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Abstract: Nuclear level density (NLD) is a critical parameter for understanding nuclear reactions and the structure

of atomic nuclei; however, accurate estimation of NLD is challenging owing to limitations inherent in both experi-

mental measurements and theoretical models. This paper presents a sophisticated approach using Bayesian neural

networks (BNNs) to analyze NLD across a wide range of models. It uniquely incorporates the assessment of model

uncertainties. The application of BNNs demonstrates remarkable success in accurately predicting NLD values when

compared to recent experimental data, confirming the effectiveness of our methodology. The reliability and predict-
ive power of the BNN approach not only validates its current application but also encourages its integration into fu-

ture analyses of nuclear reaction cross sections.
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I. INTRODUCTION

Nuclear level density (NLD) is defined as the number
of excited levels per unit energy at a given excitation en-
ergy. It plays a central role in aspects of nuclear reac-
tions and nuclear structure, thereby influencing the beha-
vior of stellar nucleosynthesis networks in nuclear astro-
physics [1], the design of novel reactors [2], and applica-
tions of radioactive isotopes in applied nuclear physics
[3]. Accurate predictions of NLD are crucial for under-
standing the properties and behavior of nuclei at high ex-
citation states, which are prevalent in nuclear reactions
and stellar processes.

Its theoretical model was first introduced by Bethe in
1936 [4], also known as the Fermi gas model (FGM). The
FGM is based on the assumption that the excited levels of
the nucleus are evenly spaced and that there are no col-
lective levels; it is successful in estimating levels at high
excitation energies and fails in the low energy region.
Various phenomenological level density models, mostly
based on the FGM, have been proposed to solve this
problem, such as the back-shifted FGM (BSFGM) [5],
Gilbert Cameron model (GCM) [6], and generalized su-
perfluid model (GSM) [7, 8]. These phenomenological

models with simplified assumptions are usually more
computationally accessible but are limited to excitation
energies above 5 MeV. Microscopic models, such as
Hartree-Fock-Bardeen-Cooper-Schrieffer (HF-BCS) [9],
Gogny-Hartree-Fock-Bogoliubov (Gogny-HFB) [10], and
Skyrme-Hartree-Fock-Bogoliubov (Skyrme-HFB) [11],
and density functional theory combinatorial models [12,
13], the Monte Carlo shell model [14], quasi-particle ran-
dom phase approximation (QRPA) [15], and core-quasi
particle coupling (CQC) model [16], have attempted to
describe the NLD from more fundamental particle inter-
actions with excitation energies ranging from 0 to 20
MeV. Thus, a high efficiency and unified predictive mod-
el is urgently required for the application of NLD. Ma-
chine learning can be used to achieve these goals.
Machine learning is based on a class of computer al-
gorithms. These algorithms do not require coding for spe-
cific tasks. They can automatically extract features from
large amounts of data. The application of machine learn-
ing technology to physics to solve unsolved scientific
problems is currently a frontier of international, cross-dis-
ciplinary research methods. Bayesian neural networks
(BNNs) represent such an alternative, offering a novel
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methodology that can handle the uncertainties inherent in
both theoretical models and experimental data within a
unified framework. In recent years, several groups have
demonstrated how BNNs can obtain accurate models for
predicting nuclear charge radii [17], atomic nucleus mass
[18], half-life of decay [19], and fission yield [20], with
the uncertainties. In addition, nucleon density distribu-
tions are calculated based on the deep neural network
method [21-23], and level density parameters are estim-
ated using an artificial neural network (ANN) [24] and
feedback neural network (FNN) [25].

In this study, a BNN is used to train a set of NLDs
that are uniformly described over a large range, consider-
ing the NLD calculated by the theoretical model and ob-
tained experimentally using the Oslo method [26-28]. By
training a neural network for the identification and recon-
struction of the NLD, we can explore the model uncer-
tainties in a comprehensive manner and provide a model-
independent method for the study of the NLD. This ap-
proach using a BNN not only improves the descriptive
power of models for complex nuclear systems, but also
allows for a more precise and systematic way to quantify
and understand the uncertainties in NLD predictions,
which is crucial for the future development of nuclear
physics.

II. THEORETICAL METHODS

A. BNN model

A detailed description of the origins and develop-
ment of BNNs goes beyond the scope of this study; for a
detailed exposition, see Refs. [29-32]. The use ANNS in
nuclear physics is mainly to estimate unknown properties
of revelant exotic nuclei to astrophysics and began in the
early 90s with the work of Clark and collaborators
[33-36]. It continues to this day [37—41] with more soph-
isticated applications.

There are two main components in a BNN [29]: one
is the ANN and the other is the Bayesian inference sys-
tem. The ANN we use is a fully connected feed-forward
ANN. The neural network function f(x,w) with one hid-
den layer adopted here has the following form:

H 1
frw)y=a+» bjtanh(c;+ Y _dyx), (1)

j=1 i=1

where the model parameters (or "connection weights")
are collectively given by w = (a,b;,¢;,d;;), and x is the set
of inputs x;. The function above contains 1+ H(2+1)
parameters, where H is the number of neurons in the hid-
den layer, and / denotes the number of input variables.
Here, tanh is a common form of the sigmoid activation
function that controls the firing of the artificial neurons

[42, 43].

In the present case, we assume that the four sets of
parameters w = (a,b,c,d) are independent of each other
and each of them obeys a Gaussian distribution centered
around 0 with a width controlled by a hyperparameter. As
shown in Ref. [29], the "gamma" probability distribution
is used for the hyperparameter. Similarly, a Gaussian dis-
tribution is used for the likelihood:

p(x’ tl(/.)) = eXP(_Xz/Z), (2)

where the cost function y*(w) reads as

N _ ) 2
Plw= (L) G

i=1

where N is the total number of data points, #; = #(x;) is the
empirical value of the target evaluated at the ith input x;,
and Ay, is the associated error.

B. Training of the BNN model

In this study, we propose a BNN model to investigate
the NLD and verify whether it can be used to make reli-
able predictions. The training set used in the BNN con-
tains 282 nuclides, including six theoretical NLD models
(BSFGM, GCM, GSM, HF-BCS, Gogny-HFB, and
Skyrme-HFB), with 11 < Z<98, 24 < 4<251 taken from
the TALYS 1.95 code [44], and the experimental 53-nuc-
lide database measured using the Oslo method [26-28].
Approximately 70000 data points are used for training
set.

In the BNN model, the input layer has five neurons,
which are the number of protons Z, total number of
masses 4, neutron separation energy S» , and proton sep-
aration energy S p and excitation energy E. There are two
hidden layers, and the number of neurons per layer is 64
and 32. The output of the neural network is log(o/p.) ,
where p. = 1 MeV™'. For each training, the training set is
randomly divided into two categories: training (80%) and
validation (20%) parts. Finally, we use the mean absolute
error (MAE) as the loss function.

l n
MAEsz =il 4
" lyi =il “4)

i=1

where 7 is the total number of data points, y; is the actual
value for the ith data point, §; is the predicted value for
the ith data point, and |y;—$;| is the absolute difference
between the actual and predicted values.

III. RESULT ANALYSIS

First, we check the MAE as a function of iteration
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epoch. There are 10000 epochs in the training processes
in this study. The MAEs of both the training and valida-
tion parts of the total training set decrease steadily, as
shown in Fig. 1. The convergence of the MAE of the
training set indicates well trained data.

To obtain the special BNN, we present the trained
results of the BNN and the NLD data from theoretical
calculations and experimental data in Fig. 2. The red sol-
id lines are the mean values of the different nuclei, the
dash lines and circles are the data of the models and Oslo
experiment [26—28]. The pink band represents the 95%
confidence interval, showing the uncertainty in the pre-
dictions of the BNN, which provides the uncertainty
among all models and experimental data. As shown in
Fig. 2, the BNN predictions mostly associate with the
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Fig. 1.  (color online) Mean absolute error of the training
(MAE),) and validation parts (MAE),) of the training set.
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Fig. 2. (color online) Training of nuclear level density. The
shadow region corresponds to the CI estimated at 95%.

range of predictions of the NLD from other models across
the entire excitation energy from 0 to 20 MeV, suggest-
ing that the BNN is capable of learning and predicting the
behavior of the training data. The uncertainties of all
models obtained with the BNN model are smaller at
lower excitation energies (E <5 MeV). However, the un-
certainties become wider in higher excitation energy re-
gions (E > 10 MeV), especially for heavy nuclei (A >
100) because of the greater uncertainty among the differ-
ent model predictions in these areas for heavy nuclei. Be-
cause the depicted nuclei are part of the training set, this
consistency is expected. A more rigorous test would in-
clude predictions for nuclei that are not in the training set.

For the test sets, the NLD of **U-*Uand experi-
mental data with ®Ni, "°Ni, and '“’Ho [26-28] are used.
The MAEs of both the training and test sets are listed in
Table 1. The MAEs of the test sets are smaller than that
of the validation part in the training set; hence, the NLD
prediction from the BNN is reliable.

In Fig. 3, the results of the NLD of **U-*°U are dis-
played as part of the test set, which were not included in
the training set. The mean values of the level density of
the BNN model predictions for Uranium isotopes are
shown as red lines in the plots, which are similar to those
of traditional models, suggesting that the model general-
izes well beyond the training data. This is a positive in-
dication of the model's robustness and its ability to infer
the properties of unseen nuclides based on the patterns
learned from the training set. The 95% confidence inter-
val, represented by the pink shaded area, encapsulates the
BNN predictions both from the theoretical models and
the experimental data of the Oslo method. Moreover, the
BNN predictions are closely aligned with those of theor-
etical models such as the GCM, BSFGM, GSM, HF-
BCS, Skyrme-HFB, and Gogny-HFB. Except for HF-
BCS, most theoretical models are in the range of the
BNN predictions, which also find ***Pu in the training set.
For most of the theoretical models, the model predictions
are within a statistically reasonable range. The consist-
ency within this interval indicates that the BNN uncer-
tainty is reliable. The BNN model displays consistent per-
formance across various isotopes of Uranium, which may
be indicative of the model's ability to handle the system-
atic variations in nuclear properties across isotopes. Fig. 3
shows an increased spread in the predictions at higher ex-
citation energies, which is typical for extrapolative pre-
dictions. This spread implies increased uncertainty and
highlights areas where additional data or refinement of

Table 1. Mean absolute error of the training and test sets.

MAE of training set MAE of test set

training validation Y-y Ni °Ni ""Ho

0.3590 0.4830 0.4329 0.1895
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Fig. 3. (color online) Prediction of the nuclear level density

of P20

the model may be beneficial. The NLD from the BNN
predictions using the experimental data points of the Oslo
method for these isotopes, which were also not part of the
training database, is particularly noteworthy. It demon-
strates the potential utility of BNNs in predicting experi-
mental outcomes.

To further test the predictions from the BNN models,
we investigate the NLD for ®Ni, "Ni, and '*"Ho [26-28]
in Fig. 4. The plots present the latest experimental data
(black dots) and the predictions made using the BNN
model (red line), along with the 95% confidence interval
(shaded pink area). The BNN predictions are very closely
aligned with the experimental data, which indicates that
the BNN is capable of learning and predicting new exper-
imental outcomes effectively. For all three nuclides, the
95% confidence interval encompasses nearly all the ex-
perimental data points, signifying that the BNN predic-
tions are statistically reasonable and provide a credible
estimate of the predictive uncertainty. We also find that
the BNN offers a reliable method for predicting NLDs,
even in the absence of theoretical models to guide predic-
tions, especially in higher excitation energy regions,
where BNN predictions remain consistent with experi-
mental data, which are areas often challenging for theor-
etical models to reach. Although the BNN predictions
match the experimental data, the confidence intervals also
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Fig. 4. (color online) Prediction of the nuclear level density
of experimental data for “*Ni,”’Ni, and '"Ho [26-28].

are wide at higher excitation energies, indicating greater
uncertainty in the predictions in these regions. This could
be due to sparse experimental data in these areas or the
increased complexity of physical processes at these ener-
gies.

IV. SUMMARY

We study NLD using BNNs. NLD is a critical para-
meter in nuclear physics and is essential for understand-
ing nuclear reactions and structures. Many theoretical
models and experimental methods have been proposed;
however, they each have their own limitations. In this
study, a BNN is used to integrate and unify NLD data
from a variety of sources, including phenomenological
models, microscopic models, and experimental data from
the Oslo method. The NLD achieved using the BNN not
only reproduces the training data, but also gives very
good predictions of the test data. In particular, the results
show the capability of the BNN in predicting NLDs on
new experimental data without comparable theoretical
models. The application value of BNNs provides valu-
able guidance for future experimental and theoretical
work.

In the future, these NLDs will be used as input for
TALYS to calculate nuclear reaction cross sections, and
the NLD uncertainties will be used to calculate covari-

084105-4



Uncertainties of nuclear level density estimated using Bayesian neural networks

Chin. Phys. C 48, 084105 (2024)

ance matrices for each reaction channel. In addition, the
BNN method in this study will provide an opportunity for

improving the predictions of NLD data when new meas-
ured data are available.
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