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Abstract: In this paper,  we introduce the More-Interaction Particle Transformer (MIParT), a novel deep-learning
neural network designed for jet tagging. This framework incorporates our own design, the More-Interaction Atten-
tion  (MIA) mechanism,  which  increases  the  dimensionality  of  particle  interaction  embeddings.  We tested  MIParT
using the  top  tagging and quark-gluon datasets.  Our  results  show that  MIParT not  only  matches  the  accuracy and
AUC of LorentzNet and a series of Lorentz-equivariant methods, but also significantly outperforms the ParT model
in background  rejection.  Specifically,  it  improves  background  rejection  by  approximately  25% with  a  signal  effi-
ciency of 30% on the top tagging dataset and by 3% on the quark-gluon dataset. Additionally, MIParT requires only
30% of the parameters and 53% of the computational complexity needed by ParT, proving that high performance can
be achieved with reduced model  complexity.  For  very large datasets,  we double the dimension of  particle  embed-
dings, referring to this variant as MIParT-Large (MIParT-L). We found that MIParT-L can further capitalize on the
knowledge  from large  datasets.  From a  model  pre-trained  on  the  100M JetClass  dataset,  the  background rejection
performance  of  fine-tuned  MIParT-L improves  by  39% on the  top  tagging  dataset  and  by  6% on the  quark-gluon
dataset, surpassing that of fine-tuned ParT. Specifically, the background rejection of fine-tuned MIParT-L improves
by an additional 2% compared to that of fine-tuned ParT. These results suggest that MIParT has the potential to in-
crease the efficiency of benchmarks for jet tagging and event identification in particle physics.
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I.  INTRODUCTION

Jet identification  has  become  a  key  area  where  ma-
chine learning is applied in high-energy physics, making
significant  progress  in  the  past  few years  [1, 2].  Jets  are
collimated  sprays  of  particles  produced  in  high-energy
collisions, typically from quarks, gluons, or hadronic de-
cay of heavy particles. The process known as jet tagging,
which  involves  identifying  the  particle  that  initiated  the
jet,  is  complex  and  challenging.  This  complexity  arises
because the initial particle evolves into a jet through mul-
tiple stages, increasing the number of particles within the
jet  and  obscuring  the  characteristics  of  the  initiating
particle.

By analyzing the constituents of a jet, it is possible to
determine  the  type  of  particle  that  initiated  the  jet.  This

identification is critical for revealing fundamental physic-
al  processes  and  discovering  new  particles.  Initially,  jet
tagging  relied  heavily  on  the  quantum  chromodynamics
(QCD) theory,  which provided methodologies for distin-
guishing  between  quark  and  gluon  jets  [3−9].  With  the
advent  of  machine learning,  a  variety of  new jet  tagging
methods have  been  introduced  that  exploit  different  ma-
chine learning models to increase the breadth and accur-
acy  of  previous  techniques  [10−15].  Recent  advances  in
deep  learning  have  further  refined  jet  tagging  methods,
allowing  modern  algorithms  to  effectively  process  large
and  complex  datasets.  These  algorithms  are  suitable  for
identifying subtle patterns that differentiate various types
of jets,  significantly  improving  the  accuracy  and  effi-
ciency of  jet  tagging [16−20].  The exceptional  ability  of
deep learning  to  manage  large  datasets  has  been  instru-
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mental in these advances, leading to the discovery of new
physical phenomena and deepening our understanding of
particle interactions.

Jet  tagging  has  undergone  many  changes  over  the
years. Initially, traditional methods relied heavily on fea-
tures  designed  by  experts  based  on  physical  principles.
The introduction  of  machine  learning  brought  more  ad-
vanced approaches,  starting  with  the  concept  of  jet  im-
ages.  These  images,  representing  pixelated  depictions  of
the energy  deposited  by  particles  in  a  detector,  consti-
tuted a pivotal  development in the field.  The earliest  ap-
plication of jet images dates back to 1991, when Pumplin
introduced  the  idea  of  representing  jets  as  images  [21].
Subsequent  studies,  starting  around  2014,  were  inspired
by  computer  vision.  These  studies  used  techniques  such
as  Fisher's  Linear  Discriminant,  originally  used  in  face
recognition  technology,  to  improve  jet  tagging  [10].  By
2015,  deep  neural  networks  (DNNs)  were  being  applied
to  top  tagging  [11];  later,  convolutional  neural  networks
(CNNs) were widely adopted in jet  tagging [12−15, 22],
demonstrating  significant  improvements  in  jet  tagging
performance.

In  2016,  sequence-based  representations  began  to
gain  traction  in  the  field  of  jet  tagging,  using  recurrent
neural  networks  (RNNs)  to  process  ordered  data.  This
period gave rise to significant advancements with the pi-
oneering use  of  Long Short-Term Memory (LSTM) net-
works  for  classification  purposes  [23].  Subsequently,
Gated  Recurrent  Units  (GRUs)  were  also  used  for  event
topology classification,  further  extending  the  applica-
tions of RNNs in this domain [18]. Simultaneously, an in-
novative approach combining CNNs and LSTMs, known
as DeepJet,  was  developed.  This  hybrid  model  signific-
antly  improved  the  performance  of  quark-gluon  tagging
[24]. Additionally,  several  studies  using  RNNs  intro-
duced new methods and insights [25, 26]. These methods
have  successfully  overcome  the  limitations  associated
with  input  size  in  jet  tagging,  providing  a  more  flexible
approach for analyzing and using jet data.

In  2017,  the  introduction  of  graph-based representa-
tions using graph neural networks (GNNs) was a signific-
ant leap forward in jet tagging [27]. Subsequently, GNNs
began to be widely used in particle identification, greatly
expanding  the  capabilities  in  the  field  [28−31].  This
broad application  of  GNNs has  opened new avenues  for
accurately classifying and understanding complex particle
interactions.

In 2018,  the  exploration  of  point  cloud  representa-
tions, which treat jets as unordered sets of particles, gave
rise  to  notable  advancements.  Komiske et  al. introduced
the concept of Energy Flow Networks (EFNs), which can
deal  with  variable-length unordered  particle  sets  effect-
ively [32]. This method exploits the "Deep Sets" concept,
developed by Zaheer et al.[33] in 2017 , which treats jets
specifically as  sets  of  particles  and represents  a  signific-

ant advance  in  jet  tagging.  Crucially,  it  made  the  al-
gorithms  permutation-invariant,  thereby  enhancing  their
capability to represent complex particle interactions.

In 2019, Qu et al. introduced ParticleNet [34], build-
ing on  the  Dynamic  Graph  Convolutional  Neural  Net-
work  (DGCNN)  framework  developed  by  Wang et  al.
[35] in  2018.  ParticleNet,  which  also  treats  jets  as  un-
ordered  sets  of  particles,  was  a  significant  advancement
in the field. In 2022, Qu et al. further extended their con-
tributions by developing the Particle  Transformer (ParT)
[36], which is based on the Transformer architecture [37].
By  incorporating  pairwise  particle  interaction  inputs,  it
significantly improved  jet  tagging  performance.  Further-
more,  the  introduction  of  a  new  large-scale dataset,  Jet-
Class,  enabled  pre-training  of  the  ParT  model,  thereby
reaching even higher performance.

However,  currently,  the  most  efficient  jet  tagging
models,  namely  pre-trained ParT  models,  not  only  re-
quire  pre-training,  but  also  have  a  significant  number  of
parameters.  In  addition,  other  transformer-based jet  tag-
gers  fail  to  outperform  the  DGCNN-based  ParticleNet
owing  to  an  insufficient  number  of  jets  in  the  training
samples. This indicates that transformer-based models are
effective  at  exploiting  larger  training  datasets  by  using
the  attention  mechanism.  Moreover,  we  observed  that
pairwise  particle  interaction  inputs  play  a  crucial  role  in
ParT.  Therefore,  we  aimed  to  construct  a  transformer-
based  jet  tagging  model  with  an  increased  focus  on
particle  interaction  inputs,  aiming  for  optimal  results
without pre-training.

In  this  paper,  we  propose  a  new  jet  tagging  method
based on the Transformer architecture, called More-Inter-
action  Particle  Transformer  (MIParT).  We  enhanced  the
algorithm of ParT by modifying the attention mechanism
and increasing the embedding dimensions of the pairwise
particle interaction  inputs  while  reducing  the  total  num-
ber  of  parameters  and  computational  complexity.  We
tested MIParT  on  two  widely  used  jet  tagging  bench-
marks and found that it exhibits higher performance than
existing methods. Additionally, to address the challenges
posed by very large datasets, we doubled the particle em-
bedding dimensions to construct a larger model. We pre-
trained this  enhanced model  on  the  100M JetClass  data-
set  before  fine-tuning it  on  smaller  datasets.  This  ap-
proach showed measurable  performance gains over  fine-
tuned ParT, indicating the efficacy of our modifications.

The remainder of this manuscript is organized as fol-
lows. In Sec. II, we provide an overview of various deep-
learning models  and  specifically  focus  on  the  architec-
ture of  MIParT.  In  Sec.  III,  we  detail  the  conducted  ex-
perimental process and extensively discuss the results ob-
tained from our analysis. In Sec. IV, we end the paper by
summarizing  the  main  conclusions  and  discussing  their
implications for future research in this area. 
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II.  MIParT MODEL ARCHITECTURE

Traditional  deep-learning  models  such  as  CNNs  and
RNNs face significant  challenges in representing jets  ef-
fectively. Image representations often struggle with incor-
porating particle identity,  which affects  performance im-
provement  [10].  Similarly,  sequence  [23]  and  tree  [25]
representations impose artificial ordering on jet particles,
which inherently possess no sequential structure. Consid-
ering  a  jet  as  an  unordered  collection  of  its  constituent
particles  leads  to  a  more  natural  representation.  This
format not only facilitates the inclusion of particle-specif-
ic  features,  but  also  guarantees  permutation  invariance.
Among  models  that  adopt  this  perspective,  ParticleNet
describes  jets  as  "particle  clouds",  similar  to  the  point
cloud technique for 3D shape analysis in computer vision.
ParticleNet uses the DGCNN architecture, with its Edge-
Conv operations effectively using the local  spatial  struc-
tures of  particle  clouds  to  achieve  notably  higher  per-
formance.

ParT, a transformative variant based on the Class-At-
tention  in  Image  Transformers  (CaiT)  framework  [38],
integrates interaction variables as a secondary input. The
self-attention mechanism of this architecture uniquely ad-
dresses all positions within the input sequence, capturing
extensive range dependencies efficiently and maintaining
invariance  to  particle  order.  By  refining  the  Multi-Head
Attention (MHA) mechanism to include jet-particle inter-

action  variables,  ParT  not  only  outperforms  traditional
transformer models, but also sets a new benchmark in jet
tagging. These  modifications  position  ParT  as  the  lead-
ing model in jet tagging.

Based on the ParT framework, we developed MIParT
to  enhance  the  input  of  interaction  data,  as  depicted  in
Fig. 1. MIParT adopts the input formats of ParT and pro-
cesses jet data with two distinct inputs:
 

x1● Particle  Input :  It  comprises  a  list  of C features
per particle, arranged into an array of shape (N,C), where
N represents the number of particles within a jet.
 

U1 C′● Interaction Input : It includes a matrix of  fea-
tures for each particle pair, formatted as an array of shape
(N, N, C').
 

D1

x1 (N,D1)

U1 (N,N,D1)
x1

x2 U1

U2

(N,N,D2)

The particle input is first transformed by a Multilayer
Perceptron  (MLP)  to  project  feature  dimensions  to ,
resulting  in  an  array  with  dimensions . Simil-
arly, the interaction input undergoes pointwise 1D convo-
lution processing, yielding  with dimensions ;

 then passes through K MI-Particle Attention Blocks to
generate  of  the same shape.  In each block,  serves
as an additional input and is dimensionally reduced by a
pointwise  1D  convolution  to ,  having  dimensions

.

 

x1

U1

U2

xclass x3

Fig. 1.    (color online) Schematic of the More-Interaction Particle Transformer (MIParT) architecture. The particle features  are pro-
cessed sequentially through K MI particle attention blocks and L particle attention blocks. The interaction features  are first fed to K
MI  particle  attention  blocks,  then  dimensionally  reduced  by  a  1D  pointwise  convolution  to ,  and  then  fed  to L particle  attention
blocks. The MIParT architecture ends with the application of the Class-Attention in Image Transformers (CaiT) methodology, which
uses a class token  to systematically extract and summarize information from  in the class attention blocks.
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x2

U2 x3

xclass

x3

Following  the  structural  framework  of  ParT,  pro-
gresses  through L Particle  Attention  Blocks,  enhancing
with  at each layer, to produce . Subsequently, using
the CaiT methodology, a class token  is used to sys-
tematically extract and summarize information from  in
the class  attention  blocks.  Finally,  this  summarized  in-
formation forms a single vector that constitutes the input
of a linear classifier through an MLP and a softmax func-
tion to derive the classification scores. 

A.    Particle Attention Block
The Particle Attention Block, a crucial element of the

ParT framework, was seamlessly integrated into our MI-
ParT model. The architecture of this block is based on the
NormFormer  design  [39], specifically  using  Layer  Nor-
malization instead  of  Batch  Normalization.  Layer  Nor-
malization optimizes normalization by adjusting each lay-
er individually for every single sample, enhancing model
stability and overall performance across diverse datasets.
The architecture of the Particle Attention Block is shown
in Fig. 2. Furthermore, in this configuration, the tradition-
al  Multi-Head  Attention  (MHA)  is  substituted  by
Particle-Multi-Head  Attention  (P-MHA). This  modifica-
tion  allows  for  the  incorporation  of  particle  interaction
features  directly  into  the  attention  mechanism,  enriching
the  capability  of  the  model  to  capture  complex  particle

dynamics.  The  P-MHA  mechanism,  which  is  key  to  the
Particle Attention Block, is mathematically expressed as 

P-MHA(Q,K,V) = SoftMax
Å

QKT

√
dk
+U
ã

V, (1)

where Q, K,  and V are  the  linear  projections  of  the
particle  embedding x,  and U represents  the  interaction
embedding.  The  dimensions  of U are  precisely  aligned
with the attention heads in the MHA mechanism, thereby
facilitating the integration of particle interaction features.
The specific  implementation of  P-MHA can be found in
Ref. [36]. This integration significantly enhances the abil-
ity of the model to capture complex particle interactions,
which is crucial in particle physics applications. 

B.    MI-Particle Attention Block
In  the  original  P-MHA mechanism,  the  feature  di-

mensions of U align one-to-one with the heads of MHA,
both denoted as C. Increasing the feature dimensions of U
necessitates a  proportional  increase  in  the  number  of  at-
tention heads, which significantly increases the complex-
ity  of  the  model.  To  mitigate  this  issue,  we  introduce
More-Interaction  Attention  (MIA)  and  the  MI-Particle
Attention Block. These components replace P-MHA with
MIA,  as  shown  in Fig.  2 (MIA  architecture)  and Fig.  3
(MI-Particle Attention Block/Particle Attention Block ar-
chitecture).  The  MI-Particle Attention  Block  incorpor-
ates  Layer  Normalization  and  the  Gaussian  Error  Linear
Unit (GELU) activation function. When the red block in-
Fig.  3 uses  MIA,  it  forms  the  MI-Particle  Attention
Block.  Conversely,  when  it  uses  P-MHA,  it  forms  the
Particle Attention Block. This approach allows the model
to effectively use interaction inputs  without  significantly
increasing  complexity.  The  MIA  is  calculated  using  the
following formula: 

MIA(U,V) = SoftMax(U)V, (2)

where V is a linear projection of the particle embedding x.
In  MIA,  each  feature  dimension  of U and x,  as  well  as
each head,  are  denoted by C,  ensuring a  one-to-one cor-
respondence.

By  increasing  the  feature  dimensions  of U, MIA  ef-
fectively exploits  the  interaction  inputs  without  signific-
antly increasing the complexity of  the model.  Moreover,
the MI-Particle Attention Block, which incorporates self-
attention  on x,  acts  as  a  supplement  in  front  of  the
Particle Attention Block rather than as a replacement. 

C.    Class Attention Block

xclass

We incorporated  the  Class  Attention  Block  from the
ParT framework,  inspired  by the  CaiT architecture.  This
block  uses  a  class  token  to efficiently  extract  in-

 

Fig. 2.    (color online) Schematic of the More-Interaction At-
tention (MIA) architecture. The shape of U is (N, N, C), while
both the input x and output x' have a shape (N, C). MIA main-
tains a one-to-one correspondence between the feature dimen-
sions of U, x, and the heads of MHA C.
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formation  through  attention  mechanisms,  as  depicted  in
Fig.  4.  The  Multi-Head  Attention  inputs  are  defined  as
follows: 

Q =Wqxclass+bq, (3)

 

K =Wk z+bk, (4)

 

V =Wv z+bv, (5)

z = [xclass, x]

z

where , and W and b represent learnable para-
meters. This design ensures a lower computational  over-
head for the Class Attention mechanism by using the con-
catenated vector .

The Class Attention Block significantly enhances fea-
ture  extraction  from  the  input x by  capitalizing  on  the
class token, thereby improving the focus of the model on
essential aspects  of  the  data.  This  enhancement  also  im-
proves jet  classification  performance  significantly,  mak-
ing the Class Attention Block a crucial component within
the ParT framework. 

D.    Implementation

x1

D1 = 64

The architecture of our MIParT model includes K = 5
MI-particle  attention  blocks, L =  5  particle  attention
blocks,  and 2 class attention blocks.  The choice of these
hyperparameters  balances  complexity  and  accuracy;  we
observed an increase in accuracy with additional layers at
the  cost  of  increased  complexity.  Therefore,  we  limited
the total number of attention blocks to ten. The rationale
for  choosing  two  class  attention  blocks  is  based  on  the
CaiT framework [38], which recommends such a config-
uration for  efficient  classification.  For  particle  embed-
dings ,  a  three-layer  Multi-Layer  Perceptron (MLP) is
used, with  each  layer  containing  128,  512,  and  64  neur-
ons, respectively.  This  configuration  results  in  embed-
dings  with  a  dimensionality  of .  The  decision  to
reduce  the  embedding  dimension  compared  to  the  ParT
model was motivated by the addition of the MIA module.

 

Fig.  3.    (color online) Schematic  of  the  MI-Particle Atten-
tion  Block  /  Particle  Attention  Block  architecture.  Here,  LN
represents  Layer  Normalization,  and  GELU  represents  the
Gaussian  Error  Linear  Unit  activation  function.  The  block
forms  the  MI-Particle  Attention  Block  when  using  MIA  and
the Particle Attention Block when using P-MHA.

 

Fig.  4.    (color  online)  Schematic  of  the  Class  Attention
Block architecture. Here, LN represents Layer Normalization,
GELU  represents  the  Gaussian  Error  Linear  Unit  activation
function, and MHA stands for Multi-Head Attention block.
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U1

U1

U2

D2 = 8

This adjustment rationalizes the complexity of the model
while  maintaining  its  efficiency,  thus  optimizing  the
trade-off  between  performance  and  computational  load.
Each layer incorporates GELU as the activation function
and Layer Normalization. Additionally, a three-layer, 64-
channel pointwise 1D convolution is used for the interac-
tion embeddings , performing convolutions only along
the  feature  dimension.  The  embeddings  are  further
processed through a single-layer, 8-channel pointwise 1D
convolution to generate , achieving a dimensionality of

. This design choice maintains consistency with the
ParT model,  ensuring  alignment  with  established  archi-
tectural  standards  and  facilitating  comparative  analysis.
The MI-particle attention blocks implement MIA with 64
heads, while the P-MHA and Class Multi-Head Attention
in the particle and class attention blocks use 8 heads each.
A dropout rate of 0.1 is maintained in all MI-particle and
particle  attention  blocks,  with  the  class  attention  blocks
being exempt from dropout.

D1 = 128

For very large datasets, increasing the embedding di-
mension  significantly  enhances  model  performance.
Therefore, for such datasets, we double the dimension of
the  particle  embeddings  to .  This  adjustment  is
straightforward, requiring a change in the neuron config-
uration of the three-layer MLP to 128, 512, and 128. Con-
sequently,  the  dimensions  of x and U in  MIA  will  no
longer be  identical;  however,  this  discrepancy  is  accept-
able as long as the dimension of x is  an integer multiple
of the dimension of U. We refer to this modified model as
MIParT-Large (MIParT-L). 

III.  RESULTS AND DISCUSSION

Weaver
We developed  the  MIParT model  using  the  PyTorch

framework [40]. Its implementation is based on 1),
and is referred to the implementation of ParT2).

We  initially  evaluated  the  MIParT  model  on  two
widely  used  jet  tagging  benchmark  datasets,  namely  the
top tagging [16] and quark-gluon datasets [32]. The mod-
el  was  trained  on  an  NVIDIA  RTX  4090  GPU,  using  a
learning  rate  of  0.001  and  a  batch  size  of  256.  Training
was  limited  to  15  epochs  to  prevent  overfitting.  Both
datasets  incorporate  kinematic  variables  as  particle  input
features, with particle identification information included
only  in  the  quark-gluon  dataset.  All  these  input  features
for the two datasets are shown in Table 1.

We  then  pre-trained our  larger  model  variant,  MI-
ParT-L, on the JetClass dataset containing 100M samples
[36].  This  model  was  pre-trained on dual  NVIDIA RTX
3090  GPUs  using  a  learning  rate  of  0.0008  and  a  batch
size  of  384,  with  pre-training  limited  to  50  epochs  to

avoid overfitting. After pre-training, MIParT-L was fine-
tuned on the top tagging and quark-gluon datasets. Inter-
estingly,  the  pre-training  of  MIParT-L  on  the  JetClass
dataset for the top tagging dataset included only kinemat-
ic  features,  while  for  the  quark-gluon dataset,  both  kin-
ematic and particle identification features were included.

For fine-tuning, we replaced the last  MLP for classi-
fication with a newly initialized MLP having two output
nodes.  All  weights  were then fine-tuned across  the data-
sets for 20 epochs. We used a learning rate of 0.00016 for
the pre-trained weights and 0.008 for the new MLP.

The seven kinematic input features are as follows:
 

∆η η● :  difference  in  pseudorapidity  between  the
particle and jet axis;
 

∆ϕ ϕ● :  difference  in  azimuthal  angle  between  the
particle and jet axis;

 

Table  1.    Summary  of  kinematic  and  particle  identification
variables  included  in  the  top  tagging  (TOP),  quark-gluon
(QG),  and  JetClass  (JC)  datasets.  Variables  present  in  each
dataset are indicated by a star symbol (*).  The table includes
seven kinematic variables describing the physical characterist-
ics of  particles  relative  to  the  jet  axis,  six  particle  identifica-
tion  variables  categorizing  particles  by  type  and  charge,  and
four  trajectory  displacement  features,  which  provide  detailed
information on particle trajectories.

Category Variable TOP QG JC

∆η * * *

∆ϕ * * *

pTlog * * *

Kinematics log E * * *

log pT/pT(jet) * * *

log E/E(jet) * * *

∆R * * *

charge * *

Electron * *

Particle Muon * *

identification Photon * *

Charged Hadron * *

Neutral Hadron * *

tanhd0 *

Trajectory tanhdz *

displacement σd0 *

σdz *
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log pT

pT

● : logarithm  of  the  particle  transverse  mo-
mentum ;
 

log E● : logarithm of the particle energy;
 

log pT/pT(jet) pT

pT

● :  logarithm of  the  particle  relative
to the jet ;
 

log E/E(jet)● : logarithm of the particle energy relat-
ive to the jet energy;
 

∆R● : angular separation between the particle and jet
axis.
 

The six particle identification features are as follows:
 

● "Charge": electric charge of the particle;
 

● "Electron": whether the particle is an electron;
 

● "Muon": whether the particle is a muon;
 

● "Photon": whether the particle is a photon;
 

●  "Charged  Hadron":  whether  the  particle  is  a
charged hadron;
 

● "Neutral  Hadron": whether the particle is  a neutral
hadron.
 

The four  trajectory  displacement  features  in  the  Jet-
Class are as follows:
 

tanhd0● : hyperbolic tangent of the transverse impact
parameter value;
 

tanhdz● : hyperbolic  tangent  of  the  longitudinal  im-
pact parameter value;
 

σd0● : error  of  the  measured transverse  impact  para-
meter;
 

σdz● : error of the measured longitudinal impact para-
meter.
 

(ln∆, lnkT , lnz, lnm2)
p = (E, px, py, pz)

For particle interaction features, we consider four log-
arithmic characteristics  derived from
the  energy-momentum four-vector  [41].
These features are defined as follows: 

∆ =
√

(ya− yb)2+ (ϕa−ϕb)2, (6)

 

kT =min(pT,a, pT,b)∆, (7)
 

z =min(pT,a, pT,b)/(pT,a+ pT,b), (8)

 

m2 = (Ea+Eb)2− |pa+ pb|2 , (9)

yi ϕi pT,i

pi

i = a,b

where  is the rapidity,  is the azimuthal angle,  is
the transverse momentum, and  is the momentum three-
vector  of  the  particle . The  motivation  for  select-
ing these  variables  comes  from  their  widespread  adop-
tion in several advanced neural networks [34, 36].

To  evaluate  the  performance  of  the  MIParT  model,
we conducted comparative evaluations with several popu-
lar  models  using  the  top  tagging  and  quark-gluon data-
sets. Our evaluation focused on several key metrics:
 

● Accuracy: This metric quantifies the proportion of
correct  predictions  made  by  the  model,  including  both
true positive and true negative identifications. Mathemat-
ically, accuracy is defined as follows: 

Accuracy =
T P+T N

T P+T N +FN +FP
, (10)

where TP stands  for  true  positives, TN stands  for  true
negatives, FN stands  for  false  negatives,  and FP stands
for false positives.
 

● AUC (Area Under the Curve): AUC is a compre-
hensive  metric  to  assess  model  performance  across  all
classification thresholds.  This  metric  is  derived from the
Receiver  Operating  Characteristic  (ROC)  curve,  which
represents  the  true  positive  rate  (sensitivity)  against  the
false positive rate (1 - specificity) for various thresholds.
This curve illustrates the trade-off between sensitivity and
specificity.  AUC values  range  from 0.5,  which  indicates
no discriminatory ability (similar to random guessing), to
1.0, which  represents  perfect  discrimination  and  indic-
ates  excellent  ability  of  the  model  to  discriminate
between classes.
 

● Background Rejection  at  a  Certain  Signal  Effi-
ciency, RejX%:  This  metric  calculates  the  inverse  of  the
false  positive  rate  (FPR)  when  the  true  positive  rate
(TPR) is  fixed  at  a  certain  percentage,  commonly  re-
ferred to as RejX%. It is mathematically expressed as fol-
lows: 

RejX% =
1

FPR

∣∣∣∣
TPR=X%

. (11)

For example, a Rej30% value of 2500 indicates that at
a TPR of 30%, the inverse of the FPR is 2500. This im-
plies  a  single  false  positive  per  2500  negative  instances,
highlighting the  exceptional  specificity  and  minimal  er-

Jet tagging with more-interaction particle transformer Chin. Phys. C 49, 013110 (2025)

013110-7



ror rate of the model at this level.

t→ bqq′

Top tagging is  a  critical  task in  jet  tagging,  which is
often used in the search for new physics at the LHC. For
this  study,  we used a  top tagging dataset  [16]  consisting
of  2M  jets,  with  as  the  signal  and q/g as  the
background.  This  dataset  only  provides  the  energy-mo-
mentum  four-vectors  (kinematic  features)  for  each
particle.

Figure 5 shows the performance of our MIParT mod-
el  compared  to  other  popular  models  on  the  top  tagging
dataset.  The MIParT model  achieves  accuracy and AUC
metrics nearly identical  to those of LorentzNet [42],  and

its Rej50% and Rej30% metrics are, within the error range,
comparable to those of LorentzNet.  Note that  a series of
Lorentz-equivariant methods  demonstrate  similar  per-
formance  to  that  of  LorentzNet,  such  as  Clifford  Group
Equivariant  Neural  Networks  (CGENN)  [43], permuta-
tion equivariant  and  Lorentz  invariant  or  covariant  ag-
gregator  network  (PELICAN)  [44],  and  Lorentz-
Equivariant  Geometric  Algebra  Transformers  (L-GATr)
[45].  Moreover,  MIParT,  LorentzNet,  and  several
Lorentz-equivariant based  models  significantly  outper-
form  other  models,  including  Particle  Flow  Network
(PFN) [32], Particle-level Convolutional Neural Network

 

Fig. 5.    (color online) Comparison of MIParT performance metrics with those of other models on the top tagging dataset. This figure
shows  Accuracy,  AUC,  Rej50%,  and  Rej30% metrics  for  the  MIParT  model  alongside  those  of  Particle  Flow  Network  (PFN)  [32],
Particle-level Convolutional Neural Network (P-CNN), Point Cloud Transformer (PCT) [46], Clifford Group Equivariant Neural Net-
works  (CGENN)  [43],  permutation  equivariant  and  Lorentz  invariant  or  covariant  aggregator  network  (PELICAN)  [44],  Lorentz-
Equivariant Geometric Algebra Transformers (L-GATr) [45], LorentzNet [42], and ParticleNet [34], ParT [36]. Metrics of other mod-
els  are  extracted  from  published  results.  Detailed  outcomes  are  provided  in Table  2.  Bars  without  slashes  indicate  original  models
without fine-tuning, while bars with slashes indicate models with fine-tuning. The gray dashed line represents the results for MIParT,
whereas the red dashed line represents the results for fine-tuned MIParT-L (MIParT-L f.t.).
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(P-CNN)  [34],  ParticleNet  [34], Point  Cloud  Trans-
former  (PCT)  [46],  and  ParT  [36],  with  metrics  in  the
comparison  extracted  from  published  results.  For  the
fine-tuned MIParT-L model pre-trained on the 100M Jet-
Class dataset,  a  39%  enhancement  in  background  rejec-
tion performance was achieved, comparable to that of the
fine-tuned ParT.  Detailed  comparison results  are  presen-
ted  in Table  2. The  MIParT  model  significantly  outper-
forms ParT in the top tagging benchmark, with approxim-
ately 25% better background rejection at a 30% signal ef-
ficiency.  Among  evaluated  the  models,  MIParT,  along
with  LorentzNet  and  other  Lorentz-equivariant  based
models,  ranks  at  the  top  tier,  exhibiting  robustness  and
high performance.

Quark-gluon  tagging  is  another  crucial  jet  tagging
task. Unlike the top tagging dataset, the quark-gluon data-
set  [32] includes not  only the kinematic features of  each
particle,  but also particle identification information. This
dataset  allows  for  a  more  detailed  categorization  of
particles, including  specific  distinctions  among  electric-
ally  charged  and  neutral  hadrons,  such  as  pions,  kaons,
and protons. Additionally, similar to the top tagging data-
set, the quark-gluon dataset contains 2M jets, with quarks
and gluons  designated  as  the  signal  and  background,  re-
spectively.

Figure 6 shows the performance of our MIParT mod-
el compared to other popular models on the quark-gluon
dataset. Within  this  dataset,  the  MIParT  model  signific-
antly outperforms  LorentzNet  across  all  metrics,  includ-
ing accuracy,  AUC, Rej50%,  and Rej30%,  as well  as other

models.  Note  that  only  the  ParT  model  approaches  the
performance  of  our  model  in  some  metrics,  but  MIParT
still  maintains  an  overall  lead  over  ParT.  In  comparison
with other models, such as PFN [32], ABCNet [47], and
PCT  [46],  MIParT  demonstrates  a  substantial  lead,  with
metrics  extracted  from  published  results.  For  the  fine-
tuned MIParT-L model pre-trained on the 100M JetClass
dataset, a  6% enhancement  in  background  rejection  per-
formance  is  achieved,  outperforming  fine-tuned  ParT.
Detailed  comparison  results  on  the  quark-gluon  dataset
are  presented  in Table  3. MIParT  achieves  the  best  per-
formance across  all  evaluation  metrics,  improving  back-
ground  rejection  power  by  approximately  3%  compared
to ParT. Simultaneously, the background rejection of the
fine-tuned  MIParT-L model  is  improved  by  approxim-
ately 2% compared to fine-tuned ParT.

Given  that  MIParT  shares  many  components  with
ParT and differs only in the addition of the MIA blocks,
the comparative  results  between  these  two  models  high-
light  the  effectiveness  of  the  MIA  block.  Specifically,
MIParT consists  of  five  MIA blocks,  five  particle  atten-
tion blocks, and two class attention blocks, whereas ParT
consists  of  eight  particle  attention  blocks  and  two  class
attention blocks. Thus, from the results tested on the top
tagging  and  quark-gluon datasets,  it  is  evident  that  MI-
ParT  outperforms  ParT,  stressing  the  significant  role
played by the MIA block. Furthermore, the effectiveness
of the particle attention blocks was already established in
the ParT paper [36], and the impact of the class attention
blocks was tested in the CaiT framework [38].

 

Table  2.    Performance  comparison  of  various  models  on  the  top  tagging  dataset.  This  table  lists  the  results  for  the  MIParT model
alongside  those  of  other  prominent  models  such as  Particle  Flow Network (PFN) ,  Particle-level  Convolutional  Neural  Network (P-
CNN), Point Cloud Transformer (PCT) [46], Clifford Group Equivariant Neural Networks (CGENN) [43], permutation equivariant and
Lorentz invariant or covariant aggregator network (PELICAN) [44], Lorentz-Equivariant Geometric Algebra Transformers (L-GATr)
[45], LorentzNet [42], ParticleNet [34], and ParT [36]. Metrics of other models are extracted from published results. The results for the
fine-tuned version of our model, MIParT-L f.t., are shown at the bottom of the table for comparison with those of the fine-tuned ParT
model, that is, ParT f.t.

Accuracy AUC Rej50% Rej30%

PFN — 0.9819 247±3 888±17

P-CNN 0.930 0.9803 201±4 759±24

PCT 0.940 0.9855 392±7 1533±101

CGENN 0.942 0.9869 500 2172

PELICAN 0.9426 0.9870 — —

L-GATr 0.9417 0.9868 548±26 2148±106

LorentzNet 0.942 0.9868 498±18 2195±173

ParticleNet 0.940 0.9858 397±7 1615±93

ParT 0.940 0.9858 413±16 1602±81

MIParT (ours) 0.942 0.9868 505±8 2010±97

ParT f.t. 0.944 0.9877 691±15 2766±130

MIParT-L f.t. (ours) 0.944 0.9878 640±10 2789±133
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Regarding  the  impact  of  hyperparameter  choices  on
model  performance,  we found that  MIParT is  not  overly
sensitive to  hyperparameter  settings,  but  is  more  influ-
enced  by  the  overall  network  architecture.  In  particular,
increasing the number of  MIA blocks and particle atten-
tion  blocks  generally  leads  to  better  performance  at  the
cost of increased complexity. Architectural modifications
show  that  placing  MIA  blocks  before  particle  attention
blocks is optimal. Placing MIA blocks after particle atten-
tion blocks  or  alternating  them  significantly  reduces  ef-
fectiveness,  sometimes  to  the  point  of  performing worse
than ParT.  We consider  that  MIA blocks  function simil-
arly to embeddings, allowing better integration of interac-
tion  information  into  the  jets  for  improved  information
fusion and classification.

Table  4 presents  the  parameters,  FLOPs  (Floating
Point  Operations  Per  Second),  and  accuracy  of  various
models on the top tagging and quark-gluon datasets. Para-
meters  denote the number of  trainable elements within a
model, which indicates its capacity to learn. Having more
parameters  generally  increases  the  complexity  of  the
model. FLOPs is a metric that measures the computation-
al complexity required to process data through the model.
Reducing  the  number  of  parameters  typically  reduces
FLOPs, simplifying the model and making it  more com-
putationally efficient.

However, reducing  the  number  of  parameters  to  re-
duce FLOPs  usually  results  in  lower  accuracy.  In  con-
trast, our MIParT model has only 30% of the parameters
and  53% of  the  FLOPs  of  the  ParT  model,  significantly

 

Fig. 6.    (color online) Comparison of MIParT performance metrics with those of other models on the quark-gluon dataset. This figure
shows  Accuracy,  AUC,  Rej50%,  and  Rej30% metrics  for  the  MIParT  model  alongside  Particle  Flow  Network  (PFN),  attention-based
Cloud Net (ABCNet) [47], Point Cloud Transformer (PCT) [46], LorentzNet [42], and ParT [36]. Metrics of other models are extrac-
ted from published results. Detailed outcomes are provided in Table 2. Bars without slashes indicate original models without fine-tun-
ing, while bars with slashes indicate models with fine-tuning. The gray dashed line indicates the results for MIParT, whereas the red
dashed line shows the results for fine-tuned MIParT-L (MIParT-L f.t.).
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reducing model complexity. Despite this reduction, there
is no  compromise  in  accuracy;  in  fact,  accuracy  im-
proves on both top tagging and quark-gluon datasets. For
the  fine-tuned  version  of  MIParT-L,  the  parameters  and
FLOPs  are  comparable  to  those  of  the  ParT  model,  but
with a slight improvement in accuracy.

Table  5 presents a  performance  comparison  of  vari-
ous models on different sizes of the JetClass dataset. We
displaced  the  results  for  the  MIParT-L  model  alongside
ParticleNet [34] and ParT [36] across the 2M, 10M, and
100M JetClass  datasets.  Note  that  as  the  dataset  size  in-
creases, the  performance  of  the  models  improves.  Spe-
cifically,  MIParT-L and ParT exhibit  nearly identical  ef-
fectiveness  on  very  large  datasets,  outperforming
ParticleNet.  In addition, our evaluation of models on the
JetClass  dataset  serves  to  test  the  ability  of  MIParT  to
generalize across  different  classification  tasks.  The  Jet-
Class  datasets  represent  a  more  complex  classification
challenge,  aiming  at  identifying  Higgs  boson  decays  to
charm quarks. Our MIParT model shows remarkable sta-
bility on this task, highlighting its generalization capabil-
ities.

Here,  we  discuss  the  improvements  attributed  to  the
pre-training performed on the JetClass dataset,  with sub-

sequent  performance  improvements  observed  on  the  top
tagging and quark-gluon datasets. These three jet tagging
tasks differ  in  their  objectives:  the  JetClass  dataset  fo-
cuses on identifying Lorentz boosted W, Z, Higgs bosons
and  top  quarks,  the  top  tagging  dataset  aims  to  identify
top  quarks,  and  the  quark-gluon dataset  aims  to  distin-
guish  between  quark  and  gluon  jets.  The  improvements
across such diverse tasks suggest that MIParT has learned
more  generalized  jet  properties  during  the  pre-training
phase. These characteristics are effectively transferable to
other  tasks,  demonstrating  the  robustness  of  the  model
and its  adaptability  to  different  jet  identification  chal-
lenges.  This  capability  highlights  the  potential  of  pre-
trained  models  to  improve  performance  in  a  wide  range
of applications  by  capturing  and  exploiting  general  fea-
tures applicable to multiple scenarios.

Regarding the interpretability of MIParT, it is import-
ant to  acknowledge  that,  as  a  model  based  on  a  trans-
former-based neural network architecture, its interpretab-
ility  remains  limited,  similar  to  many  neural  networks
currently in use. Despite these interpretability challenges,
the  CMS  collaboration  has  successfully  used  the  graph
neural network ParticleNet [34], another model that lacks
full  interpretability,  to  search  for  Higgs  boson  decay  to

 

Table 3.    Performance comparison of  various models  on the quark-gluon dataset.  This  table lists  the results  for  the MIParT model
along with other significant models, including Particle Flow Network (PFN) , attention-based Cloud Net (ABCNet) [47], Point Cloud
Transformer (PCT) [46], LorentzNet [42], and ParT [36]. Metrics of other models are extracted from published results. The fine-tuned
version of our model, MIParT-L f.t., is shown at the bottom of the table for comparison with the fine-tuned ParT model, that is, ParT
f.t.

Accuracy AUC Rej50% Rej30%

PFN — 0.9052 37.4±0.7 —

ABCNet 0.840 0.9126 42.6±0.4 118.4±1.5

PCT 0.841 0.9140 43.2±0.7 118.0±2.2

LorentzNet 0.844 0.9156 42.4±0.4 110.2±1.3

ParT 0.849 0.9203 47.9±0.5 129.5±0.9

MIParT (ours) 0.851 0.9215 49.3±0.4 133.9±1.4

ParT f.t. 0.852 0.9230 50.6±0.2 138.7±1.3

MIParT-L f.t. (ours) 0.853 0.9237 51.9±0.5 141.4±1.5

 

Table 4.    Parameters, FLOPs, and accuracy for various models on the top tagging (TOP) and quark-gluon (QG) datasets. Parameters
refer to the number of trainable elements within a model, while FLOPs (Floating Point Operations Per Second) is a metric that meas-
ures the computational complexity involved in processing data through the model.

TOP QG Params FLOPs

PFN — 86.1k 4.62M

P-CNN 0.930 — 354k 15.5M

ParticleNet 0.940 — 370k 540M

ParT 0.940 0.849 2.14M 340M

MIParT (ours) 0.942 0.851 720.9k 180M

MIParT-L f.t. (ours) 0.944 0.853 2.38M 368M
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charm quarks [48]. This success underscores that the lack
of interpretability does not prevent the use of neural net-
work  models  in  particle  physics  experiments.  In  fact,
ParticleNet, which functions as a non-interpretable "black
box" model, is playing a significant role in particle exper-
iments, demonstrating that the non-interpretable nature of
these models should not be a barrier to their use in advan-
cing scientific discovery. 

IV.  CONCLUSIONS

In  this  paper,  we  propose  a  novel  deep-learning ap-
proach for jet tagging called MIParT that increases the di-
mensionality  of  particle  interaction  embeddings  through
More-Interaction  Attention  (MIA)  to  better  exploit
particle  interaction  inputs.  We  tested  our  model  on  two
popular datasets and compared it with other models:
 

● On the Top Tagging Dataset: The MIParT model
achieves  accuracy  and  AUC  metrics  nearly  identical  to
those  of  LorentzNet,  and  its  Rej50% and  Rej30% metrics
are  comparable  within  the  error  range  to  LorentzNet.
Moreover,  a  series  of  Lorentz-equivariant  methods
demonstrate  similar  performance  to  that  of  LorentzNet.
The MIParT model significantly outperforms ParT in the
top  tagging  benchmark,  achieving  approximately  25%
better  background  rejection  at  a  30%  signal  efficiency.
Among  the  models  evaluated,  MIParT,  along  with
LorentzNet  and  other  Lorentz-equivariant-based  models,
ranks  at  the  top  tier,  consistently  delivering  top-tier per-
formance  and  robustness.  For  the  fine-tuned  MIParT-L
model  pre-trained  on  the  100M  JetClass  dataset,  a  39%
enhancement  in  background  rejection  performance  is
achieved, comparable to that of fine-tuned ParT.
 

● On the Quark-gluon Dataset: The MIParT model

significantly  outperforms  LorentzNet  across  all  metrics,
including accuracy, AUC, Rej50%,  and Rej30%,  as well as
other  models.  MIParT  achieves  the  best  performance
across all  evaluation  metrics,  improving  background  re-
jection  power  by  approximately  3%  compared  to  ParT.
For  the  fine-tuned  MIParT-L model,  background  rejec-
tion  performance  improves  by  6%,  outperforming  fine-
tuned  ParT.  Specifically,  the  background  rejection  of
fine-tuned MIParT-L improves by an additional 2% com-
pared to that of fine-tuned ParT.
 

Overall,  MIParT  outperforms  ParT  on  both  the  top
and quark-gluon tagging tasks while also exhibiting lower
computational complexity  and  fewer  parameters.  Previ-
ously,  it  was  generally  assumed  that  transformer-based
models  required  large-scale  dataset  pre-training  to
achieve optimal results. Our MIParT model demonstrates
that  with  higher-dimensional particle  interaction  embed-
dings, top-tier performance can be achieved without pre-
training on large datasets, even outperforming ParT.

Furthermore,  given  that  pre-training ParT on  the  lar-
ger  multi-class  JetClass  dataset  and  subsequently  fine-
tuning it on the top tagging dataset can enhance perform-
ance, we applied this approach to MIParT-L in this study.
We  found  that  MIParT-L  can  further  capitalize  on  the
knowledge from large datasets, showing superior capabil-
ities  after  fine-tuning.  Specifically,  it  performs  better  on
the  quark-gluon  dataset  than  fine-tuned  ParT.  Finding
more efficient approaches to fine-tune a base transformer
model  will  be  especially  helpful  for  future  experiments
when  generic  and  foundation  models  are  deployed,  and
downstream application  tasks  are  varied.  Moreover,  MI-
ParT is not limited to jet tagging but can also be applied
to event identification, which could be notably helpful in
the search for new physics signals.

 

Table 5.    Performance comparison of various models on different sizes of the JetClass dataset. This table lists the results for the MI-
ParT-L model alongside ParticleNet [34] and ParT [36] across 2M, 10M, and 100M JetClass datasets. Metrics of other models are ex-
tracted from published results. Models trained using the full 100M training dataset are highlighted in bold text.

All classes H→ bb̄ H→ cc̄ H→ gg H→ 4q H→ ℓνqq′ t→ bqq′ t→ bℓν W → qq′ Z→ qq′

Accuracy AUC Rej50% Rej50% Rej50% Rej50% Rej99% Rej50% Rej99.5% Rej50% Rej50%

ParticleNet (2 M) 0.828 0.9820 5540 1681 90 662 1654 4049 4673 260 215

ParticleNet (10 M) 0.837 0.9837 5848 2070 96 770 2350 5495 6803 307 253

ParticleNet (100 M) 0.844 0.9849 7634 2475 104 954 3339 10526 11173 347 283

ParT (2 M) 0.836 0.9834 5587 1982 93 761 1609 6061 4474 307 236

ParT (10 M) 0.850 0.9860 8734 3040 110 1274 3257 12579 8969 431 324

ParT (100 M) 0.861 0.9877 10638 4149 123 1864 5479 32787 15873 543 402

MIParT-L (2 M) 0.837 0.9836 5495 1940 95 819 1778 6192 4515 311 242

MIParT-L (10 M) 0.850 0.9861 8000 3003 112 1281 3650 16529 9852 440 336

MIParT-L (100 M) 0.861 0.9878 10753 4202 123 1927 5450 31250 16807 542 402
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