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Abstract: We estimate the coupling constants and decay widths of the SU(3) partners of the Q(2012) hyperon, as
discovered by the BELLE Collaboration, using the distribution amplitudes of the octet baryons within the light cone
sum rules method. Our study includes a comparison of the obtained results for the relevant decay widths with those
derived within the framework of the flavor SU(3) analysis. We observe a good agreement between the predictions of
both approaches. Moreover, our result on the decay width of QQ — EK is compatible with the existing experimental

result within the uncertainties of the model predictions. These results can provide helpful insights for determining the

nature of the SU(3) partners of the ©(2012) baryon.
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I. INTRODUCTION

In 2018, the BELLE Collaboration made an exciting
announcement regarding the discovery of the (2012)
hyperon. This discovery was based on the Q*~ — =K~
and Q- — Z°K? decay channels, with a measured mass
of m=2012.4+0.7 (stat) £ 0.6 (sys)MeV and decay width
of Ty = 6.4733 (stat) + 1.6(sys)MeV [1]. However, know-
ing only the mass of the state is not sufficient to determ-
ine the quantum numbers of a state. For instance, within
the QCD sum rule method, the mass of the Q(2012) bary-
on is estimated, assuming it to be either the 1P or 25 ex-
citation state [2]. Both assumptions yield the same mass
value, although the estimated residues differ. Thus, addi-
tional physical quantities, such as the decay width, are ne-
cessary to identify the quantum numbers of newly dis-
covered particles.

In a previous study [3], the Q(2012) —» Z°K~ trans-
ition was investigated, and its corresponding decay width
was estimated by considering two possible scenarios for
Q(2012): either a 1P or 2§ state. A comparison of the
total decay widths obtained in this work led to the conclu-

3
sion that Q(2012) is itselfa J* = 5 state. Moreover, pre-
dictions from various theoretical models also converge on

3
the likely quantum numbers /" == for the observed

2
state [4—15].

3
In this study, considering Q(2012) as the J" = 3

state, the strong couplings of the SU(3) partners of this
state are investigated within the framework of light cone
sum rules (LCSRs) using the distribution amplitudes
(DAs) of the octet baryon. Note that this problem was
also investigated in [16] using the flavor SU(3) sym-
metry approach.

The structure of this paper is as follows. Section II in-
troduces the LCSRs for the strong couplings of the trans-

3= 1° )
Section III

ition 5 7>
provides a numerical analysis of the LCSRs, focusing on
the relevant strong couplings. Within this section, we also
present the computed values of the decay widths based on
the obtained coupling constants. Additionally, we com-
pare our results with those obtained using the flavor
SU(3) symmetry method. Finally, our conclusions are
summarized in Section [V.

+ pseudoscalar mesons.

II. LCSRs FOR THE STRONG COUPLINGS OF
THE SU(3) PARTNERS OF Q(2012)
To calculate the strong couplings of SU(3) partners,

3
denoted as 5

troduce the vacuum-to-octet baryon correlation function:

states in the following discussions, we in-
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where 7, represents the interpolating current of the dec-
uplet baryons, J, = 17y,Ysq. is the interpolating current of
the pseudoscalar mesons, and |O(p)) represents the octet
baryon state.

The interpolating current of the decuplet baryons can
be written as

n. = A (417 Cyudh) 45+ (45 Cvudl) 4
+ (@ Cvudh) 45} ®)

where a,b, ¢ are the color indices, C is the charge conjug-
ation operator, and 4 is the normalization factor. The
quark content of the decuplet baryons and the normaliza-
tion factor 4 are presented in Table 1.

To derive the LCSRs for the strong coupling con-
stants, the correlation function is computed in two ways:
in terms of hadrons and in terms of quark-gluon fields
within the deep Euclidean domain. By applying the
quark-hadron duality ansatz, the relevant sum rules can
be derived.

Strong coupling constants appear in the double dis-
persion relation for the correlation function given in Eq.
(1). Hence, to calculate these constants, the double dis-
persion relation for the correlation function must be cal-
culated. The double dispersion relation is obtained via
analytical continuation of the imaginary part of the cor-
responding invariant amplitudes with respect to the vari-
ables p? and ¢? in the spin-3/2 and pseudoscalar meson
channels, respectively.

Before delving into the details of the calculations, it is
important to highlight the following aspect: the interpol-
ating current for the decuplet baryons interaqrts not only

with the ground positive parity states J* = 3

and even with the

, but also

with the negative parity states /" =

2
states J” = ! i
2
Table 1. Quark content of the decuplet baryons and the nor-
malization factor 4.
A q1 q2 q3

AT Vi/3 u u d
T+(3/2) /3 u u s
¥0(3/2) V273 u d s
I (3/2) Vi/3 d d s
=0 (3/2) Vi3 s s u
=(3/2) /3 s s d
Q- 1 N s s

To +eliminate the contributions from unwanted states,
3 1-
JP=z JP =~
> and 5 >
contributions of different Lorentz structures is employed
(for more details about this approach, refer to [17]).
Following the standard procedure, we insert the total

a technique involving the linear

set of baryons with J = 3 into the correlation function

along with the corresponding pseudoscalar mesons. Then,
we obtain

Om')) ('@ P@Iowp))

2 2
m; —p’

(p.) =

=+

X(0IL,(0)IP(q)) » A3)

2 _
mp —¢q

where summation is over positive and negative states, and
myp is the mass of the corresponding pseudoscalar meson
P with momentum ¢. The matrix elements in the above
equation are defined as

(0
(0

<%+<p'>¢><q>\0(p>> = 8+t (Pulp)q" ,

3+
E (P/)> = /1+uu(p’) P

T

3-
3 (p’)> = Aysu,(p'),

un

<%7(p')P(q)‘O(p)> = 8-t (p")ysu(p)q” ,

+

where A, are the residues of the related 5 baryons, g.
+

represents the coupling constants of the J* = 3

with the octet baryons and pseudoscalar mesons, fp is the
decay constant of the pseudoscalar meson and g denotes
its 4-momentum, and u,(p’) and u(p) are the Rarita-
Schwinger and Dirac spinors, respectively. Performing
summation over the spins of the Rarita-Schwinger spinors
using the formula

baryons

’ AN ’ ’ ’ 1
D P ap ) = (B +m) {gw— 3%
200, N PiYa = PoYu

3m? 3m

}, )

and using Egs. (3) and (4), we can obtain an expression
for the correlation function from the hadronic part. It
should be reminded that the interpolating current inter-

1
acts not only with spin 5 states, but also with spin 3

states.
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Using the condition y*n, =0, it can easily be shown
that

(ol 50" ~ [avu—Br} ). ®)

It follows from this equation that any structure con-
taining y, or p;, is "contaminated" by the contributions of

spin E—states. Hence, to remove the contributions of spin

E-states, such structures are all discarded.

Another problem is all Dirac structures not being in-
dependent of each other. To overcome this issue, Dirac
structures must be arranged in a specific order. In this
study, we choose the ordering y, p’ ¢y, .

Keeping this in mind, and using Egs. (3), (4), and (5),
we obtain the correlation function from the phenomenolo-
gical part as follows:

. = A ge(— g +m, +mO)QyCIVfP
- (m? = p?)(mp — %)
A_g(d+m_—mo)q.q, fp
(m? — p?)(my — q?)

u(p)

u(p)+ ..., @)

where myp is the mass of the relevant octet baryon, and
3

m,(m_) is the mass of the spin—i positive (negative) par-
ity baryon. Here, ... indicates the contributions of the ex-
cited states and continuum.

As a final step, we must eliminate the contributions of
e

2 . . . . .

of the invariant functions corresponding to different

Lorentz structures are considered.

We now turn our attention to the calculation of the
correlation function using operator product expansion
(OPE) in the deep Euclidean region for the variables
p?=(p—¢q)* and ¢* < 0. To calculate OPE, the explicit
forms of the interpolating current are placed in the correl-
ator, and possible contractions are performed between
quark fields using Wick's theorem. As an example, for
the correlation function of X°(3/2) — NK, we obtain

states. For this purpose, the linear combinations

2 .
H,uv = \/;/d4xequ€abc(CY#)Ilﬂ(YVYS)po‘
x {0 O ()d5(O)INYS 5, (~)
+ (011t (0)tg ()5 (0)NS g (—20)
OO (DN op(-0 . (®)

where S(—x) is the strange quark propagator. From this
expression, it follows that the OPE results are obtained

N

P—q
Fig. 1. Diagrammatic representation of the correlation func-
tion. The wavy lines denote the external currents, solid lines
correspond to the quark fields, and shaded regions correspond
to the DAs of the nucleon.

via convolution of the quark propagator to the sum of the
nucleon DAs, obtained from the €***(0Jus(0)uj(x)ds(0)IN)
matrix element. A diagrammatic description of Eq. (8) is
given in Fig. 1. Once we use the explicit expressions of
the quark propagators and the definition of the DAs of
octet baryons, the following master integral appears in the
coefficients of different Lorentz structures:

”
L= /du—n :n=1,2,3.
[m? = (pu—q)?]

For the calculation of the double spectral densities, it is
sufficient to find the double spectral representations of
the master integrals. The details of the spectral density
calculations for the n =1 case are presented in Appendix
A. The cases of n=2 and n =3 are calculated in a simil-
ar manner.

The invariant amplitudes are related to the spectral
densities via the double dispersion relation as follows:

II _ 2’ 2 :/d /d p(sl’SZ) e (9
[(p—-9).q°] 51 Sz[sl—(p—q)z](sz—q2)+ 9)

The spectral density can be obtained from II[(p — g)?,
g*] by applying two subsequent double Borel transforma-
tions (for more details of the calculation, see Appendix
A)

Matching the OPE results with the double dispersion
relations for the relevant Lorentz structures of the had-
rons, applying the quark-hadron duality ansatz, and per-
forming double Borel transformation with respect to the
variables —(p—¢q)* and —q*, we obtain the LCSRs for the
relevant coupling constants whose explicit form can be
written as

083101-3
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emz/Ml2 emé/M% 1 S0
g = Ty T I dS|
Jpd_(my+m_)n*> J,

min(sg,t2(s1)) 5 2
X/ ds, e s1/Mig=s2/M; Img Img,
f(s1)

x {I1(m, = mo) + I}, (10)

where II; and II, are the invariant functions of the
Lorentz structures ¢q,q, and ¢,q,, respectively, and

o= s1+myF 2mo sy —m?,

where m is the corresponding mass of light quarks. Here,
sp 1s the continuum threshold in the pseudoscalar meson
channel. The continuum threshold s;, is chosen as a mass
square of the first radial excitation of the corresponding
pseudoscalar meson. Finally, note that in the my — 0 lim-
it, the applied method must be modified (for more details,
see [18,19]).

III. NUMERICAL ANALYSIS

This section is devoted to the numerical analysis of
the coupling constants derived in the previous section
within the LCSRs. The main nonperturbative input of the
considered LCSRs is the DAs of the octet baryons,
namely, N, Z, and E. The explicit expressions of the rel-
evant DAs are obtained in [20—23]. The DAs contain the
normalization constants f, 4, , and A, , which are determ-
ined from the analysis of mass sum rules as well as lat-
tice QCD [24, 25]. The normalization constant of the
leading twist f, (for N, X, and E baryons) is defined via
the matrix element of the local current (all quark fields
are at the same point).

€”(01(g{(0)C #g3(0)ys #g5(0IO(p)) = f(pn) Hu(p).
(11)

Moreover, the DAs of higher twist contributions involve
two additional normalization constants, A; and A, , which
are defined as the matrix elements of local three quark
twist-four operators,

€"*(0l(¢(0)C0q5(0)ys0™ g5 (0)O(p)) = Aamou(p) ,
(12)

where n is the light-like vector, and u(p) is the Dirac
bispinor.

The normalization constants f, A;, and A, for the A
baryon can be obtained from Egs. (11) and (12) via the
following replacements:

CH—Cysi ysi—H for f (13)
CYu = Cysyuy ¥syu— Y.  for 4 (14)
Coy — Cys  ysoy — 1 for A, (15)

In our analysis, we use the parameter values obtained
from lattice QCD that are presented in Table 2 for com-
pleteness. The masses of the SU(3) partners of Q(2012)
are obtained in [16] and presented below.

1700 +£ 90 MeV for A,
_J 1805 +100 MeV for %(3/2),
T 1910+ 110 MeV  for E(3/2),
2012.4+09 MeV  for Q[26].

These mass values are used in our numerical analysis.
For the masses of the ground state baryons, we adapt val-
ues from the PDG [26]. In addition, the value of the quark
condensate is taken as (Gq) = —(246"3 MeV)® [17] and

(55) = 0.8(g9) [27].

3
The residues of the negative parity J* = 3

are related to the residues of the radial excitations of the
decuplet baryons as follows:

baryons

m_—m,

A,Z/ld .
N m_+m,

The residues of the radial excitations of the decuplet ba-
ryons are calculated in [2]. Using these results, we can

3
easily determine the residues of the J* = 3 baryons.

The working regions of the Borel mass parameters
and continuum thresholds, s, and s, used in the numeric-
al analysis are presented in Table 3. Determination of the
working regions of the Borel parameters is based on the
criteria that both power corrections and continuum contri-
butions should be suppressed. Moreover, the continuum
threshold s, is obtained under the condition that the mass

Table 2.
given in units of 1073 GeV?2.

Numerical values of the parameters f,4; , and A5,

S A 7Y
N 3.54 —-44.9 93.4
z 5.31 —46.1 85.2
o) 6.11 -49.8 99.5
A 4.87 —-42.2 98.9
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Table 3. Working regions of the Borel mass parameters and continuum threshold so.

Borel mass parameters

Continuum threshold Continuum threshold

M?/GeV? M3 /GeV? 50/GeV?2 5),/GeV?
A— Nr 3+4 0.25+0.35 5.0+0.2 1.7
¥(3/2) - NK 3:4 0.25+0.35 55+0.2 2.0
¥(3/2) = A 3:4 0.42+0.44 55+02 1.7
Z(3/2) - Em 3+4 0.42+0.44 5.5+0.2 1.7
E(3/2) —» AK 3:4 0.45+0.47 6.0+0.2 2.0
E(3/2) - 2K 3:4 0.60 = 0.65 6.0+0.2 2.0
E(3/2) — En 3+4 0.50+0.60 6.0+0.2 1.7
Q- EK 3+4 0.55+0.65 6.5+0.2 2.0
of the considered states reproduces the experimental val-
ues with an accuracy of approximately 10%. sy
Having the values of all input parameters at hand, we ol Tt e .
can perform the numerical analysis of the relevant coup- S s
. . . Ro i B
ling constants. As an example, in Fig. 2, we present the 1 D S e
dependency of the coupling constant on M at fixed val- q 0op
ues of the continuum thresholds sy, s; , and M3 for the g 75|
Q — EK transition, because this transition has already S M2 =055 (GeV)?
been discovered. From this figure, we observe that there i M} = 0.60 (GeV)? —e— 0= 6.5 GeV?
; - . 5 . - M3 =0.65 (GeV)? —e—
is good stability of the coupling constant when M7 varies 25 |
in its working region (Table 3). The obtained coupling 00 ‘ ‘ ‘
constants are presented in Table 4. The errors in the res- 3.00 3.25 3.50 3.75 4.00
ults for the coupling constants can be attributed to the un- M2 (GeV?)
inties in the in rameter. 11 rror h . . .
certainties in the nput parameters as well as errors to the Fig. 2. (color online) Dependency of the coupling constant

Borel mass parameters M; and M3 and continuum
threshold s, and s;.

Having determined the coupling constants, we can
calculate the decay widths of the corresponding trans-
i;ipns. Using the matrix elements for the considered

5 5 tpseudoscalarmeson transitions, the decay
width can be written as
g 2 2 3
P'= Sy L0 =m0)* =i | (16)
where
17l = 1 \/m4 +mb +mb — 2m2mE — 2m2 m2, — 2m%m?
P = . - 0 P ~g Mg oMe >

is the momentum of octet baryon, and m, and me are the
mass of the octet baryon and pseudoscalar meson, re-
spectively. Using the values of the coupling constants ob-
tained within this study, we estimate the decay widths of
the relevant transitions summarized in Table 4. For com-
parison, we also present the results of the decay widths
obtained from the flavor SU(3) analysis [16]. We would
like to make the following remark at this point. From the
expression of the decay width, it is evidently sensitive to

of the Q(2012) » E~K* transition on the Borel mass parameter
M? at several fixed values of the Borel parameter M3 and the
continuum threshold sy = 6.5 GeV?2.

3
Table 4. Decay widths of the J* =

2 baryons.
Decay channels  g_/GeV™'  I'/MeV (This study) I'/MeV [16]

A— Nr 12+£3 71.6x(1.0+0.5) 39-58
> — NK 6+2 11.1x(1.0+0.6) 7-12
T o Ar 9+3 23.7x(1.0£0.6) 11-18
%3 5+1 45%(1.0+0.4) 4-7
E—-AK 10£2 15.5%(1.0£0.4) 5-10
E—3K 6+2 2.7%(1.0£0.6) 2-5
2o Erx T+2 6.9%(1.0+0.5) 5-9
Q- =K 12£3.5 7.4%(1.0£0.6) -

the mass splitting among the SU(3) partners of the
Q(2012) and ground state baryons. Thus, for a fair com-
parison, we use the same mass values as in [16].

Finally, we compare our results with the values ob-
tained within the framework of the flavor SU(3) method
[16]. In this analysis, the coupling constant for Q — ZK
is taken as the input parameter, and all the remaining

083101-5
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couplings are expressed in terms of this coupling using
SU(3) symmetry relations. Using the experimental value
of the decay width Q — ZK, we can determine the coup-
ling constant of this transition via Eq. (16), and hence all
the other coupling constants can be determined. When we
compare our results on the coupling constants and decay
widths of the considered decays with those obtained with-
in the flavor SU(3) analysis, we find that they are com-
patible within the uncertainties of the the model predic-
tions. Small deviations in the results can be attributed to
the SU(3) violation effects and uncertainties of the input
parameters of the theory. Furthermore, our prediction of
the decay width for Q — =K is compatible with those ob-
served by the BELLE Collaboration within the uncertain-
ties [1]. Moreover, note that the coupling constant, and
hence the decay width of Q — ZK, within LCSRs meth-
od was calculated using the DAs of pseudoscalar mesons
in [3]. However, in this study, we recalculate these quant-
ities within the same framework using the DAs of the =
baryon. In this method, the calculations of the theoretical
part of the sum rules can be achieved using only one
quark propagator; however, in [3], two quark propagat-
ors were required, making the calculations difficult be-
cause each quark propagator contains many terms. An-
other advantage of the present method lies in dealing with
the contributions of baryons with different parities, espe-
cially when mass splittings are small. In this method, no
pollution arise due to negative parity baryons. However,
with the methods used in [3], the problem of the separa-
tion of the contributions of positive baryons remains un-
solved. Another difference between the two methods is
that in this study, we consider both Borel mass paramet-
ers M? and M3 but in [3], M} = M3 was considered. The
uncertainties of the parameters entering the DAs of bary-
ons are larger than those of meson DAs. Once the errors
are minimized in the determination of these parameters,
more precise results can be obtained. When we compare
our results on the coupling constant for Q — EK, we find
that our result is consistent with that in [3] within the un-
certainties.

IV. CONCLUSION

In conclusion, we employ the LCSR method to com-
pute the strong coupling constants and decay widths for
'[%‘19 SIU* (3) partners of the (2012) baryon in
5 73 +pseudoscalar meson transitions. The "contam-

N

3
ination" caused by the J* = 5 baryons are eliminated by

considering the linear combinations of the sum rules ob-
tained from different Lorentz structures. By comparing
our decay width results with the findings of [16], we as-
certain the compatibility of our decay width predictions
with the outcomes of the flavor SU(3) symmetry analysis.
The small discrepancy between the predictions of the two

methods may be attributed to the SU(3) violation effects.
Moreover, our estimated decay width for the Q —» EK
transition is also compatible with the measurement of the
BELLE Collaboration within the uncertainty limits. In
addition, our result on the coupling constant for Q — ZK
calculated using the DAs of E is consistent with the pre-
diction in [3], where the DAs of pseudoscalar mesons are
used.

Our results on the branching ratios can provide useful
hints about the nature of the SU(3) partners of the
Q(2012) baryon.
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APPENDIX A: DERIVATION OF THE SPECTRAL
DENSITY

Here, we provide the detailed derivation of the spec-
tral density (see also [28]).

After applying the double Borel transformation over
the variables —p’? and —¢” to Eq. (9), we obtain

e (M2, M2 = / ds / dsre /M2 M55 5y (AD)

Before implementing the second double Borel transform-

1
ation, we introduce the new variables 01 = W The

second Borel transformation can be performed over the
new Borel parameter 7; using the relation

B =6 (1 - s) . (A2)

T

As aresult, we have

11
B, B, 1% (M}, M?) = p(f 7) . (A3)

9
T T2

Hence, the double spectral density can be obtained as fol-
lows:

af 1 1
p(S1,S2)=B$(0'1)B$(0—2)HB (7 7) '

9
g1 03

Let us now focus on the double spectral density for
the n =1 case. Using

—(pu—q)* = —u(p—q)* — itg” + uitmy, ,

083101-6
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where it = 1 —u, I, can be written as s , 10, 5
L= ————7exp g - =M (o1+02)|,
(o1 +07) o t0o
k k 2, 2 2
u ol+o m
11k=/ D m2¥—<m2+—0)
’ m? —u(p —q)* — iig® + ump| (o) + o)k P {™Mo 20 +07) 2
' ( )}
u—, g1+02)|,
D

where m is the corresponding quark mass. Using the 1
Schwinger representation for the denominator and per- where 0 = R To perform the second double Borel
forming the first double Borel transformation over the !
variables —(p —¢)* and —¢*, we obtain

o +0, +°°d [ o1+o2 , } { méO'% }
—_— i eXp | ——————x; — 0 | =exp | ———]| .
Voor [, SRRy oot = O v o)

o0

transformation, we use the relation

Then, we obtain

; 1 [ +oo ok { ( (mo+x1)2+x2> ( (m0+x2)2+x2)}
= -2 _ 2, (mo+x)"+x3\ 2 (mo+x)’+x3
Iy = o [m dx; /_00 dx, Tt o) exp|—o|{m + 5 oo | m? + :
2., .2 S
) T(k)/ / dxz/ dei* lazexp{ (mz.kw-’-t)_az(mz'kW*‘tﬂ
Vs
2
) F(k)/ dxl/ dxz/ dr ! exp{ ( W—H)}
Vs

(=2 exp[ s 2P )]

2
After performing the second Borel transformation, we obtain the the spectral density corresponding to I :

k
1 1 0 oo e « Mo+ x1)* + X2
p]’k(sl’SZ):ﬂ@<_67s2> [m dx; [m dXQ/() dttk_lé{sl—(m2+%+tﬂ

+ 2+ 2
xé{sz—(m2+7(mo )622) x1+t)}

1 1 ( (m0+x])2+)c2 )}
27rF(k) 6s2 / dxl/ dxg/ dr? 6 2 +1

X6|:S2_<m2+w+t)j| .

Using two Dirac delta functions, we can easily perform integrals over ¢ and x;, :

k

1 ] ) -
_ L (8 d
Prils1.52) 271F(k)mo< ds Lo H

where

k-1

g ol )

=81 and O(x) is the Heaviside step function, which restricts

Xy = X1,
Mo the integral over x; between the limits y. (s, s;) , where

083101-7
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—mi+ 51— s+ VA

2m0

y:t(sl, s2) =

and
A = —mly— (51— 52)* +2m}H(=2m* + 51 + 52) .

As a result of the above summarized calculations, the
spectral density can take the following form:

( )_LLL( i)
PSS =5 Ty mg \ 85,

k

Y+ k
/ dx [0 D) xr=yo)] ).

To evaluate the x integral, we introduce a new variable
through the relation

x=Qy—y)y+y,

so that the spectral density can be written as

1Lk)1( 9

k
PLi(s1,82) = 2 T2k mE 7) [Ak’%®(A)} . (A4

B 652

The double spectral densities for I,; and I;; can be

calculated using the following relations:

0
Ly = (— W)h,k , and,

2

1 0
=5 (= 5)

(see also [17] for the calculation of the spectral densities

]Z,k and 13’1{).
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