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Abstract: In this study, we investigate the critical phenomena of Kerr-AdsS black holes under the modified first law
of thermodynamics. Specifically, we considered modified black hole thermodynamics that exhibit a van der Waals-
like phase structure. All critical exponents were calculated, and then, a swallowtail diagram of free energy was plot-
ted. Comparing with existing results, the main difference is the correspondence between the thermal quantities of
Kerr-AdS black holes and the van der Waals system. In a previous study [Y. D. Tsai, X. N. Wu, and Y. Yang, Phys.
Rev. D 85 044005 (2012)], the correspondence was (Qg,J)— (V,P), while in our study, the correspondence
was(J, Q) — (V, P). This difference was owing to the rotating effect. The modified black hole thermodynamics were
associated with rotating observers. The free energy in such a reference contains extra rotating energy, which induces

a Legendre transformation in the (Qg, J) cross-section, causing the difference in correspondence.
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I. INTRODUCTION

Since Bekenstein and Hawking [1, 2] demonstrated
that black holes can be observed as thermodynamic ob-
jects with temperature, it is widely accepted that black
hole thermodynamics has been an exciting and challen-
ging field in theoretical physics. As fascinating phenom-
ena in black hole thermodynamics, phase transitions and
critical behaviors have attracted the attention of several
researchers. Based on the analogy between black holes
and thermodynamic objects, Hawking and Page proved
the existence of a phase transition between the Schwarz-
schild-AdS black hole and thermal AdS space [3]. After
their pioneering research, several studies were conducted
in this direction, and rich phase structures were dis-
covered [4—8]. The later-established AdS/CFT corres-
pondence has further stimulated attention toward asymp-
totically anti-de Sitter (AdS) black holes [9, 10]. In differ-
ent AdS black hole backgrounds, phase structures and
critical phenomena have been studied and promoted
[11-19].

Note that the energy definition of Kerr-AdS black
holes is not unique. This is because the standard Komar
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energy expression diverges at infinity. Henneaux and
Teitelboim [20] first derived the energy m/=2, which sat-
isfies the first law of black hole thermodynamics. The au-
thors [21] proposed the energy m/Z*? by applying the
Hamiltonian approach. Using the Iyer-Wald formalism,
Gao et al. [22] clarified the origins of the two different
energy definitions of Kerr-AdS black holes. They found
the energies associated with different observers at infin-
ity, and there is a relative rotation between the two types
of observers. The associated thermodynamics for the dif-
ferent energies are also obtained in [22]. For non-rotating
and rotating observers, the energies are m/Z* andm/=3/2,
respectively. The energy m/Z? corresponds to the stand-
ard thermodynamics of black hole, and its related critical
phenomena have been studied, including phase transition
and critical exponents [16]. The other energy m/Z%? is
related to the modified first law of black hole thermody-
namics [22]. Considering that the phase transition is asso-
ciated with the degrees of freedom within the system, and
there is only a relative rotation between two observers, it
is reasonably conjectured that there should be similar
phase structures in modified thermodynamics. In the cur-
rent study, we investigate whether the phase transition
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structure exists under the modified first law of thermody-
namics. Furthermore, the observer dependence of the
phase structure is discussed.

This paper is organized as follows. Section II briefly
reviews the basic knowledge of the Kerr-AdS black hole.
Section III discusses the modified first law and thermody-
namic quantities. The main results are presented in Sec-
tions IV and V; the phase structure of the modified first
law is shown. Discussions are given in the last section.

II. KERR-ADS BLACK HOLE
THERMODYNAMICS

The Kerr-AdS black hole solution of the Einstein
equations in the Boyer-Lindquist coordinates is ex-
pressed as

A 29 2
dsZ:_E(d_asln d¢) 2
2 .:“ 0 2 2
+%d02+ sin (adt—r:a )’ ()

with

_ a?
521—17
2
X=1- Cll—zcos a,
2
A:(r2+a2)<l+;—2> —2mr. )

Here, A = -3172 is the cosmological constant, m,a are the
mass parameter and angular momentum parameter, re-
spectively. The associated thermodynamic quantities are
[16]

T 3rt+(a> + Py - Pa? _
Anlr,(rt+a?) = ’

_a(r; +a®) O - a=
ryra) o=

2 2°
rita

3)

where r, represents the horizon radius satisfying A(r,) =
0; 7, S, and Qp are defined as the Hawking temperature,
Bekenstein-Hawking entropy, and angular velocity, re-
spectively. The energy M and angular momentum J are
M= % and J = g , respectively.

In 2012, S. Gunasekaran et al. [23] introduced the ex-
tended phase space for AdS black hole, where the cosmo-

logical constant A can be interpreted as a pressure term
via the following relation:

A

P=—c. (4)

The first law of black hole thermodynamics and the
Smarr formula are

SM = TSS +Qy6J + VP, (5)

M
5 =TS +Qul~VP, (6)

Anlro(a®+r2)
3(-a’+P)
Following Gunasekaran et al.'s perspective, several stud-
ies have focused on exploring the thermodynamic proper-
ties of AdS black holes on the extended phase space

[24-27].

where the thermodynamic volume V is

1. MODIFIED BLACK HOLE
THERMODYNAMICS

There is ambiguity on the energy notion of Kerr-AdS
black holes [20, 21], which has been a long standing is-
sue. In the recent article [22], the authors proposed a nat-
ural criteria to justify the notion of energy. In particular,
they examined whether the associated first law of the
black hole thermodynamics exists. Within the ITyer-Wald
formalism, two versions of the first law and the Smarr
formula were established for different energies. The dif-
ference originated from the choice of the Killing vectors.

The standard energy notion m/Z? is associated with the
1

ar "o " 6¢
namic quantities, first 1aw and standard results are

presented in Section II. The other energy notion M =

Killing vector - . The relevant thermody-

3/2 3

m/Z2%* is related to the Killing vector —==;. By employ-

1 4
VE ot
ing the notation from [22], the corresponding thermody-
namic quantities can be expressed as

(7

The modified first law of black hole thermodynamics is
presented as

M =T6S +Qy6J + VSP. (8)

Based on the concrete expressions of the Killing vec-
tors, there exists a relative rotation between two types of

3T coincides
with the generator of the conformal boundary, corres-

ponding to non-rotating observers, whereas rotating ob-

observers. Contrary to a naive observation
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0
servers are related to -

IV. PHASE STRUCTURE ON (Qj, J) SECTION

Using Eq. (7), the functions Qy, J, and 7 can be ex-
pressed as

J= 3a(a® + ri)(3 + 8P7Tri)
2(3 - 8a2Prm)?r,

€

: (10)

1
\/ 9" 24Pr [a®(=3 +8Prr2) +3(r2 + 8Prrt)]

T =
4nr (@ +1r2)

(11)

The above equations can be viewed as equations of
state of the Kerr-AdS black hole.

In this section, we focus on the phase structure of
modified black hole thermodynamics on the Qu,J)
plane. A previous study [16] had considered similar prob-
lems for standard black hole thermodynamics on the
(J,Qy) section, without considering the extended phase
space.

According to the equations of state (9)—(11), the iso-

050 7= 0246791
— 7.=0.247291
| T=0247791
1 — T=0248291
i — T=0.248791
It T =0.249291
i —— T=0249791

02 04 06 08 10

J
Fig. 1. (color online) Isotherms of the Kerr-AdS black hole
with =1 in the Qy-J plane. Qualitatively, the isotherms
near the critical temperature 7. behave similar to a van der
Waals system. The black solid line is the critical isotherm.

therms for various temperatures on the Qy —J plane are
presented in Fig. 1. Qualitatively, Fig. 1 is similar to the
liquid/gas PVT diagram [28]. Under the following corres-
pondence,

Qu—-PJI-Y, (12)
there is a van der Waals-like phase structure. By contrast,
the correspondence in the previous article [16] was
JoP Qy—oV.

As the temperature decreases until 7, an inflection
point is formed. Therefore, the temperature 7. and angu-
lar velocity Qy; at the critical point satisfy [28]

F;1e) 90
<H> ) O’ ( 2H ) ) 0.
al ), ar ).

Combining with the equations of state (9)—(11), the
critical point is

(13)

34+ V2)(1+2V2) 2 /-5 +4V2(-6+5V2)

Je
448(-3+ V2)*Pr
(14)
2 \/ %(—23 +17\2)nP
Q= —3 (15)
(=2+32)
2P
7(-2+3V2) ———
Tc _ 9n—3V2rn (16)

(1+2V2)¥2(-6+5V2)

A. Law of equal area and order parameter

In this subsection, we first discuss the coexistence
condition between two states, from which the law of
equal area is obtained. For two stable states, a and b, it is
well-known that the coexistence condition is represented
by the free energy being equal [28], i.e., G@) =Gb).
Compared with the PTV system, the free energy for the
black hole system should be

dG = -SdT + JdQy. (17)

Fixing the temperature, one can obtain the free en-
ergy by integrating the above equation along the iso-
thermal curve. The difference in free energy between two
states should be f@b JdQy (this integral is along the iso-
thermal curve that connects the two states). From Fig. 2(a),
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(b)

(color online) (a) The brown solid line represents an isotherm with temperature 7 =0.248291 and /=1; a and b are coexist-

ence states. Because of the equal free energy requirement of coexistence states, i.e., G(a) = G(b), area(4) = area(B). (b) The red dashed
line is the coexistence curve of phase transition above 7. The black solid line represents the critical isotherm with /= 1.

because a and b are coexistent states,

Qpp

G@a)-G(b) = / JdQy, =0, (18)
QH&
implying that the areas of region A and region B in Fig.
2(a) are equal, corresponding to the Maxwell equal area
law.
To investigate the critical behavior near the critical

point, we should define the order parameter. Analogous

Ja .
is defined as the

order parameter. The coexistence curve is the red dashed
line in Fig. 2(b).

J —
to the van der Waals system, 77 = : 5

B. Ciritical exponents

For a van der Waals system, near the critical point,
one can obtain the critical exponents [28]. For the corres-
pondence (12), the analogous critical exponents can be
obtained as follows.

e Degree of critical isotherm:

Qu - Qu. = AslJ - J.’sign(J - J,), T=7. (19
e Degree of coexistence curve:
n=-Ag(T-T.Y, T>T,. (20)
e Degree of heat capacity(J = J.):
Ag {(~T =TV, T<T,
C{ A, {{+<(f-fc>)}}'“, por.  OD

A

e Degree of isothermal compressibility:
Ay~ -1}, T<T,
A HT-TH}7, T>T.

1 ( aJ )
Kr=——\ —(= =
J\oQy T
(22)

In the following subseciton, we calculate explicitly
the critical exponents for modified black hole thermody-
namics.

1. Degree of critical isotherm

At the critical point, the first and second derivatives
of Oy with respect to J satisfy

Q) 0y
(57 )2.=0 (G )e=0 (23)
The third derivative can be calculated as
ae) 16384(nP)"/?
(Lo OOy, (24)
s e 9./8742+123

hence, § = 3 according to the definition of J in Eq. (19).

2. Degree of coexistence curve

In Fig. 2(b), we plot the curve of the coexisting states
using Maxwell's equal-area law. Along this curve, all
thermodynamical quantities depend only on temperature.
To find the value of the degree of the coexistence curve,
B, we should obtain the relations between # and 7' near
the critical point. Therefore, we expand Qy in terms of J
and T to the third order as
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~ A ~ A~ A 1 A A~ A
Q= Qpe ~ (0: Q) (T - To) + E(a%QHMC(T -1
+(0:0,8m)7 ) (T =TT - 1.)

1 A A A 1 A
+ g(a;QH)AC(T -7+ g(ang)ﬂc(J —Jey

+ 5 (@) T -T2~ 1)
+ % (077 J(T =TT = J).
(25)
For simplicity, let us introduce
w=0y-Qn., i=T-T. j=J-1., (26)

then, Eq. (25) becomes

w = C102+C2022 + Cllij+C3()E3 +Co3j3 +C21i2j+C12ij2. (27)

According to the equations of state (9)—(11), one can
calculate all coefficients in Eq. (27) as

1
clo=-V21, = 1/6(29V2-41)7*" \/;,

9(11x/§—15)n2

C”:%(\/E—l)ﬂzp, C3 = P s

16384(nP)"2
c3=—— —,
91/87V2+123
2P
Cyy=-544 — = pP
5331 V2 +7539

2048
cn="—"—(4-3V2) P (28)
3
The equilibrium condition Q. =0, implies w(j,,t) =
w(jp, 1), which in turn yields

Wy = Wo = (i = jo) [ent+en? + et + jiy)

+co3(a + Jado + J3)] =0 (29)
By employing Maxwell's equal area law, the area of

the shaded region in Fig. 3 is equal to the area of the rect-
angle cdba in Fig. 3. Therefore, we obtain

Jp R 1
/ QdJ=,-J,)- E(Qb +Q,), (30)
J,

a

—— T=0248201

04520

04515

04510
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04500

030 035 0.40 045

J
Fig. 3. (color online) According to the equal area law, i.e.,
area(4) = area(B), the area of the shaded region should be

equal to the area of the rectangle cdba.

The left side of Eq. (30) represents the area of the

shaded region in Fig. 3 , and the right side represents the
1

area of the rectangle cdba in Fig. 3. The factor E(Qb +€Q,)

originates from the equilibrium condition Q, =,.) By
using Eq. (26), Eq. (30) becomes

Jp R
/ QdJ =
J,

a

.
/ Q-0)d(J - J»} +Q (= J) == J )]
L Ja

[ .
= / (Q_Qc)d.]:| +Qc(jb_ja)

Ja

[ v
= / Wd]} +Qc(Jo— Ja)
L Ja

1 A A
(Jp = Ja) 5 (€ + L)

1 A~ A A A A
= U = Ja) 5 ([€ = Qc] + [0 = QD) + (b — Ja)C2e

2
N LA
= (b = Ja) 5 (@p + @a) + (o = Ja) e
(31
The above result implies that
Jb 1
| wdi= o=y @+ ()
Ja

Substituting Eq. (27) into Eq. (32), one can obtain
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Jb
/ (Clof‘Fczo22 + Cnfj+C3of3 +Co3]'3 +C2152]'+0125j2)d]'
Ja
. EY | 3, .
= 10t (o = ju) + 20t o = ju) + Ecllt(./% —jD+ ol o = Ja
1 .0
+ 503U+ Ja) Uy + 1)
r . .1 _ 5,
+ ECzﬂ Up+Ja) + gCIZt(]h + Jado + 7)1

1
= (b = Ja) 5 (@a + wp),
(33)

dividing both sides of Eq. (33) by (j, — j.) yields

_ R _
C10t+c20t2+Ecllt(jb+ju)+030t3
1 . . 2 2 1 =2, . .
+ 1003(Jb +Jj)Uy+J)+ 50211 b+ Ja)
|
+ 300ty + Jad+ J)
- TR -3
= Cof + Cof +§Cllt(]b+]a)+c30t

1 3 . | r _ ., .
+ 5603(12 +J2) + 5621l2(]b +Jja)+ Eclzt(ﬁ, +]§)- (34)

Eliminating similar terms on both sides of Eq. (34) yields

1 . oo r _ ., ..
—cos(Uip + J) i+ 1) + §C12t(][2; + jado+ 1)

4
1 3 . T _ ., .
= 56‘03(12 +J[31) + ECIZI(]IZ; +J(21)~ (35)

Then, we can obtain

1 3 0. .o . I, .
—co3(jy + Jpda+ JoJu+ J) + =€l (5 + jajo + J2)

4 3
1 3. r _ ., .
= EC03(J;3;+J?,)+ Eﬁz¢(]i+li), (36)

which implies

1 3 .0 o . 1 _ . C
0= —cos(j2 = jufs— Jodo+ J3)+ gclzt(ﬁ, — 2o+ )

4
1 . . . NG 1 ) + N2
= 1603(% + (s = Ja)~ + gclzt(]b = Ja) (37)

By simplifying the above equation, we can obtain

. Lall o1
U= Ju)* 1003(]a+]b)+86'12t =0. (33)

Denoting j_ = j,—jo=Jp—Ja» ji = ju+ jo and consid-
ering Eq. (38), j, can be solved as

e 7
jo= -3, (39)
Co3
Substituting Eq. (39) into Eq. (29) yields
_ 4¢? _
—4C11[+ (% —4C21) tz
. C
jo= 0 . (40)

Co3

Near the critical point, the temperature dependence of
the order parameter is

J=J,

~ Ay(T-T)">. 41)

1
Thus, 8= 3

3. Critical exponent of heat capacity

According to definition (21), the critical exponent of
heat capacity can be obtained as follows. Recall that the
energy M is expressed by

(a2+r2) (ﬁ + 1)
+ lz

M= o 42)
or (1-%)
then, the heat capacity C; can be calculated as
om 3
Cr=(—=)le===#0. 43

Since the heat capacity neither diverges nor vanishes,
o and o« are both zero, i.e., « = o’ =0.

4. Degree of isothermal compressibility

The isothermal comprssibility «; is defined as

1 ( oJ >
= -\ —=— ’ 44
KT 7 \a0, ; (44)

which diverges at the critical point. @, , and } are intro-
duced as

_ Oy-Cu. ~ T-T. ~ J-1
w = HA i s 1= = 5 j: s (45)
QHC Tc JC
which yields
QH = QHC(T) +QH{,‘? f = fc7+ fc, J= -]c}:+ -,c’ (46)
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and

i=T.1, j=J.. (47)

w = QHCJ),
Eq. (27) can be rewritten as
D= Crol+ ool +Cnlj+ ol +Cos ) + Ol j+Cial) . (48)

Using Eq. (44), we obtain

ey (), @

00y,

Combining Egs. (41), (46), (47), and (48) yields

L _ (8w (00 d]) _ Qu (05 oc(‘lw)
JKT aJ # 67 aoJ f JC 67 7 8] ;’
(50)
namely
o 0w _ P _
Kyl (a—j);=c|11+3co31 +o(t) = Cit+0(t), (51)

where C,; is a real constant; Eq. (41) is used in the last
step. Based on the definition of y and ¢’ in Eq. (22), we
obtain y=v' = 1.

C. Free energy and Widom scaling

1. Free energy

According to the differential expression dG = —Sd7'+
JdQy, at constant angular velocity Q, we can employ
Egs. (3), (10), and (11) to plot the G — T diagram.

From Fig. 4, the swallowtail structure is analogous to
the van der Waals system. This further confirms the sim-
ilarity between the modified thermodynamics and the
PVT system.

2. Widom scaling law

It is well-known that, in the vicinity of the critical
point, the free energy can be expressed as a homogenous
function, with corresponding homogenous indices p and ¢
[28]. Based on the previous discussions, we observe that
the critical exponents satisfy the following expected rela-
tions:

a+2B+y=2, a+B(y+1)=2, (52)

0| — Gy=04 _
— Gy=0425
Gye= 0.45509

001 — (=048

e I ,,7—QH<QHC

/ ’ éH = éHc

/ I 7éH>dHC

3

Fig. 4. (color online) Qualitative behavior of free energy as
a function of temperature for various angular velocities with
I=1. The angular velocity decreases from bottom to top. The
green solid line corresponds to Qg > Qp., the yellow solid line
represents Qy = Qy., and the remaining red solid lines corres-
pond to Qy < Qp.. For Qy < Qp., the existence of the swal-
lowtail structure implies that a first-order phase transition oc-
curs in the system.

Y6+ =Q2-a)6-1), y=B6-D. (53)

The free energy has the following scaling symmetry

1 3
==, g=-. 54
p q=7 (54)

8s(A"e, A7 j) = Agy(e, ), >

In terms of p and ¢ [28], the critical exponets read

2p-1
a=P"" (55)
q
l-gq
Bzi’ (56)
P
2g-1
Y= ) (57)
P
s=-2_ (58)
l-g

The above scaling relations can be considered as con-
sistency checks for the critical exponents we obtained in
this section.

V. PHASE STRUCTURE ON (P, V) SECTION

In standard black hole thermodynamics, the phase
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—— 7=0.0386997

7=0.0391997
—— 7=10.0396997
—— 7=0.0401997
—— 7=0.0406997
— T.=0.0411997

T=0.0416997

Fig. 5.  (color online) P-V diagram of the Kerr-AdS black
hole with J=1. The brown solid line is the critical isotherm,
and the red dot is the critical point.

structure on the (P, V) section has been investigated
[17-19, 23, 29]. In this section, we study the phase struc-
tures on the (P, V) section in modified black hole thermo-
dynamics. In Fig. 5, we plot the P—V diagram corres-
ponding to the Kerr-AdS black hole.

Following the method used in [29], after neglecting
all higher order terms of J, the equation of state can be
written as

e
A

22 (4 Vor? TNV + 3)

P= - — +
VU 26BRVE 5 (et i 4 1)
(39)
where V satisfies
. 4nrd  48m(4nPr:+1)J?
V= e, n ( + )2 ) (60)
3 ry (877Pr3 + 3)
. . . .. opP
Following the critical point condition —zx |TC =0,
702 |TC =0, we can obtain
0.003 A .~ 0.041
P.=—"——, V.=129.603°7, T.,=—. (6]
J VI

Consider the phase transition that occurs below the
critical temperature 7.. In Fig. 5, a van der Waals-like
phase structure can be observed. The behavior of physic-

al variables near the critical point is quantitatively de-
scribed by the critical exponents. Following a similar
method as in Section IV, we obtain

1
a=a =0, 'BZE’ y=1, §=3. (62)

The above results show that the phase structure for
the modified black hole thermodynamics in the (P, V) sec-
tion is almost the same as the standard one [30, 31]; the
only difference is that all thermal quantities have a de-

=)
—

1
formation factor ?, which is shown in Eq. (7).

VI. DISCUSSION

In Kerr-AdS spacetime, there exist two sets of the
first law of thermodynamics because of different choices
of observers at infinity. In particular, we investigated the
critical phenomena of black hole thermodynamics associ-
ated with rotating observers. Based on the modified first
law and mass formula, we obtained the phase structures
in the extended phase space for both the (Qy,J) cross-
section and (P,V) cross-section. In comparison with pre-
vious results [16], the phase structure within the Q. J)
plane remained analogous to the van der Waals-like
phase structure. However, the difference was in the cor-
respondence of thermodynamic quantities. According to a
previous study [16], the correspondence is J— P,
Qy — V, but in our case, it is Qy — P,J — V. The afore-
mentioned changes result from differences in observers.
Compared to non-rotating observers, the energy meas-
ured by rotating observers includes a rotational kinetic
energy part ~QyJ. This variation is equivalent to per-
forming a Legendre transformation in the extended phase
space with respect to the conjugate coordinates J and Qy;
thus, the thermodynamic quantities correspond differ-
ently. Additionally, we discussed the phase structures on
the (P, V) plane in modified thermodynamics. We found
that the obtained results closely resemble those in stand-
ard thermodynamics.
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