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Abstract: Accurately determining the quadrupole deformation parameters of atomic nuclei is crucial for under-

standing their structural and dynamic properties. This study introduces an innovative approach that combines trans-

fer learning techniques with neural networks to predict the quadrupole deformation parameters of even-even nuclei.

With the application of this innovative technique, the quadrupole deformation parameters of 2331 even-even nuclei

are successfully predicted within the nuclear region defined by proton numbers 8 <Z < 134 and neutron numbers

N > 8. Additionally, we discuss the impact of nuclear quadrupole deformation parameters on the capture cross-sec-

tions in heavy-ion fusion reactions, reconstructing the capture cross-sections for the reactions 48Ca +244 py and

48(Ca +248 Cm. This research offers new insights into the application of neural networks in nuclear physics and high-

lights the potential of merging advanced machine learning techniques with both theoretical and experimental data,

particularly in fields where experimental data are limited.
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I. INTRODUCTION

Nuclear deformation is a fundamental concept in nuc-
lear physics that characterizes deviations of atomic nuc-
lei from an ideal spherical shape [1]. The quadrupole de-
formation parameter plays a critical role in understand-
ing the structural and dynamic properties of atomic nuc-
lei [2-5]. In heavy-ion fusion reactions, several models
are frequently utilized, including the dinuclear system
model [6—10], two-step model [11-13], time-dependent
Hartree-Fock theory [14-16], and diffusion-fusion model
[17]. These models intricately incorporate quadrupole de-
formation parameters to capture the dynamic complexit-
ies inherent in heavy-ion fusion reactions. Given the lim-
ited experimental data available on quadrupole deforma-
tion, the reliance on theoretical models to derive these
parameters becomes imperative. Notably, models such as
the finite range droplet model (FRDM) [18], Koura-
Tachibana-Uno-Yamada mass formula [19], Weizsacker-
Skyrme (WS) model [20], relativistic mean field model
[21], Hartree-Fock-Bogoliubov model [22], and Duflo-
Zuker mass formula [23] are commonly employed. Non-

etheless, substantial inconsistencies prevail among the
quadrupole deformation parameters derived from these
theoretical models, underscoring the urgent need for pre-
cise parameter predictions.

Neural network methodologies have become instru-
mental in data analysis across scientific domains, includ-
ing nuclear physics. Leveraging their nonlinear fitting
capabilities and pattern recognition proficiency, neural
networks have displayed potential in addressing various
physics problems, particularly in predicting energy spec-
tra [24] and nuclear mass [25-27]. Their success in these
areas is largely attributable to the extensive experimental
data available for training. However, the paucity of ex-
perimental data can impede the neural networks' ability to
extract meaningful physical insights, consequently weak-
ening their generalization capabilities. In the realm of
neural networks, noteworthy progress has been achieved
in studies related to nuclear deformation [28-30]. In-
spired by these studies, we present an innovative neural
network framework designed to predict nuclear quadru-
pole deformation parameters. Initially, a substantial data-
set of quadrupole deformation parameters obtained from
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prevalent theoretical models is used to comprehensively
pre-train the neural network model. This foundational
step is aimed at providing the neural network model with
a robust theoretical footing, enabling it to comprehend the
general characteristics of nuclear quadrupole deforma-
tion. Subsequent fine-tuning of the model using experi-
mental data through transfer learning techniques [31-34]
helps rectify biases present in theoretical models, improv-
ing the model's precision in predicting specific nuclear
data. The transfer learning method implemented in this
study is realized by retraining the final layer of the net-
work with experimental data. Additionally, other meth-
ods, such as modifying the loss function to facilitate
transfer learning, as illustrated in Refs. [35, 36], merit
equal attention.

The aim of this study is to achieve more precise pre-
dictions of quadrupole deformation parameters in nuclear
physics, providing a more accurate description of the dy-
namics involved in heavy-ion fusion reactions. Addition-
ally, we emphasize the potential of integrating transfer
learning with theoretical and experimental data, offering
new perspectives for research in fields with limited ex-
perimental data. This article is organized as follows. In
Sec. II, we introduce our neural network approach, high-
lighting the pivotal role of quadrupole deformation para-
meters in computing capture cross-sections for heavy-ion
fusion reactions. In Sec. III, the results are presented and
discussed. Finally, in Sec. IV, we provide a concise sum-
mary of our study.

II. THEORETICAL FRAMEWORK

A. Neural network method

The process used to optimize and predict the quadru-
pole deformation parameters in our study is illustrated in
Fig. 1. Theoretical and experimental datasets are utilized
in this study, and key features include the proton number
Z and neutron number N. These features are standardized
to ensure uniform scaling, which is crucial for neural net-
work training. The datasets are strategically partitioned
into training, validation, and testing sets. Specifically, the
theoretical data are allocated into two distinct sets: 60%
for training and the remaining 40% for validation pur-
poses. For the experimental dataset, a more nuanced divi-
sion is employed. Initially, 80% of the dataset is desig-
nated for a retraining phase, of which 40% is sub-
sequently earmarked for validation. The residual 20% of
the overall dataset is exclusively reserved for final test-
ing and evaluation, ensuring a robust assessment of the
model's predictive capabilities.

The neural network architecture is specifically de-
signed to address the characteristics of nuclear quadru-
pole deformation data, with its configuration and experi-
mental details outlined in Table 1. It comprises an input
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Target Variable: quadrupole deformation

i
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Input Layer (2 Features), Hidden Layers, Output Layer (1 Target)
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Retrain Final Layer on Experimental Data
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Performance Evaluation
Test on Separate 20% Experimental Data

Fig. 1. Quadrupole deformation optimization workflow.

layer, two hidden layers, and an output layer, each
serving a distinct purpose in the data processing flow.
The input layer is configured to receive the standardized
proton number Z and neutron number N. Following this,
there are two hidden layers, each consisting of 64 neur-
ons. These layers play a pivotal role in feature extraction
and executing non-linear transformations of the data.
Both hidden layers utilize rectified linear units (ReLUs)
as the activation function, enhancing the network's non-
linear processing capabilities and mitigating gradient van-
ishing issues. The architecture concludes with an output
layer housing a single neuron employing the Sigmoid ac-
tivation function. In this study, the neuron number in the
hidden layer is determined after several trials. The final
value gives the best results.

Our approach consists of two primary stages: Ini-
tially, we conduct pre-training of the neural network on
the theoretical dataset, adjusting its weights by utilizing
this data. The training epoch is set to 5000, with a learn-
ing rate (LR) of 0.001. The comparison between the ex-
pected output and the neural network's output is facilit-
ated using a loss function, employing the mean squared
error (MSE). Subsequently, we fine-tune the model on a
limited experimental dataset. The weights of the input
and hidden layers of the neural network model are frozen
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Table 1. Neural network configuration and experiment
details.
Parameter/Setting Value/Description
Input layer size 2(Z,N)
Hidden layers 2
Neurons per hidden layer 64
Output layer size 1
Activation function (hidden) ReLU
Activation function (output) Sigmoid
Loss function MSE
Optimizer Adam
Learning rate 0.001
Epochs (theoretical data) 5000
Epochs (experimental data) 5000

60%—40%
48%—32%-20%
0 (fixed)

Train-validation split (theory)
Train-validation-test split (exp)
Random seed

Transfer learning layers frozen Two hidden layers

during this phase of transfer learning. This implies that
these weights remain unchanged throughout the transfer
learning process. This approach is chosen because these
layers have already learned the fundamental features of
quadrupole deformation from the pre-training phase. We
exclusively retrain the output layer and update its weights
based on the experimental dataset, thereby fine-tuning the
pre-trained network. Finally, to test the model, perform-
ance metrics such as the MSE, mean absolute error
(MAE) and root MSE (RMSE) can be employed to evalu-
ate the results estimated by the neural network model and
determine the performance level. The calculation meth-
ods for these performance metrics are as follows:

IS g o py
MSE =% (E;=P)’, (1)

i=1
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where 7 is the total number of data, and E; and P; denote
the experimental and predicted values of the ith sample.

B. Capture cross-section

Next, we elucidate the calculation of the capture
cross-section in heavy-ion fusion reactions, highlighting
the pivotal role of quadrupole deformation parameters in
these computations. The empirical coupled channel mod-
el is utilized for the computation of this capture cross-sec-
tion [37, 38]. The capture cross-section is expressed as
[39]

h?

= — 2 DT (E¢m,J), 4
Teap Mm;( J+ DT (Eepm,J) 4)

where E. ., is the center-of-mass incident energy, and the
transmission probability T(E.,,J) is calculated using the
Hill-Wheeler formula [40]. Integrating the effect of coup-
ling channels through the potential barrier distribution
function, the transmission probability is

2
T(Eom,J) = / #B) {1 rexp ( -
2 -1
X Ec.m._B_zluT%(J)J(J-f-l) )} dB, (5)

where fiw(J) is the width of the parabolic form at the pos-
ition of the barrier Rz(J). The barrier distribution func-
tion f(B) takes an asymmetric Gaussian shape,

1 (B - B, )2 BB
— €X - s m
P A (©)
)1 (B B,,,>2 BB
— X - > m
N P A
B;+ B . .
where B, = — 0, with B, as the Coulomb barrier

height at waist-to-waist orientation, and B; as the minim-
al height influenced by the dynamical deformation para-
meters B, and B,. N is the normalization constant,
Ay = (By—B,)/2, and A, is typically 2—4 MeV less than
A, [41]. Incorporating quadrupole deformation, the nuc-
leus-nucleus interaction potential is formulated as

V(r»ﬂl ,ﬂ2a01992) = VC (nﬁl 9ﬁ2991’92)
+ Vi (1,B1,52,61,62)
1 2
+ ECI ( 1 —.3(1))
1
+3C(B=B)’ ()
where B1(8,) is the dynamical quadrupole deformation

parameter for the projectile (target), and BJ(3)) is the stat-
ic deformation parameter. 6,(6,) represents the angle
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between the radius vector and the symmetry axes of the
statically deformed projectile (target). The stiffness para-
meters C,, are derived using the liquid drop model [42].
The Coulomb and nuclear potentials, V¢ and Vy, are as
specified in Ref. [39]. Therefore, in the calculations of
barrier heights and capture cross-section in heavy-ion fu-
sion reactions, the quadrupole deformation parameter
emerges as an indispensable parameter that cannot be
overlooked.

III. RESULTS AND DISCUSSION

In the pre-training phase, the theoretical data for the
quadrupole deformation parameters are sourced from the
FRDM [18], focusing on the even-even nuclei ranges
with proton number (8 <Z < 134) and neutron number
(N = 8), which encompass a total of 2331 datasets. Here,
the values under consideration are the absolute values of
quadrupole deformation. Figure 2 displays the loss curves
for both the training and validation sets. The blue line
represents the training set loss, reflecting the model's
learning performance on the training data. Conversely,
the orange line represents the validation set loss, show-
casing the model's generalization to unseen data. The
consistent downward trend in loss across epochs implies
effective learning. Moreover, the close alignment
between both curves indicates a balanced model fit, sug-
gesting minimal signs of overfitting or underfitting.

In the transfer learning phase, we only retrain the out-
put layer, and the weights of this layer are updated and
retrained based on the experimental dataset, thereby fine-
tuning the pre-trained network. The experimental data are
obtained from Ref. [43], focusing on the nuclear ranges
of even-even nuclei with proton number (8 <Z <92) and
neutron number (N > 8), which comprise a total of 388
data points. This experimental dataset is initially divided
such that 80% is used for both training and validation
purposes (310 data points), whereas the remaining 20% is
reserved as the test set (78 data points), which is crucial
for evaluating the model's performance on unseen data.
Furthermore, the 310 data points allocated for training
and validation are subdivided, with 60% used as the train-
ing set and the remaining 40% serving as the validation
set. In Fig. 3, we illustrate the training and validation loss
curves during the transfer learning phase. We do not ob-
serve distinct signs of overfitting or underfitting.

To assess the final neural network model, we analyze
the test set. The deviations between the predicted quadru-
pole deformation parameters of 78 atomic nuclei in the
test set and the corresponding experimental values, as de-
picted in Fig. 4, are indicative of the performance of two
different models. The results from the FRDM are repres-
ented by red hollow circles. It is observed that, particu-
larly for nuclei with proton number Z <50, the devi-
ations from the experimental values are notably signific-
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Fig. 2. (color online) Training and validation loss curves on
the theoretical dataset.
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Fig. 3. (color online) Training and validation loss curves on
the experimental dataset.
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ant. In contrast, the predictions made by our neural net-
work model, represented by green solid circles, exhibit a
marked improvement in accuracy. Notably, the devi-
ations are largely contained below 0.1 across the entire
range. This substantial reduction in discrepancy demon-
strates the efficacy of our neural network approach in pre-
dicting nuclear quadrupole deformation parameters. Such
improved predictive performance highlights the potential
of advanced machine learning techniques in enhancing
our understanding of nuclear structure properties.

To further validate our model within the test set, we
showcase the calculated performance metrics, including
the RMSE, MAE, and MSE, based on the predictions of
the two models in Fig. 5. The results indicate that the
FRDM yields an RMSE of 0.1247, an MAE of 0.0927,
and an MSE of 0.0181. In contrast, our neural network
model demonstrates markedly enhanced performance
with an RMSE of 0.0666, an MAE of 0.045, and an MSE
of 0.0044. Evidently, in comparison with the convention-
al FRDM, our neural network model exhibits superior ac-
curacy in predicting the quadrupole deformations of
atomic nuclei. This improvement not only confirms the
effectiveness of the transfer learning technique employed
in our neural network, which retains the general physical
characteristics of theoretical models, but also showcases

its adeptness in aligning with experimental data.

In the experimental data provided in Ref. [43], the
highest proton number Z is 98. During the transfer learn-
ing phase, we select experimental data in the range
8 <Z <92. This approach aims to test the performance of
our model in nuclear regions far from the experimental
data used in transfer learning. In Fig. 6, our neural net-
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] NN
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0.05

0.00
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Fig. 5. (color online) RMSE, MAE, and MSE for the pre-
dicted values from the test set from both the FRDM and our
neural network (NN) model.
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(color online) Quadrupole deformation parameters (ff) according to the neutron numbers of the Pu, Cm, and Cf isotopes from

the FRDM [18], WS4 [20], KTUYO05 [19], DRHBc [44], our neural network (NN) model, and experimental data [43].
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work model predicts the quadrupole deformation para-
meters for the isotopic chains of Pu (Z=94), Cm
(Z=96), and Cf (Z =98), and these predictions are com-
pared with those of other theoretical models such as
FRDM, WS4, KTUYO05, and DRHBc. We find that the
predicted quadrupole deformation parameters from differ-
ent theoretical models exhibit significant variations, with
the maximum error reaching approximately 0.15.
Moreover, the majority of these theoretical models tend
to predict values lower than the experimental data. For in-
stance, the predictions from the FRDM generally fall ap-
proximately 0.1 below the experimental values. Our neur-
al network model undergoes pretraining based on the
FRDM predicted data and then incorporates transfer
learning techniques to formulate the final neural network
model. Through this methodology, we notably address
the issue of the FRDM's tendency for lower predictions,
resulting in better alignment with experimental data. Con-
sequently, even in regions significantly far from those
covered in the transfer learning phase, our neural net-
work model demonstrates strong performance, effect-
ively reproducing the quadrupole deformation paramet-
ers of the Pu, Cm, and Cf isotopic chains.

As previously mentioned, quadrupole deformation
parameters play an indispensable role in describing the
heavy-ion capture process. Therefore, we investigate the
impact of quadrupole deformation parameters during the
capture stage. This stage is characterized by the pro-
jectile nucleus bombarding the target nucleus, overcom-
ing the Coulomb barrier between them, and forming a
compound nucleus system. During this interaction, the
shapes of both the projectile and target nuclei influence
barrier dynamics, thereby affecting the capture cross-sec-
tion. In Fig. 7, we present the capture cross-sections for
the heavy-ion fusion reactions **Ca+?**Pu and “Ca+
28Cm, calculated using quadrupole deformations pre-

dicted using different models. The orange line represents
the results obtained using quadrupole deformation para-
meters from the FRDM model, whereas the blue line rep-
resents those from our neural network model. We ob-
serve that the capture cross-section increases with in-
creasing incident energy, which is attributed to the high-
er probability of overcoming the Coulomb barrier at elev-
ated energies. Additionally, we note that quadrupole de-
formation parameters exert a slight influence on the cap-
ture cross-section. At incident energies below 200 MeV,
the capture cross-sections calculated using quadrupole
deformations predicted with the FRDM and our neural
network model are nearly identical. Above 200 MeV, the
capture cross-sections calculated using our neural net-
work model's predictions are slightly lower than those
calculated using the FRDM, although these differences
are not pronounced. Notably, for the reaction *“Ca+
2488Cm, the capture cross-section calculated using quadru-
pole deformation parameters predicted with our neural
network model is more consistent with the experimental
data.

IV. SUMMARY

In summary, we integrate neural networks with trans-
fer learning techniques to estimate the quadrupole de-
formation parameters of even-even nuclei. Comparing
our results with those from existing theoretical models,
we find that our neural network model presents results
that are typically reasonable and reliable. Compared to
the quadrupole deformation parameters from the FRDM
used in our pre-training phase, our neural network model
shows significant improvements in accuracy, with the
RMSE on the test set reduced from 0.1247 to 0.0666, the
MAE from 0.0927 to 0.045, and the MSE from 0.0181 to
0.0044. Moreover, our model also reasonably reproduces
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(color online) Capture cross-sections for the heavy-ion fusion reactions “Ca+2*Pu and *8Ca+2* Cm, calculated based on

quadrupole deformations predicted using different models. The experimental values are taken from Ref. [45].
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the quadrupole deformation parameters of the Pu, Cm,
and Cf isotopic chains, even in nuclear regions far from
those involved in the transfer learning. Finally, we ob-
serve that quadrupole deformation parameters have a
modest impact on the capture cross-sections of heavy-ion
fusion reactions, and using our derived parameters, we
successfully reconstruct the capture cross-sections for the
reactions “*Ca+>*Pu and *Ca+%*® Cm within error mar-
gins. This study demonstrates the efficacy of combining

advanced machine learning techniques with nuclear phys-
ics data, offering valuable insights and enhanced predict-
ive capabilities in a field often constrained by limited ex-
perimental data.
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