult  after  setting  some
limits  or  boundary  conditions  to  eliminate  extra  degrees
of freedom. However, because the CFT  EE is identified
with the minimal surface attached on the boundary of the
dual  dimensional geometry, to reconstruct the 
dimensional bulk geometry, we must determine a method
to uniquely fix the extra degrees of freedom, namely, the
bulk geodesic when .
 

d = 2

d = 2
x = x (τ) τ ∈ [0, t] x′

x (0) = x x (t) = x′ L(x, x′)

In a previous study [11], we proposed an approach to
solving these two difficulties for . A simple method
exists to extract the metric from given geodesics, the min-
imal surfaces for . Let us consider a single geodesic

,  that connects points x and  on mani-
fold M,  such  that  and .  is  the
length of the geodesic. Thus, the metric proves to be 

gi j = − lim
x→x′
∂xi∂x j′

ï
1
2

L2 (x, x′)
ò
. (1)

gi jẊiẊ j

t→ 0

For more details,  a comprehensive review is provided in
[12]. As an illustration, noting that along a geodesic, the
norm  of  the  tangent  vector  is  constant;  thus,  for
very small distance , we have 

1
2

L2(x, x′) =
1
2

ï∫ t

0
dτ
»

gi jẊiẊ j

ò2

≈1
2

lim
t→0

gi j
∆xi

t
∆x j

t
t2 ≈ 1

2
gi j∆xi∆x j. (2)

σ (x, x′) ≡ 1
2

L2 (x, x′)Because  quantity  is central  to  ad-
dressing  the  radiation  back  reaction  of  particles  moving
in  a  curved  spacetime,  it  has  a  specific  name:  Synge's
world function.

Therefore, what remains is to generalize the geodesics
located on the boundary to generic geodesics in the bulk.
To fix the expression of bulk geodesics, we observe that
in addition to the typically used UV EE, the IR-like EE of
the CFT is a prerequisite.

3D

β = −iL
β = −iL/γcon

3D

In the previous paper [11], we addressed only the va-
cuum configuration, i.e., the free CFT2 with zero temper-
ature  and  infinite  length.  We  showed  explicitly  the  dual
geometry must be AdS3, as expected. The purpose of this
paper is to demonstrate that this approach also works for
excited states, specifically, the CFT2 with finite temperat-
ure,  whose  dual  geometry  is  supposed  to  be  the  BTZ
black hole. It is well known that  gravity is topologic-
al  as  a  consequence  of  general  relativity.  Out  of  general
geometries,  the  Einstein  equation  selects  those  with  no
local  degrees  of  freedom  to  describe  gravity.  However,
because  we  aim  to  fix  the  leading  behavior  of  the  dual
geometry, we cannot use any results from general relativ-
ity. Therefore, the local agreement of the dual geometries
should  be  unknown and  revealed  by  the  derived  metrics
from the EEs. Because the EE is a non-local quantity, we
cannot  directly transform the EE of  the free CFT to that
of the finite temperature CFT as they have different topo-
logies.  In contrast,  when we fix the leading behaviors of
the BTZ black hole from the finite temperature CFT, we
can  easily  extend  the  result  to  the  finite  size  CFT under
the  transformation  or CFT  with  topological  de-
fects under transformation  because they have
the  same  topology:  a  cylinder.  More  importantly,  the
BTZ  derivation  indicates  that,  with  our  approach,  the
leading  behaviors  of  all  classical (topologically  dis-
tinct)  geometries  from the  EEs  of  the  dual  CFT2 can  be
fixed.

The  reminder  of  this  paper  is  outlined  as  follows.  In
Sec.  II,  we  briefly  review  some  useful  results  of  CFT
EEs, which aids us in determining the geodesic length in
the  bulk  geometry.  In  Sec.  III,  we  show  how  to  fix  the
leading  behavior  of  the  BTZ spacetime  from the  EEs  of
the finite temperature CFT. In Sec.  IV, we present some
inspirations and conjectures. 

II.  SOME USEFUL RESULTS OF CFT
EE

In  this  section,  based  on  Refs.  [13, 14],  we  briefly
summarize some results of CFT2 EEs that we will use in
the remainder  of  the  paper.  For  a  quantum  system  con-
sisting  of  two  parts, A and B,  the  EE  of  subsystem A is
defined by the Von Neumann entropy: 
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S EE = −TrHA

(
ρA logρA

)
, (3)

ρA = TrHBρ ρ = |Ψ⟩⟨Ψ|

Trρn
A

where reduced density matrix  and .
In QFT, calculating the Von Neumann entropy directly is
often difficult. Alternatively, we use the ``replica trick'' to
calculate ; thus, 

S EE = −lim
n→1

∂

∂n
log Trρn

A. (4)

ϕ (tE , x)
Considering  a  1+1  dimensional  Euclidean  QFT  with  a
local field , we obtain 

Trρn
A =

1
(Z1)n

∫
(tE ,x)∈Rn

Dϕe−S E (ϕ) ≡ Zn (A)
(Z1)n , (5)

Zn (A)
Rn Z1

R2

T T̃
tE = it = 0

where  is  the  partition  function  on n-sheeted
Riemann surface , and  is the vacuum partition func-
tion  on .  The  partition  function  is  given  by  the  two-
point function of twist operators  and . For an infin-
itely long system, when fixing , 

Zn (A) = ⟨Tn (u,0) T̃n (v,0)⟩C =
1

|u− v|2∆
, (6)

△ = c
12

Å
n− 1

n

ã
where  is  the scaling dimension,  and c is
the central charge. Therefore, the EE is 

S EE = −lim
n→1

∂

∂n
log Trρn

A =
c
3

log
△x
a
+ c′1, (7)

c′n ≡ logcn/ (1−n)

∆x = x′− x

where ,  and a is  an  energy  cut-off  that
ensures  the  factor  inside  the  log  is  dimensionless.

 is the size of entangling region A.

z′→ z = z (z′)

We can  easily  develop  this  result  to  other  geometric
backgrounds  by  utilizing  conformal  transformations

 on two-point functions: 

⟨Tn
(
z′1, z̄

′
1

)
T̃n

(
z′2, z̄

′
2

)
⟩

=

Å
∂z1

∂z′1

∂z2

∂z′2

ã△Å∂z̄1

∂z̄′1

∂z̄2

∂z̄′2

ã△
⟨Tn (z1, z̄1) T̃n (z2, z̄2)⟩. (8)

2πβ−1 z′

z (z′)

For example, to calculate the EE of a CFT2 at finite tem-
perature ,  we  map  infinitely  long  cylinder  to
plane  using the following transformation: 

z′→ z (z′) = e
2πz′
β . (9)

The  two-point  function  of  the  finite  temperature
CFT2 is 

⟨Tn (u′,0) T̃n (v′,0)⟩C

=

Å
∂

∂u′
e

2πu′
β

ã△Å ∂
∂v′

e
2πv′
β

ã△
⟨Tn (u,0) T̃n (v,0)⟩C

=

∣∣∣∣βπ sinh
π△x
β

∣∣∣∣− c
6 (n− 1

n )
. (10)

Therefore, the EE is given by
 

S EE =
c
3

log
Å
β

πa
sinh
π△x
β

ã
+ c′1. (11)

β→ LS

Note  that  although  the  two-point  function  of  the  finite
temperature  CFT2 can  be  obtained  from  that  of  the  free
CFT2 using a  conformal  map,  no coordinate  transforma-
tion exists  to  connect  their  EEs.  This  is  because  EE is  a
global  quantity  associated  with  the  topology,  whereas
these  two  systems  clearly  have  different  topologies.  In
contrast, because a finite size system has the same topo-
logy as a finite temperature system, the EE of a finite size
system is obtained by replacing  and imposing the
periodic boundary condition
 

S EE =
c
3

log
Å

LS

πa
sin
Å
π△x
LS

ãã
+ c′1, (12)

LSwhere  is the circumference of the given system.

x ∈ [0,∞)
x = 0

Rn x ≥ 0
Rn C

w→ z (w) = [(w− il)/ (w+ il)]1/n

Zn (A) Rn

T
O

When deriving the BTZ geometry, we also require the
EE of the boundary conformal field theory (BCFT).  The
BCFT is a CFT whose boundary satisfies conformally in-
variant boundary  conditions.  Considering  an  one  dimen-
sional  semi-infinite  long  system ,  the  boundary
is  clearly  located  at .  The n-sheeted Riemann  sur-
face  now consists  of n copies  in  the  region  of .
The transformation from complex coordinates on  to 
is .  The  partition  function

 on the n-sheeted Riemann surface  becomes the
one-point  function of  twist  operator .  For  any primary
operator , the one-point function is
 

⟨O (z)⟩ = 1
(2Im z)△

. (13)

T △ = c
12Å

n− 1
n

ãThe  scaling  dimension  of  still  equals 

. Therefore, we obtain
 

⟨T (il)⟩ = 1

(2l)
c

12 (n− 1
n ) . (14)

Thus, we straightforwardly observe that
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S EE = −lim
n→1

∂

∂n
log Trρn

A =
c
6

log
2△x

a
+ c̃′1.

Applying the transformations (9) onto the one-point func-
tion (14), we obtain
 

⟨T (il′)⟩ =
∣∣∣∣βπ sinh

2π△x
β

∣∣∣∣− c
12 (n− 1

n )
. (15)

Therefore, the EE of the BCFT at finite temperature is
 

S EE =
c
6

log
Å
β

πa
sinh

2π△x
β

ã
+ c̃′1. (16)

∆xNote  that  here  is  the  entanglement  length  of  the
BCFT, which is  half  the entanglement length of the cor-
responding CFT.

∆x≫ ξ

Often, when one mentions the EE, he/she really refers
to the UV EE, which is precisely what we have discussed
thus far. However, when a free CFT is perturbed by a rel-
evant operator, the correlation length ξ (IR cut-off) takes
a finite value. In the IR region , the UV EE (7) is
no longer valid, and an IR EE exists. The simplest meth-
od to calculate the IR EE is to consider the action
 

S =
∫

d2x
Å

1
2
(
∂µφ

)2
+

1
2

m2φ2
ã
, (17)

m→ 0 Zn (A)
Rn

where .  Partition  function  on n-sheeted
Riemann  surface  can  be  calculated  with  the  identity
[14]
 

∂

∂m2
logZn (A) = −1

2

∫
d2xGn (x,x) , (18)

Gn (x,x) Rn(
−∇2+m2

)
Gn (x,x′) = δ2 (x−x′)

where  is the two-point function on , satisfying
the  equation  of  motion .
Thus,
 

∂

∂m2
log

Zn (A)
(Z1)n =

1
24m2

Å
n− 1

n

ã
. (19)

m2Integrating  on both sides, we obtain
 

log
Zn (A)
(Z1)n =

loga2m2

24

Å
n− 1

n

ã
→ Zn (A)

(Z1)n

= (ma)
1
12 (n− 1

n ) . (20)

Therefore, the IR EE is
 

S IR
EE = −lim

n→1

∂

∂n
log

Zn (A)
(Z1)n

= −lim
n→1

∂

∂n

î
(ma)

1
12 (n− 1

n )
ó

=
1
6

log
ξ

a
, (21)

c = 1
ξ = m−1
where  for  one field φ, and we introduce IR cut-off

.
The time  dependent  EEs  can  be  calculated  by  com-

pletely the  same  procedure.  At  each  step,  we  simply  in-
clude the time-like variable to obtain 

infinite system: S EE (t) =
c
3

log

√
(△x)2− (△t)2

a
,

(22)

 

finite temperature:

S EE (t)

=
c
3

log

®
β

2πa

ñ 
2cosh

Å
2π△x
β

ã
−2cosh

Å
2π△t
β

ãố
,

(23)

which  are  well-defined  when  two  points  are  space-like
separated. 

III.  BTZ SPACETIME FROM ENTANGLEMENT

T−1 =

β/(2π) ≡ βH βH ≡ β/(2π)

y ≤ βH

We now consider a finite temperature CFT2. Two en-
ergy  scales  exist:  UV  cut-off a and  temperature 

. We use notation  for simplicity in
the remainder of the paper. The temperature introduces a
natural upper  bound  for  the  energy  generated  extra  di-
mension: .

Our first step is to determine the most general expres-
sion of the bulk geodesic of the dual geometry for the fi-
nite  temperature  CFT2 and then  fix  the  arbitrary  func-
tions using known CFT data. Two immediate restrictions
occur:
 

2

1. Since we are fixing the dual geometry of finite tem-
perature  CFT ,  when  ending  on  the  boundary,  the
geodesic length must match the EE of the finite temperat-
ure CFT2 given by (23) 

Lboundary

R
= log

ß
β2

H

a2

ï
2cosh

Å△x
βH

ã
−2cosh

Å △t
βH

ãò™
, (24)

βH →∞ T → 02.  As  ( ),  the  finite  temperature  CFT2
reduces to the free CFT2.  In the previous work, we have
shown that the dual geometry of free CFT2 is pure AdS3
[11].  Therefore,  the  dual  geometry  of  finite  temperature
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2 3 βH →∞
βH →∞ T → 0

CFT  must have pure AdS  as its  limit. In other
words, when  ( ), the dual geometry geodes-
ic of finite temperature CFT2 must be 

cosh
Å

Lbulk

R

ã
=

(△x)2− (△t)2+ y2+ y′2

2yy′
. (25)

a→ y
Moreover, based on the holographic principle, the energy
cut-off  generates  extra  dimension . As  these  re-
quirements,  the  most  general  expression  of  the  bulk
geodesic  of  the  dual  geometry  for  the  finite  temperature
CFT2 can only take the form 

cosh
Å

Lbulk

R

ã
=
β2

H

yy′

ï
f (x, x′;y,y′; t, t′)cosh

Å△x
βH

ã
−g (x, x′;y,y′; t, t′)cosh

Å △t
βH

ãò
. (26)

f (x, x′;y,y′; t, t′) g (x, x′;y,y′; t, t′)

(x′,y′, t′)↔ (x,y, t)

cosh
Å△y
βH

ã
f (x, x′;y,y′; t, t′) g (x, x′;y,y′; t, t′)

1
yy′

Lbulk

where  and  are the  regu-
lar functions  to  be  determined,  and  they  must  be  invari-
ant under . The cosh on the LHS of Eq.
(26) is determined using Eq. (25),  and the function form
on the RHS of Eq. (26) is determined using Eq. (24). We

do not  place  the  term of  in  Eq.  (26)  because
its  existence,  if  any,  can  be  absorbed  in  undetermined
functions  and .  Similarly,

factor  outside the bracket is simply for convenience.
Therefore, the aim is the same as the free CFT scenario:
we apply various constraints to determine functions f and
g and then use  to obtain the metric.

We stress  again  here  why we assume some arbitrary
metric. Our aim is to fix the dual geometry of CFT, which
belongs  to  kinematics.  The  next  much  harder  and  more
important  step  is  to  derive  the  dynamic  equation, i.e.,
Einstein  equation,  from  CFT  data.  As  gravity  is  the
geometry respecting the Einstein equation, we can safely
claim that  the  gravity  emerges  from  quantum  entangle-
ment.

βH ≫ y = y′ = a Lbulk
Lboundary

Step  1: When ,  must  reduce  to
, given by Eq. (24), 

Lbulk = R log
Å
β2

H

yy′

ï
f (x, x′;y,y′; t, t′)2cosh

Å△x
βH

ã
−g (x, x′;y,y′; t, t′)2cosh

Å △t
βH

ãòã
→ R log

Å
β2

H

a2

ï
2cosh

Å△x
βH

ã
−2cosh

Å △t
βH

ãòã
. (27)

βH ≫ y y′Therefore, as  and , we obtain 

f (x, x′;y,y′; t, t′) =1+µ1 (x, x′; t, t′)
Å

y
βH
+

y′

βH

ã
+µ2 (x, x′; t, t′)

Å
y
βH
+

y′

βH

ã2

+ . . .

+ρ1 (x, x′; t, t′)
Å

yy′

β2
H

ã
+ρ2 (x, x′; t, t′)

Å
yy′

β2
H

ã2

+ . . . ,

 

g (x, x′;y,y′; t, t′) =1+ µ̄1 (x, x′; t, t′)
Å

y
βH
+

y′

βH

ã
+ µ̄2 (x, x′; t, t′)

Å
y
βH
+

y′

βH

ã2

+ . . .

+ ρ̄1 (x, x′; t, t′)
Å

yy′

β2
H

ã
+ ρ̄2 (x, x′; t, t′)

Å
yy′

β2
H

ã2

+ . . . , (28)

µi ρi νi µ̄i ρ̄i ν̄i

△x △t
where , , , , , and are the regular and bounded
functions regardless of the values of  and .
 

βH →∞ βH ≫△x △t y′Step 2: As  or , , y, and , eneral
expression  (26)  must  match  the  pure  AdS3 background
(25). From step 1, we know the leading term of f and g is
the unit. Therefore, we obtain

 

cosh
Å

Lbulk

R

ã
≃ β

2
H

yy′

ñ
f (x, x′;y,y′; t, t′)

Ç
1+

(△x)2

2β2
H
+ . . .

å
−g (x, x′;y,y′; t, t′)

Ç
1+

(△t)2

2β2
H
+ . . .

åô
=

1
2yy′

[
f (x, x′;y,y′; t, t′) (△x)2−g (x, x′;y,y′; t, t′) (△t)2+2β2

H ( f (x, x′;y,y′; t, t′)−g (x, x′;y,y′; t, t′))+ . . .
]

→ (△x)2− (△t)2+ y2+ y′2

2yy′
. (29)

f (x, x′;y,y′; t, t′) g (x, x′;y,y′; t, t′)
gxx gtt βH

In contrast, when calculating the metric using Eq. (1), we
observe  that  and  enter

 and . However, we know that for large , it must
reduce to the asymptotic AdS in the Poincare coordinates.

f (x, x′;y,y′; t, t′)
g (x, x′;y,y′; t, t′) x, x′ t, t′
Thus,  we  conclude  that  and

 are independent of  and . Note that
f and g are dimensionless. Therefore, we rewrite the gen-
eral expression of the geodesic length as
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cosh
Å

Lbulk

R

ã
=
β2

H

yy′

ï
f
Å

y
βH
,

y′

βH

ã
cosh
Å△x
βH

ã
−g
Å

y
βH
,

y′

βH

ã
cosh
Å △t
βH

ãò
,

(30)

with 

f
Å

y
βH
,

y′

βH

ã
= 1+µ1

Å
y
βH
+

y′

βH

ã
+µ2

Å
y
βH
+

y′

βH

ã2

+ . . .

+ρ1

Å
yy′

β2
H

ã
+ρ2

Å
yy′

β2
H

ã2

+ . . . ,

g
Å

y
βH
,

y′

βH

ã
= 1+ µ̄1

Å
y
βH
+

y′

βH

ã
+ µ̄2

Å
y
βH
+

y′

βH

ã2

+ . . .

+ ρ̄1

Å
yy′

β2
H

ã
+ ρ̄2

Å
yy′

β2
H

ã2

+ . . .

(31)

Moreover, from Eq. (29), matching the y direction of pure
AdS3 yields an important constraint: 

f
Å

y
βH
,

y′

βH

ã
−g
Å

y
βH
,

y′

βH

ã
=

1
2β2

H

(
y2+ y′2

)
+O
Å

1
β4

H

ã
.

(32)

x = x′

y = y′ t = t′

Step 3: When two endpoints  of  a  geodesic  coincide,
the geodesic length vanishes exactly.  Substituting ,

, and  into Eq. (30), we obtain 

cosh
Å

Lbulk

R

ã
=
β2

H

y2

ï
f
Å

y
βH
,

y
βH

ã
−g
Å

y
βH
,

y
βH

ãò
→ 1,

(33)

which leads to 

f
Å

y
βH
,

y
βH

ã
−g
Å

y
βH
,

y
βH

ã
=

y2

β2
H
. (34)

Step  4: In  Ref.  [15],  Takayanagi  proposed  a  new
holographic  dual  of  the  BCFT.  It  states  that  the  phase
transitions  of  EE  relate  to  the  topological  change  of  the
RT  surface  in  the  bulk.  Based  on  this  realization,  the
boundary of the BCFT will extend into the bulk and play
a  role  in  the  end-of-the-world  (ETW)  brane  [16].  The
brane's  tension  corresponds  to  the  boundary  entropy  of
the  BCFT,  and  the  RT surface  that  is  anchored  between
the  ETW  in  the  bulk  and  the  BCFT  on  the  boundary
relates to the EE of the BCFT. The region enclosed by the
ETW  brane  in  the  bulk  and  BCFT  on  the  boundary  is
asymptotically  AdS.  Therefore,  the  dual  RT  surfaces  of
the BCFT can be simply calculated between one point in
the  bulk  and  another  point  on  the  boundary  in  the  AdS
background without placing any new configuration, such
as virtual branes that modify the bulk geometry [15]. We
will  use  this  conclusion  in  this  step  because  our  method
depends only on the RT surfaces and aims to fix the lead-
ing behaviors of bulk geometry.

∆x ∆x/2
∆x

From Eq. (16), the BCFT provides the EE of the half
line.  However,  we  should  replace  by  here be-
cause  we  use  to represent  the  total  size  of  the  en-
tangled region, 

S EE =
c
6

log
Å

2βH

a
sinh

△x
2βH

ã
=⇒ LBCFT

= R log
Å

2βH

a
sinh
Å △x

2βH

ãã
. (35)

△x→∞When , it becomes 

LBCFT = R log
ï
βH

a
exp
Å △x

2βH

ãò
. (36)

y = a y′ = βH

As shown in Fig. 1, the geodesic corresponding to this EE
connects  and .

In  contrast,  by  using  the  general  expression  of  the
geodesic length (30), we have two other methods of cal-

 

y = y′ = a

y = a

y′ = βH ∆x/2

Fig. 1.    (color online) The left-hand side image shows the geodesic identified from CFT EE. The endpoints are fixed at . The
solid  curve  in  the  right-hand side  image represents  the  geodesic  identified  from the  BCFT EE.  The endpoints  are  fixed  at  and

, and the entangling length is .
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y = a y′ = βH ∆x/2→∞
culating the length of this geodesic. The first method is to
straightforwardly substitute , , and 
into (30) to obtain 

Lbulk→ Lhalf1 = R log
Å
βH

a
f
Å

a
βH
,
βH

βH

ã
exp
Å△x

2β

ãã
. (37)

y = y′ = a ∆x→∞
We easily understand that this length is half the geodesic
length  connecting  and .  Therefore,  the
second method is 

Lbulk→ Lhalf2 =
1
2

R log
Å
β2

H

a2
f
Å

a
βH
,

a
βH

ã
exp
Å△x
βH

ãã
. (38)

These  three  lengths  in  Eq.  (36),  (37),  and  (38)  must  be
identical, as shown in Fig. 2. Thus, we obtain 

f
Å

a
βH
,
βH

βH

ã2

= f
Å

a
βH
,

a
βH

ã
= 1. (39)

βH ≫ a
βH

βH

0 < a/βH ≤ 1,
a
βH

y
βH

The derivation of this constraint does not require .
As  long as  is  the  upper  bound of y,  the  derivation  is
justified.  Because a is  a  varying  cut-off  not  beyond ,
satisfying  we can safely replace  by 
to obtain 

f
Å

y
βH
,1
ã2

= f
Å

y
βH
,

y
βH

ã
= 1. (40)

βH △x = 0

Step  5: An  important  lesson  we  learn  from  the  free
CFT2 case is that,  to completely determine the dual geo-
metry, we must know the geodesic length between a and

 with , i.e., the vertical geodesic. To be consist-
ent,  this  particular  geodesic  length  must  be  provided  by
the  CFT2 EE.  In  the  free  CFT2,  the  IR  EE precisely  fits

the  requirement.  The  finite  temperature  CFT2 does  not
have such IR EE.

R×S1

LS

β = LS

LS β→ LS

Remarkably,  we  know  that  the  finite  temperature
CFT2 and  finite  size  CFT2 have  the  same  geometry

. We can either interpret it as a CFT on a compact
spatial interval of size  or as a thermal CFT on the real
line  with  the  Euclidean  time  along  the  circle  with  the
period , as explained in [5, 13] in detail. Therefore,
two  CFTs  are  basically  the  same  scenario  and  have  the
same  bulk  dual.  We  are  allowed  to  use  the  results  from
both  CFTs  to  construct  the  dual  bulk  geometry  with  the
identification  Therefore,  we  map  the  finite  temperature
system  to  a  finite  size  ( )  system  by  replacing 
and impose the periodic boundary condition1)
 

βH =
β

2π
→ LS

2π
. (41)

βH =
β

2π

L
2π

Therefore, the geodesic length between a and  in
the finite  temperature  system  equals  the  one  that  con-
nects a and  in the finite size system:
 

finite temperature finite size

Lgeodesic

Å
a,
β

2π

ã
= Lgeodesic

Å
a,

LS

2π

ã
.

(42)

LS

2π
LS

Noting that  is the radius of the finite size system with
the circumference , this geodesic extends from bound-
ary to the center of the circle, as shown in Fig. 3.

We know that the EE of a finite size system is 

S EE =
c
3

log
Å

LS

πa
sin
Å
π△x
LS

ãã
, (43)

 

Lbulk y = a y′ = βH

△x/2→∞ Lbulk y = y′ = a ∆x→∞
Fig. 2.    (color online) The left-hand image is given by the BCFT. The middle image is obtained from  by setting ,  and

. The right-hand image is also given by  from a different perspective, by setting  and . The solid lines in
all the three pictures describe the same object.
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∆x = LS /2
The maximal EE is achieved by splitting the circle in-

to  two  equal  regions, .  The  corresponding
geodesic is simply a diameter
 

S EE =
c
3

log
Å

LS

πa

ã
, Lboundary = 2R log

Å
LS

πa

ã
. (44)

Thus, we can obtain the value we desire:
 

Lradius =
1
2

Lboundary = R log
Å

LS

πa

ã
. (45)

LS → β
βH =

β

2π

We  now  map  to  obtain  the  geodesic  length

between a and  in the finite temperature system:
 

L = R log
Å
β

πa

ã
= R log

Å
2βH

a

ã
. (46)

x = x′

t = t′ y = a y′ = βH

Therefore,  from  the  general  expression  (30),  as ,
, , and , we obtain

 

Lboundary = R log
ß

2βH

a

ï
f
Å

a
βH
,
βH

βH

ã
−g
Å

a
βH
,
βH

βH

ãò™
→ R log

2βH

a
.

(47)

Thus, we obtain
 

f
Å

a
βH
,
βH

βH

ã
−g
Å

a
βH
,
βH

βH

ã
= 1. (48)

For  convenience,  we  summarize  all  the  constraints  we
have  obtained  for  the  general  expression  (30)  of  the
geodesic length:
 

f
Å

y
βH
,

y′

βH

ã
−g
Å

y
βH
,

y′

βH

ã
=

1
2β2

H

(
y2+ y′2

)
+O
Å

y4

β4
H

ã
, βH ≫ y,y′, (49)

 

f
Å

y
βH
,
βH

βH

ã2

= f
Å

y
βH
,

y
βH

ã
= 1, (50)

 

f
Å

y
βH
,

y
βH

ã
−g
Å

y
βH
,

y
βH

ã
=

y2

β2
H
, (51)

 

f
Å

a
βH
,
βH

βH

ã
−g
Å

a
βH
,
βH

βH

ã
= 1. (52)

From Eqs. (50) and (52), we obtain
 

g
Å

a
βH
,
βH

βH

ã
= 0. (53)

y′ = βH

g(y/βH ,y′/βH)

y′

Because a is  a  varying  quantity, y or  must  be  a
zero  of .  Moreover, g must  be  symmetric
for y and . Therefore, the function form must be
 

g
Å

y
βH
,

y′

βH

ã
∝
Å

1− yn

βn
H

ãκÅ
1− y′n

βn
H

ãκ
(· · · ) (54)

Moreover, from Eqs. (50) and (51), we obtain
 

g
Å

y
βH
,

y
βH

ã
= 1− y2

β2
H

(55)

n = 2 κ = 1/2Thus, we can easily fix  and  and
 

 

y = a y′ = βH

y = a y =
L
2π

Fig. 3.    (color online) Geodesic between  and  at a finite temperature system mapped to a finite size system, correspond-
ing the radius of a circle from  to .
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g
Å

y
βH
,

y′

βH

ã
=

√Ç
1−
Å

y
βH

ã2
åÇ

1−
Å

y′

βH

ã2
åñ

1+
Å
∆y
βH

ã2Å
σ1+O

Å
y
β

ããô
. (56)

Similarly, from Eq. (50), we obtain 

f
Å

y
βH
,

y′

βH

ã
=1+

Å
∆y
βH

ã2Å
1− ym

βm
H

ãδÅ
1− y′m

βm
H

ãδ ï
θ1+O

Å
y
β

ã
+ · · ·
ò
, (57)

δ > 0where m,  are some numbers.

σ1 = θ1

∆x, ∆y, ∆t→ 0Å
∆y
βH

ã2

gyy

gxx gtt

g(y,y′)

f (y,y′) = 1

The story is not over yet. To match Eq. (49), we must
have . When applying Eq. (1) to calculate the met-
ric,  noting  that  a  limit  will  be  imposed
after  making  the  derivatives,  we  easily  obsevre  that  the

terms  proportional  to  contribute  only  to  but

not to  and . Therefore, based on Eqs. (56) and (57),
without  altering  the  derived  metric,  equivalently,  we  are
free to pack all the corrections into  and simply set

. Finally, we obtain
 

cosh
Å

Lbulk

R

ã
=
β2

H

yy′

[
cosh
Å△x
βH

ã
−

√Ç
1−
Å

y
βH

ã2
åÇ

1−
Å

y′

βH

ã2
åÇ

1+
Å
∆y
βH

ã2

·O
Å

y
β

ãå
cosh
Å △t
βH

ã]
. (58)

Applying (1), we obtain the metric of the BTZ black hole:
 

ds2 =
R2

AdS

y2

ñ
−
Å

1− y2

β2
H

ã
dt2+dx2+

Å
1− y2

β2
H

ã−1Å
1+O

Å
y
βH

ãã
dy2

ô
. (59)

β = −iL

β = −iL/γcon

Because the finite size system has the same topology
as  the  finite  temperature  one,  a  simple  method  of  fixing
the  leading  behavior  of  the  dual  geometry  of  the  finite
size  system  is  to  use  the  transformation ,  which
leads to the pure AdS3 in the global coordinate. Similarly,
we can fix the leading behaviors of the dual geometries of
CFT2 with  topological  defects  under  transformation

. 

IV.  DISCUSSIONS AND CONCLUSION

CFT2

In  this  final  section,  we  discuss  our  results  and
provide  several  inspirations  as  well  as  conjectures.  In
summary,  we  have  demonstrated  an  approach  to  fixing
the leading behaviors  of  three  dimensional  dual  geomet-
ries, such as asymptotic AdS3 and BTZ black holes, from
the EEs of . Our derivation relies only on the holo-
graphic  principle  without  any  assumptions  about
AdS/CFT and bulk geometry. The steps of the method are
as follows:

1. Identify the energy cut-off as an extra dimension.
2. Identify the EE with the geodesic length of the un-

known dual geometry. The geodesics are attached on the
boundary.

3. Write down the bulk geodesic length by making the
most general extension of the geodesic ending on bound-
ary to include the extra dimension.

4.  Use  properties  a  geodesic  must  respect,  say,  zero
length  for  coincide  endpoints,  to  impose  constraints  on

the bulk geodesic function form.
5.  Use the IR-like EE representing a geodesic whose

one  endpoint  stands  on  the  boundary  and  another
stretches into  the  bulk  of  the  unknown  geometry,  to  re-
strict the bulk geodesic function form.

6.  Apply  Eq.  (1)  to  fix  the  leading  behavior  of  the
metric.

Our  approach,  from the  derivation  of  the  BTZ black
hole, may apply for all the three dimensional geometries.
As we have explained, because they have the same topo-
logy as the finite temperature CFT2,  the finite size CFT2
and CFT2 with topological  defects  can be easily determ-
ined by  using  simple  transformations,  although  an  inde-
pendent  parallel  derivation  is  desirable.  Basically,  we
need only consider one representative for each topology.
Therefore,  the  next  non-trivial steps  involve  investigat-
ing the chiral CFT2 or finite size thermal CFT2. Probably,
the only obstacle is to determine the IR-like EEs from the
CFT side. The existence of the IR-like EEs is unquestion-
able,  but  it  might  be  difficult  to  calculate  from the  CFT
side.  A  compromise  is  to  borrow  the  IR-like  EEs  from
holographic calculation, if not so strict. For CFT living on
surfaces  beyond the  torus,  we believe  the  derivation can
still  be performed,  but  we must  know the EEs,  both UV
and  IR-like,  which  are  difficult  to  obtain  from  the
CFT side.  In  addition,  it  would  be  of  significant  interest
to  consider  the  CFT2 which  are  dual  to  sourced  gravity.
We  may  learn  more  non-trivial things  from  these  ex-
amples.

Fixing three dimensional geometries from entanglement entropies of CFT2 Chin. Phys. C 49, 025106 (2025)
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d+1 > 3

Our  derivation  shows  that  the  bulk  geometry  cannot
be determined  using  UV  EE  only.  For  a  higher  dimen-
sional  case ,  the  scenario  is  complicated.  One
reason is that no method is available to calculate the met-
ric from minimal surfaces. Another challenge is that even
for  a  single  topology,  many  inequivalent  gravitational
structures exist  in higher dimensions.  We are not certain
if other subtleties will occur.

SEE (t, t′; x, x′; y, y′)

An  interesting  question  is, Is  it  necessary  to  identify
the EE with the geodesic to fix the leading behavior of the
metric? The answer appears to be negative. As we know,
the arguments  of  the  EE  include  both  spacetime  direc-
tions t, x as well as the energy cut-offs such as a, ξ, β, ....
After identifying the energy scale as an extra dimension y, we can
introduce  a  generalized  EE  as fol-
lows:
 

•  We  denote  the  energy  generated  dimension  as y.
Therefore, the energy cut-offs are different values on the
dimension y.
 

S EE(t, t′; x, x′;a,β, · · · ) SEE (t, t′; x, x′;y,y′)

•  Because y is  on  the  same  footing  as  the  ordinary
spacetime  directions x, t,  it  is  natural  to  generalize

 to  in  the  most
generic manner.
=⇒This  step  corresponds  to  extending  the  boundary

attached geodesic to the bulk geodesic.
 

SEE (t, t′; x, x′;y,y′)
•  Under  various  limits,  the  generalized  EE

 should reproduce all the EEs of a spe-
cified CFT, such as the UV or IR-like EEs.
=⇒This step corresponds to using various EEs to de-

termine the behaviors of  the regular  functions in our ap-
proach.
 

SEE (t, t′; x, x′;y,y′)•  The  generalized  EE  should  be
renormalized because the infinities of QFT are caused by
energy, which is now a new dimension.
=⇒ This step corresponds to demanding the vanished

geodesic length  for  coincident  endpoints  and  other  con-
sistencies.
 

Therefore,  our  previous  calculations  naturally  fit  the
procedure.  Now,  we  immediately  have  an  interesting
equation: 

1
2
S2

EE (x; x+dx) = gi j (x)dxidx j+O
(
dx2

)
. (60)

All the derivations in this paper can be expressed in this
pattern. Consequently, all GR quantities, such as the con-
nection,  Riemann  tensor, etc., can  be  subsequently  con-
structed. This  equation  indicates  some  new  interpreta-
tions:
 

•  Spacetime  is  not  an  emergent  structure  from
quantum entanglement, but it is quantum entanglement it-
self, simply viewed from a different angle.
 

•  Quantum entanglement  with  different  lengths  knits
the spacetime.
 

Moreover,  we wish to clarify two significant reasons
for our derivations appearing heavy:

1. The advantages of our method is to also cover the
time-like direction of the spacetime metric naturally. This
is very difficult because we know only the information of
the lower dimensional theories.

2. Our objective is to determine not only the linear or-
der  but  also  the  singularity  and  event  horizon  of  BTZ
spacetime.  The  behaviors  of  black  hole's  singularity  and
event horizon cannot be extracted using the leading term
of the spacetime metric directly. This is why we use more
results of EEs and aim to fix more accurate leading beha-
viors of bulk geometries.

CFT2

Therefore, in this paper, our aim is not to explain how
the  bulk  geometry  emerges  from  EEs  or  to  derive  the
bulk  dynamics  (Einstein's  equation)  from  the  boundary
theory,  but only to show that  the EEs of  are suffi-
cient  to  fix  the  leading  behaviors  of  the  bulk  spacetime
geometries.

d = 2

d+1

d

d

Another point  deserves  a  special  emphasis.  Our  res-
ults demonstrate that when we treat the energy scale as a
usual  space-like  dimension,  the  CFT  contains  almost  all
the classical information of the dual geometry, at least for

. In  AdS/CFT correspondence,  to  compare  the  cor-
relation  functions  of  the  dual  theories,  we  take  limits  to
push  the  AdS  bulk-to-bulk  correlation  function  onto
the boundary and then match the CFT  correlation func-
tion  [17].  However,  the  method of  lifting  the  CFT  cor-
relation  function  into  the  bulk  directly  is  still  an  open
question. Our derivations show that when we treat the en-
ergy  scale  as  an  extra  dimension,  after  imposing  some
consistent  constraints,  the  bulk-to-bulk correlation  func-
tion  from the  boundary-to-boundary  one  can  be  derived.
Thinking  it  over,  we  observe  that  two  equations  govern
the  dynamics  of  operators  in  QFT:  the  Callan-Symanzik
(RG)  equation  and  equation  of  motion  (EOM).  The  RG
equation informs  us  how  the  operators  evolve  with  re-
spect to  energy  scales.  The  EOM  determines  the  evolu-
tion of  the  operators  with  respect  to  spacetime  coordin-
ates.  Therefore,  logically,  we  can  naturally  conjecture
that 

Callan-Symanzik (RG) equation

+EOM on flat = EOM in the bulk,

which implies a unification of the RG equation and field
EOM. 
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