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Abstract: The relativistic Hartree-Bogoliubov (RHB) theory is a powerful tool for describing exotic nuclei near

drip lines. The key technique is to solve the RHB equation in the coordinate space to obtain the quasi-particle states.

In this paper, we solve the RHB equation with the Woods-Saxon-type mean-field and Delta-type pairing-field poten-

tials by using the finite-difference method (FDM). We inevitably obtain spurious states when using the common

symmetric central difference formula (CDF) to construct the Hamiltonian matrix, which is similar to the problem

resulting from solving the Dirac equation with the same method. This problem is solved by using the asymmetric

difference formula (ADF). In addition, we show that a large enough box is necessary to describe the continuum

quasi-particle states. The canonical states obtained by diagonalizing the density matrix constructed by the quasi-

particle states are not particularly sensitive to the box size. Part of the asymptotic wave functions can be improved by
applying the ADF in the FDM compared to the shooting method with the same box boundary condition.
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I. INTRODUCTION

The neutron- or proton-rich nuclei far away from the
B—stability line found by the newly developed radioact-
ive ion beam facilities and detection techniques show
exotic characteristics, challenging the available nuclear
many-body theories [1]. Given that the Fermi energies of
these nuclei are close to the continuum threshold, the
valence neutrons or protons could be scattered into con-
tinuum states owing to the pairing correlation [2, 3]. A
powerful tool to describe such exotic nuclei is the
Hartree-Fock-Bogoliubov (HFB) theory, which trans-
forms pair-correlated neutrons and protons to independ-
ent quasi-particles (q.p.) [4]. Using the energy-density
functional theory, the Hartree-Fock mean field and pair-
ing field can be solved self-consistently by the HFB equa-
tion. The two-component q.p. wave functions solved by
the HFB equation can properly describe the nucleon
densities including the continuum states. One can also
transform the q.p. states into canonical states, which helps
to understand the single-particle (s.p.) levels with influ-
ence of the pairing correlation. Within both the non-re-
lativistic and relativistic frameworks, this theory has been
widely applied and succeeded in describing exotic nuclei
[5-8].
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The key technique in the HFB theory is to solve the
HFB equation. It is preferable to solve this equation in the
coordinate space because this directly provides the q.p.
wave functions and thus the nucleon densities in the co-
ordinate space. To this end, one can usually employ the
shooting or Numerov [9-17], finite-element [17, 18], fi-
nite-difference [19], Green's function [20-23], Jost func-
tion [24], and Lagrange-mesh [25, 26] methods to solve
the HFB equation in the coordinate space. Given that
exotic nuclei usually have an extensive density distribu-
tion, one has to work with a large coordinate space. Some
proper basis can also be used to solve the HFB equation
[27-34]. In the relativistic Hartree(-Fock)-Bogoliubov
(RH(F)B) theory, the Dirac Woods-Saxon basis is also
helpful to improve the description of the extensive dens-
ity distribution in the coordinate space [35—41]. In partic-
ular, the Dirac Woods-Saxon basis has been applied in
the deformed relativistic Hartree-Bogoliubov theory in
the continuum (DRHBc). With this theory, the large-scale
calculation of the nuclear mass table is currently proceed-
ing and has already obtained fruitful results [42—45].

In the coordinate space, the finite-difference method
(FDM) is a simple and efficient method to solve differen-
tial equations. However, when this method is applied to
solve the Dirac equation, one will inevitably encounter
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the problem of spurious states with the commonly used
symmetric central difference formula (CDF) [46]. This is
also known as the fermion-doubling problem in the lat-
tice quantum chromodynamics (QCD) theory [47, 48].
Recently, this problem was resolved by using the asym-
metric difference formula (ADF) [49, 50]. In this paper,
we use the FDM to solve the relativistic Hartree-Bogoli-
ubov (RHB) equation with given mean field and pairing
field. The problem of spurious states will be described
and resolved by the same technique suggested by Ref.
[50].

This paper is organized as follows. In Sec. II, we
briefly review the RHB equation, and the FDM to solve
this equation with the CDF and ADF. The details of the
mean field and pairing field are also provided in this sec-
tion. In Sec. III, we discuss the calculation results corres-
pondingly. In particular, we show the results calculated
by assuming a constant pairing strength in Subsec. IIL.A,
and those calculated by assuming a Gaussian pairing
strength in Subsec. III.B. A summary is provided in Sec.
IV.

II. THEORETICAL FRAMEWORK

In the Bogoliubov theory, a pair-correlated nuclear
system is described in terms of independent quasi-
particles. The RHB equation in the coordinate space is [9,
10]

for(m ) o) o
A —h+A Yy Yy
where 4 is the s.p. Hamiltonian, A is the pairing potential,
A is the Fermi energy, £ is the q.p. energy, and ¥y and ¢y
are the upper and lower components of the correspond-
ing q.p. wave functions. Note that, for a bound system
(A <0), according to the asymptotic behavior of the wave
functions ¥y and ¢y in Eq. (1), the q.p. states with en-
ergy 0<E <[4 are defined as discrete q.p. states, and
those with energy E > || are continuum g.p. states [4, 9].
In the RHB theory, the Dirac Hamiltonian can be ex-
pressed as

hp(r,x’) = [a-p+V(E)+BM+S@)]6(r-r), (2)

where V(r) and S(r) are the vector and scalar potentials,
respectively. For simplicity, we also consider a J-func-
tion-type pairing potential A as

A(r,r") = Ag(r)S(r —1’). 3)

In the following, we assume spherical symmetry for
the nuclear system. Then, the Dirac spinor wave func-
tions Yy (r) and ¥y (r) can be expressed as

_ 1 GU(r)Qljm _ l GV(r)Q[jm
¢U(r) - r < iFu(r)ijm >’wV(r) B r ( iFV(r)Ql’jm ) ’

4)

where [+/'=2j and /= J_r%, and Qy;, is the spherical

spinor. Then, the RHB equation can be reduced to four
coupled equations for the radial wave functions, namely
GU) FU and Gv, FV [17], as

dF
_TU + X F (V4S5 = )Gy + MGy = EGy
r r
dG
TU + 5Gy = (“V+S +2M+ )Fy + AoFy = EFy
r r
dF '
O p, (V4§ -Gy +AGy = EGy
dr r
d
—% —SGy+(=V+S +2M + )Fy + AFy = EFy
r r
%)

where the mean-field potentials are usually shifted by M
for comparison with non-relativistic results, and
k= (=1)/**1/2(j+1/2). In this paper, to test the validity of
the FDM to solve the RHB equation, we consider the
Woods-Saxon-type potential for V(r) and S (r),

+

VLS = ©)

-0
l+e™=

where the parameters Vj = -78.43 MeV, rj =4.049 fm,
at=0.9254 fm, and V; =787.70 MeV, r; =4.048 fm,
a” =0.6523 fm are fitted to the neutron mean-field poten-
tial obtained by the self-consistent DRHBc calculation for
Ca [42]. The Fermi energy in Eq. (5) takes the value
A=-4.00 MeV, read from the self-consistent result for
neutrons in *°Ca. The pairing strength Ay(r) is studied ac-
cording to the two following cases:

Case 1, constant pairing strength : Ay(r) = d, (7)
Case 2, Gaussian pairing strength : Ay(r) = doefxo(%)z, ®)

where dy =2 MeV, x,=5, and r,=1.24'3 fm, and 4 is
the total mass number of the nucleus. In the following,
we proceed with a one-step calculation to solve the RHB
equation (Eq. (5)) with the above model potentials by us-
ing the FDM and shooting method [17] for comparison.
Once the validity of the FDM is demonstrated, it can be
used in the self-consistent RHB calculation and extended
to study realistic drip-line nucleus in the near future.

In the FDM, the first-order derivative of a given func-
tion f(r) can be approximated by a numerical differential
formula on the equal interval lattices. The commonly
used symmetric central difference formulas (CDFs) are
the 3-point (3PCDF) and 5-point (SPCDF) formulas,
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df(r) _ for+hy - fr=h)

2
dr 2h + 00, ©)
d Q(rr) _ —fr+2m) +8f(r+ 3;8 S+ f=2m) o
(10)

where £ is the lattice interval. Besides, one can also use
an asymmetric difference formula (ADF), such as the for-

df(r)  =25f(r)+48f(r+h)—36f(r+2h)+16f(r+3h) =3 f(r+4h)

ward or backward 3-point ADF (3PADF),

df(r) _ =3f(n+4f(r+h)— f(r+2h)

dr 12h

df(r)  25f(r)—48f(r—h)+36f(r—2h)—16f(r—3h)+3 f(r—4h)

o o +0(h%),  (11)
dJ‘;(rr) _ 3f(r)—4f(r;hh)+f(r—2h) OUR).  (12)
and those of the 5-point ADF (5SPADF),
+0(h"), (13)
+0(h*). (14)

dr 12h

With these differential formulas, the RHB equation
(Eq. (5)) can be expressed as a matrix in the coordinate
space,

A B D 0 Gy

B, C 0 D Fy
0 -A -B Gy

0 -B, -C Fy
Gy Gy
F F

= H,, v = E I (15)

Gy Gy
Fy Fy

where Gy (Fy), and Gy (Fy) are vectors of large (small)
components of q.p. wave functions ¢, and ¢y, respect-
ively. The matrix elements in 4, By, B,, and C are almost
the same as those resulting from solving the Dirac equa-
tion in Ref. [50], except that the Fermi energy —2 is ad-
ded in the diagonal elements of 4 and C. Using the J-
function-type pairing potential in Eq. (3), the matrix D is
also diagonal with the elements A;. Once the matrix Hy,
in Eq. (15) is diagonalized, one can obtain the eigenval-
ues of the q.p. energies £ and the corresponding wave
functions Gy, Fy, Gy, and Fy in the coordinate space. In
the following calculations, we set the box sizes in the co-
ordinate space as Ryox =20 fm and Ry =40 fm with lat-
tice interval dr=h=0.1 fm. This Ilattice interval is
checked to provide precise enough results for the follow-
ing discussion. Furthermore, we assume the same bound-
ary condition for the wave functions as that in Ref. [50],
i.e., f(r)=0 for r =0 and outside the box r > Ry,,. Here,

f(r) denotes the radial wave functions Gy (Fy) and
Gy (Fy) in Egs. (4) and (5).

It is evident that by using the different differential for-
mula in Egs. (9)—(14), the matrix form of H,, will be dif-
ferent. According to Refs. [46, 49, 50], by using CDFs
such as Egs. (9) and (10), one will inevitably encounter
the problem of spurious states when solving the Dirac
equation, given that the information of the wave func-
tions at the middle point f(r) is missing when calculating
the first-order derivatives. This problem can be com-
pletely resolved by using ADFs such as Egs. (11)—(14).
However, note that the same ADF for both the large G(r)
and small F(r) components of Dirac wave functions may
lead to a non-Hermitian matrix of the Dirac Hamiltonian.
To solve this problem, Ref. [50] pointed out that one
should use the forward or backward ADF alternatively
for G(r) and F(r) according to their different parities.
This prescription can not only guarantee the Hermiticity
of the Dirac Hamiltonian, but also include the full wave
function information while doing the first-order derivat-
ives, thereby eliminating the spurious states completely.

In the following, we use the CDFs in Egs. (9)—(10)
and ADFs in Egs. (11)—(14) to establish the q.p. Hamilto-
nian H,, and obtain the q.p. eigenstates. First, we check
whether spurious states appear in the q.p. states and
whether the prescription pointed in Ref. [50] is helpful to
resolve the spurious q.p. state problem.

III. RESULTS AND DISCUSSION

A. Constant pairing strength

For the pairing field potential with constant pairing
strength Ay, it can be proved that the solution of the q.p.
energy for the RHB equation (Eq. (5)) can be expressed
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as [4]

E= /(6= A2 +A2, (16)

with the corresponding wave functions

Gy _ G (17)
Fy =C F 5
Gy B G

(7)-=(7)

where the s.p. energy ¢, and the corresponding wave
functions G and F, are the solutions of the Dirac equa-
tion with the same mean-field potentials /" and S,

d

K
2 S
+ Pl <G>_8<G> (19)
k d F | F |
Sv= v-s-2Mm
r dr

The coefficients ¢; and ¢, can be calculated as

, 1 e—A

a==z|1+ —== .,
2 V(=2 +A]
1 e—A

2=-(1-——22 ).
2 V(€= D)2+ A}

Therefore, we can use the above solutions as a bench-
mark to check the validity of the FDM to solve the RHB
equation.

The results for the q.p. energy E, and the correspond-
ing occupation probabilities [17]

(20)

Table 1.

V= /47rr2(G%/ +Fi)dr 2n

of the neutrons for x = -1 (s1,) and k = +1 (p;) in *°Ca,
calculated by the FDM using the 3PCDF, 5PCDF,
3PADF, and SPADF to establish the q.p. Hamiltonian
Hg, in the box Rpox = 20 fm with constant pairing strength
are listed in Table 1. For comparison, the results calcu-
lated by the shooting method [17] are also listed in this
table.

Taking the results obtained by 3PCDF in Table 1 as
examples, one can clearly see that the energies and occu-
pation probabilities of the q.p. states for x=-1 and
k= +1 are exactly the same. To find out the reason, we
present their corresponding wave functions in Fig. 1. Giv-
en that the Gy (Fy) and Gy (Fy) components of the wave
functions differ by factors ¢; and ¢, respectively, as ex-
pected from Egs. (17) and (18), here we only show the
Gy (Fy) components of the wave functions. Figs. 1 (a)
and (b) show the wave functions of the first q.p. state
solutions for x=-1 and «=+1, respectively, with the
same q.p. energy E =49.481 MeV. Note that the wave
functions in Fig. 1 (a) with x=-1 are normal, which
proves that this state is the physical q.p. state. The one
peak structure shows that this q.p. state corresponds to the
Lsi» s.p. state owing to the Bogoliubov transformation.
However, in Fig. 1 (b), for « = +1, the rapidly oscillating
wave functions on neighboring lattices definitely show
that this is a spurious q.p. state. Note also that half of the
envelope of these oscillating wave functions is identical
to that of the physical state. Similarly, we can find the
wave functions of physical q.p. states corresponding to
the s.p. states 1py,,, 251, and 2p;,, in Figs. 1 (d), (e) and
(h), and the spurious states in Fig. 1 (c), (f), and (g), re-
spectively. All the spurious states are marked in boxes in
Table 1.

Figure 1 shows that the physical and spurious states
with degenerate energies appear alternatively in x = —1

Values of q.p. energy E and corresponding occupation probability +? in the brackets below for the neutrons in **Ca with

k=-1 (s172) and k= +1 (p1,2) calculated with constant pairing strength by using the FDM with different differential formulas and the

shooting method in the box Ryox =20 fm. The spurious q.p. states are marked by boxes. The unit of the energy values is MeV.

3PCDF SPCDF 3PADF SPADF Shooting
k=-1 k=1 k=-1 k=1 k=-1 k=1 k=-1 k=1 k=-1 k=1
49.481 49.481 49.466 44.761 49.436 49.466 49.466
(0.9996) (0.9996) (0.9996) (0.9995) (0.9996) (0.9996) (0.9996)
30.446 30.446 30.401 30.309 30.400 30.400
(0.9989) (0.9989) (0.9989) (0.9989) (0.9989) (0.9989)
14.968 14.968 14.896 14.732 14.892 14.890
(0.9955) (0.9955) (0.9955) (0.9954) (0.9955) (0.9954)
2.343 2.343 14.645 2.302 2.226 2.302 2.301
(0.7606) (0.7606) (0.9953) (0.7475) (0.7197) (0.7476) (0.7473)
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Kk=-1

k=1

E

Wave Function

Wave Function

E=30.446 MeV

2

””I:::(C?_%E

Si/2

::::I:::(d.)_;

E=14.968 MeV

Wave Function

Wave Function

r[fm]

(color online) Gy and Fy components of q.p. wave functions of neutrons in **Ca for the states with x= -1 in (a) (c) (e) (g) and

Fig. 1.

r[fm]

«x=11n (b) (d) (f) (h), obtained by solving the RHB equation with Woods-Saxon-type mean-field and constant-pairing-strength poten-
tials and using the FDM with the 3PCDF. The unit of the wave functions is fm™.

and x = +1, solved by the FDM with the 3PCDF for the
RHB equation. This is similar to the the solutions of the
s.p. states in the Dirac equation solved with the same
methods [50]. Note also that the 3PCDF in Eq. (9) in-
cludes the information of the wave functions at f(r—h)
and f(r+h), but not at the middle point f(r). This leads
to a unitary transformation matrix with alternative +1 di-
agonal elements between the Dirac Hamiltonian H, and
H_., which produces energy-degenerate physical and
spurious states. It can be demonstrated that such unitary
transformation still exists between the q.p. Hamiltonian
Hg,, and Hg,_.. According to the benchmark established
by Egs. (16)-(18), the spurious s.p. states in the Dirac
equation are transformed into spurious q.p. states solved
by the same methods for the RHB equation. The number
of spurious q.p. states can be reduced by using the
SPCDF, as shown in Table 1. The energy-degenerate
physical and spurious q.p. states cannot be found because
the unitary transformation matrix mentioned above disap-

pears when the Hamiltonian matrix is established using
the SPCDF. However, the spurious states still exist, giv-
en that the information of the wave functions at the
middle point to calculate the first-order derivative is still
missing.

To remove the problem of spurious states completely
in the Dirac equation, Ref. [50] proposed to use the ADF
by including critical information of the wave functions at
the middle point to construct the Dirac Hamiltonian. Fol-
lowing this prescription, we used the 3PADF and SPADF
to construct the q.p. Hamiltonian H,. The results are lis-
ted in Table 1. Note that all the spurious q.p. states disap-
pear. In particular, the SPADF produces results closer to
those given by the shooting method. This demonstrates
that the SPADF can provide results with higher precision
than those from the 3PADF. Furthermore, we checked
that all the physical q.p. states obtained by the FDM are
identical to those from the benchmarks established by
Egs. (16)—(18), transformed from the s.p. states obtained
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by the same FDM.

B. Gaussian pairing strength

1. Quasi-particle states

In the previous subsection, the case of constant pair-
ing strength is simple because the RHB equation can be
decoupled into the Dirac equation. In this section, we dis-
cuss the case of Gaussian pairing strength (Eq. (8)) with
the peak near the nucleus surface. In this case, we
checked that the FDM with the CDF also lead to spuri-
ous q.p. states. In the following, to remove these spuri-
ous states, we use the SPADF in the FDM with higher
precision and compare with the results obtained by the
shooting method.

In Table 2, we list the values of q.p. energies £ with
the corresponding occupation probabilities v? in brackets
for neutrons with k=—1 and « = +1 in *°Ca obtained by
the FDM with the SPADF and the shooting method in the
boxes Rpox =20 fm and Ry, =40 fm. First, for the states
with « = —1, one can find that all the results for the largest
g.p- energy of 49.435 MeV provided by the different
methods in box sizes Ry =20, 40 fm are exactly the
same. Besides, the occupation probability of this state is
almost one. It can be inferred from the approximate rela-
tion between q.p. and s.p. energies (Eq. (16)) that this
state with the largest q.p. energy should correspond to the
most deeply bound s.p. state 1s;,.

Taking the FDM results for x = —1 calculated in the
box Rpox =20 fm as examples, one can find two nearly
degenerate states with q.p. energies of 14.945 MeV
(v* =0.6441) and 14.539 MeV (v* =0.3517) and compar-
able occupation probabilities v?. Similar nearly degener-
ate states at 14.972 MeV (v* =0.5618) and 14.579 MeV
(v* =0.4339) are also obtained by the shooting method.

Table 2.

Although the q.p. energies obtained by both methods are
close to each other, their occupation probabilities v are
clearly different. Therefore, we plot the wave functions of
Gy, Fy, Gy, and Fy in Figs. 2 (a) and (c) for the state of
14.945 MeV (v* =0.6441) obtained by the FDM and
14.972 MeV (v* = 0.5618) obtained by the shooting meth-
od in the box Ry, =20 fm. The wave functions of the
close states with q.p. energies of 14.539 MeV obtained by
the FDM and 14.579 MeV by the shooting method are
similar to those in Figs. 2 (a) and (c), respectively; they
are not shown for simplicity. As mentioned before, given
that this state has a q.p. energy of E ~ 15 MeV, which is
larger than the Fermi energy || = 4.00 MeV, it should be
a continuum q.p. state. Their wave functions Gy and Fy
must be oscillating, and Gy and Fy, must have exponen-
tial decaying asymptotic behaviors, as clearly shown in
Figs. 2 (a) and (c). Besides, the large component of the
wave functions Gy with one node shows that this q.p.
state must correspond to the 25/, s.p. state. Note that al-
though the q.p. energies of this state obtained by the
FDM and shooting method are close, their wave func-
tions are clearly different. Note also that within the box
Ruox =20 fm, a smaller lattice interval, such as dr =0.05
fm, can provide more consistent wave functions for simil-
ar qg.p. energy states resulting from the SPADF and the
shooting method. Here, we show the results for dr = 0.1
fm as an example. Additionally, in the inset of Fig. 2 (e),
we enlarge the component of Gy obtained by both meth-
ods within the same region, r =15 to 20 fm, in a logar-
ithmic scale. Their asymptotic wave functions are ex-
actly the same, forced to be zero at the boundary of the
box. Despite this, other parts of their wave functions not-
ably differ, as shown in Fig. 2 (c). This is owing to the
different components Gy, given that the four compon-
ents together should be normalized to one.

When we calculate with a larger box size Ry =40

Values of q.p. energies E and canonical energies s, with the corresponding occupation probabilities v? in the brackets for

neutrons in *°Ca with x = -1 and « = +1 calculated with Gaussian pairing strength by using the FDM with the 5SPADF and the shooting
method in the boxes Rpox =20 fm and Ryox = 40 fm. The unit of the energy values is MeV.

k=-1

SPADF (20 fm)

Shooting (20 fm) SPADF (40 fm)

Shooting (40 fim)

E

Ecan

E Ecan E Ecan

E Ecan

49.435 (0.9998)

—52.086 (1.0000)

49.435 (0.9998) —52.023 (1.0000)  49.435 (0.9997) —52.012 (1.0000)

49.435 (0.9997) —51.944 (1.0000)

14.945 (0.6441) —20.097 (0.9980)  14.972 (0.5618) —20.048 (0.9980)  14.791 (0.9699) —20.169 (0.9980)  14.790 (0.9708) —20.110 (0.9980)
14.539 (0.3517) 14.579 (0.4339) 15.797 (0.0188) 15.829 (0.0177)
k=1
SPADF (20 fm) Shooting (20 fm) SPADF (40 fm) Shooting (40 fm)
E Eoan E Eean E Eean E Eean
30.382 (0.9856) —34.309 (0.9997)  30.363 (0.9961) —34.254(0.9997)  30.370(0.9920) —34.309 (0.9997)  30.348 (0.9610) —34.246 (0.9997)
29.054 (0.0131) 33.328 (0.0021) 28.887 (0.0049) 30.868 (0.0363)

1.650 (0.8374)

~5.162 (0.8406)

1.649 (0.8372)  —5.106 (0.8403) 1.650 (0.8375)  —5.161 (0.8406)

1.649 (0.8372)  —5.097 (0.8403)
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Fig. 2.

(color online) Representation of the q.p. wave functions for the components Gy, Fy in (a) (b), and Gy, Fy in (c) (d) of neut-

rons in *°Ca for the 251/, state calculated with Gaussian pairing strength by the FDM with the SPADF (solid and dash-dotted lines) and
the shooting method (dashed and dotted lines) in the boxes (a) (¢) Rpox =20 fm and (b) (d) Ruox =40 fm. The insets (e) and (f) show the

asymptotic wave functions of Gy up to r =20 fm. The unit of the wave functions is fm™"“.

fm, the nearly degenerate q.p. states with comparable oc-
cupation probabilities seem to disappear. Explicitly, one
can obtain the states with 14.791 MeV (v* = 0.9699) and
15.797 MeV (v* = 0.0188) from the FDM, and those with
14.790 MeV (v* =0.9708) and 15.829 MeV (v* = 0.0177)
from the shooting method. In particular, the states with
relatively larger occupation probabilities, namely 14.791
MeV (v* =0.9699) obtained from the FDM and 14.790
MeV (v* =0.9708) obtained from the shooting method,
are almost the same for both q.p. energies and occupa-
tion probabilities. In Figs. 2 (b) and (d), we plot their
wave functions. Note that all the components of their
wave functions are almost the same. The asymptotic
wave functions of Gy are also shown in a logarithmic
scale in the inset of Fig. 2 (f). Their asymptotic behaviors
are reasonable at r =20 fm. However, near r =40 fm,
their asymptotic behaviors are similar to those near r = 20
fm calculated in the box Ryox =20 fm in Fig. 2 (e), with
much smaller wave function values. By comparing the
results of the wave functions Gy obtained within
Ryox =20 fm and Ry, =40 fm in Figs. 2 (a) and (b), one

1/2

can clearly see that they significantly differ, in particular
at r~5 fm and r ~20 fm. This demonstrates that a box
size of Ryox = 20 fm is not large enough to describe these
oscillating wave functions. Therefore, a larger box size is
necessary to provide reliable wave functions for con-
tinuum q.p. states, especially for the ¢, components.
Using the model potentials in Eqgs. (6)—(8), we can
only find continuum q.p. states with x=—1. In Table 2,
we also list the results for the states with « = +1. Here,
one can find a discrete q.p. state with an energy of
E ~ 1.65 MeV < |1]=4.00 MeV, and occupation probab-
ility of v* ~ 0.837. For this state, all the calculations from
the FDM and shooting method with boxes Ry, = 20, 40
fm produce almost the same results. We plot their wave
functions in Fig. 3. Note from Figs. 3 (a) and (c) that the
four components Gy, Fy, Gy, and Fy calculated by dif-
ferent methods and different box sizes are exactly the
same. This is because all the components have exponen-
tial decaying asymptotic wave functions, and a box size
of Ryox =20 fm is large enough to describe these wave
functions. From the nodes of the Gy and Gy components,
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we know that this q.p state should correspond to the 2p,,
state near the Fermi energy. In the inset of Figs. 3 (b) and
(d), we enlarge the asymptotic wave functions from
r=15 to 20 fm for the components G, and Gy, respect-
ively. It is interesting to note that, with a smaller box size
Rpox =20 fm, only the shooting method will force these
wave functions to be zero, while the FDM will not. This
seems to be different from the results for the 2s;,, state in
Fig. 2 (e), where the asymptotic wave functions of Gy
components given by both the FDM and shooting meth-
od quickly drop to zero near Ry, =20 fm. Note that the
shooting method uses the same recursion formula for
both the even- and odd-parity wave functions. Mean-
while, the FDM uses the forward (backward) differential
formula in Eq. (13) (Eq. (14)) for the odd(even)-parity
wave functions to simultaneously guarantee the bound-
ary condition at the origin and the Hermiticity of the
Hamiltonian matrix [50]. The G component of the s,
state has odd parity, so the forward asymmetric differ-
ence formula at the box boundary Ry, makes the wave
functions quickly drop to zero, given that the boundary
condition requires the wave functions at r > Ry, to be
zero. However, for the G component of the 2p,, state,
the backward differential formula can provide the
smoothly changing wave functions before the box bound-
ary. This is also reported in Ref. [50]. When a box size is
Rypox =40 fm, the shooting method also makes the wave
functions Gy and Gy quickly drop to zero near =40 fm;
however, for this state, the FDM does not.

In Table 2, for « = +1, in addition to the discrete q.p.
state with energy E ~ 1.65 MeV, there are also several
states with energy E ~30 MeV and a large occupation
probability v? > 0.9 resulting from both the FDM and
shooting method with Rye = 20, 40 fm. According to the
aforementioned analysis, we know that these continuum
g.p- states should correspond to the most deeply bound
1pi,, state. Besides, there are some q.p. states nearby
with similar energies and small but non-negligible occu-
pation probabilities. This is similar to the results with
E =~ 15 MeV and non-negligible occupation probabilities
v ~0.02 for k=-1 calculated with Ry, =40 fm. The
wave functions of these 'split' q.p. states also have oscil-
lating ¥y and local ¢, components similar to those
nearby states with v? > 0.9. To understand these states, we
next analyze the canonical states.

2. Canonical states

The canonical states can be obtained by diagonaliz-
ing the density matrix constructed by the q.p. states with
the same x [17]. The canonical s.p. energies &.,, and cor-
responding occupation probabilities v for the two most
deeply bound states are listed in Table 2. For the states
with « = —1, one can see that the results of both the ca-
nonical s.p. energies and occupation probabilities ob-
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Fig. 3. (color online) Representation of the q.p. wave func-

tions for the components Gy, Fy in (a), and Gy, Fy in (c) of
neutrons in *°Ca for the 2p), state calculated with Gaussian
pairing strength by the FDM with the SPADF (solid and dash-
dotted lines) and the shooting method (dashed and dotted
lines) in the boxes Ryox =20 fm and Rpox =40 fm. The insets
(b) and (d) show the asymptotic wave functions of Gy and Gy
up to r =20 fm. The unit of the wave functions is fm™"2

tained by different methods within different boxes are al-
most the same. Note that the really small differences
come from the different q.p. states used to diagonalize the
density matrix. Taking the calculations with the box
Ryox =20 fm as examples, it seems from the occupation
probabilities that the canonical s.p. state 2s;/, 'splits' into
two nearly degenerate q.p. states with £~ 15 MeV and
comparable v?. The similar 'splitting' can be also found in
the results calculated with a larger box Ry =40 fm, al-
though one q.p. state E ~ 14.79 MeV has a much larger
v ~ 0.97, whereas the other one nearby has a much smal-
ler v* ~0.02. For x=+1, one can also find this similar
'splitting' in the q.p. states at E ~ 30 MeV. Therefore, we
know that this 'splitting' is common for the continuum
g.p. states. Although these q.p. states correspond to
deeply bound canonical states, they are transformed to be
g.p. states in the continuum, which are resonant q.p.
states with certain width owing to the pairing correlation.
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With the box boundary condition considered in this study,
the continuum q.p. states are discretized. Then, one can
obtain the 'split' q.p. states around the resonant q.p. states.
To obtain the exact resonant g.p. energy and width, other
techniques should be used to properly consider the con-
tinuum asymptotic boundary condition, such as the
Green's function method [20-23].

Figures 4 (a) and (c) show the wave functions G and
F for the canonical states 2s,,, and 2p;,, obtained from
the FDM and shooting method in the boxes Ry,x =20 fm
and Ry, =40 fm. One can see that the results calculated
by different methods with different boxes are almost the
same. In the insets of Figs. 4 (b) and (d), the asymptotic
behaviors of the large component G obtained by different
calculations are shown in a logarithmic scale. For 2s,,,,
the results obtained by both the FDM and the shooting
method with Ry, =20 fm are forced to be zero near the
box boundary. The results calculated with Ry, =40 fm
have better asymptotic behaviors near r=20 {fm.
However, near r =40 fm, their asymptotic behaviors are
similar to those near r=20 fm calculated in the box
Riox =20 fm, with much smaller wave function values.
For 2p,,,, the asymptotic wave functions provided by the
FDM seem better than those provided by the shooting
method. The reason is the same as that analyzed before
for Fig. 3. By comparing with the q.p. wave functions ob-
tained by different methods and different boxes in Figs. 2
and 3, it can be concluded that, although with a not-large-
enough box, the results of continuum q.p. states may not
be reliable, the canonical states obtained by superposi-
tion of these q.p. states are robust except for the asymp-
totic wave functions.

IV. SUMMARY

In this paper, we solved the RHB equation with the
FDM. To check the feasibility, we compared with the res-
ults obtained by the shooting method. The mean-field po-
tential was set as Woods-Saxon type fitted to the self-
consistent calculations for **Ca. The pairing potential was
taken as a delta-type function with constant and Gaussian
pairing strengths. For the constant pairing strength case,
the RHB equation decouples into the Dirac equation. The
q.p- state solutions of the RHB equation exhibit a simple
relation with the s.p. state solutions of the Dirac equation.
We show that spurious q.p. states are obtained by the
FDM using the symmetric CDF to construct the q.p.
Hamiltonian matrix. This problem is solved by using the
ADF in the FDM. The obtained q.p. state solutions are
checked by the benchmarks related with the s.p. state
solutions. Then, we solved the RHB equation in the case
of Gaussian pairing strength with the shooting method
and the FDM using the ADF. We show that both meth-
ods provide a consistent description for the discrete q.p.
state in a box Ry,x =20 fm. The asymptotic wave func-
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Fig. 4. (color online) Canonical s.p. wave functions of the

components G(r) and F(r) for (a) 2s;,, and (b) 2p,, states cal-
culated with Gaussian pairing strength by the FDM with the
SPADF (solid and dash-dotted lines) and the shooting method
(dashed and dotted lines) in the boxes Rux =20 fm and
Ruox =40 fm. The insets (b) and (d) show the asymptotic wave
functions of G(r) up to r=20 fm. The unit of the wave func-

tions is fm2.

tions of the large components Gy and Gy of the 2p;,
state obtained by the FDM are better than those provided
by the shooting method owing to the ADF. For the con-
tinuum g.p. states, both the FDM and shooting method re-
quire a much larger box Ryx =40 fm to obtain reliable
results. When continuum q.p. states are discretized by the
box boundary condition, there are inevitably 'split' q.p.
states around the resonant q.p. states with similar ener-
gies and fractional occupation probabilities. This is more
evident for those q.p. states near the continuum threshold.
However, these 'split' q.p. states superpose to be one def-
inite canonical s.p. state by diagonalizing the density mat-
rix, which is not particularly sensitive to the box size ex-
cept for its asymptotic wave functions. With a relatively
smaller box Ry, =20 fm, the asymptotic wave functions
of the large components for the canonical states given by
the FDM are the same as those obtained by the shooting
method for the 2s,,, state, but they are better for the 2p,
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state, owing to the ADF used in the FDM. These investig-
ations demonstrate the feasibility of the FDM to solve the

RHB equation, which can be further used to develop fu-
ture self-consistent RHB theories.
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