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Abstract: Recently, the LHCb experimental group found an exotic state  from the  process.
A key question is whether it is just a molecule or may have a confined tetraquark ingredient. To investigate this, dif-
ferent methods were used, including a two-channel (  and ) K-matrix unitarization and a single-chan-
nel  Flatté-like  parametrization  method analyzed  utilizing  the  pole  counting  rule  and  spectral  density  function  sum
rule. These analyses demonstrated that  is a molecular state, although the possibility that there may exist an ele-
mentary ingredient cannot be excluded, according to an approximate analysis of its production rate.
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I.  INTRODUCTION

T+cc D0D0π+

pp→ X+D0D0π+

The  LHCb  collaboration  found  a  very  narrow  peak
structure  named  in  the  invariant mass  spec-
trum in the  process [1]. The mass para-
meters  obtained  from  a  generic  constant-width  Breit-
Wigner fit were listed as 

δmBW = −273±61±5+11
−14 keV, ΓBW = 410±165±43+18

−38 keV ,

δmBW

D∗+D0 T+cc

JP = 1+

where  defines  the  mass  shift  with  respect  to  the
 threshold.  Later,  it  was  suggested  that  could

more  possibly  be  an  isoscalar  state  with  spin-parity
quantum numbers [2], and in a more complicated
model, the pole mass and width were extracted as 

δmpole = −360±40+4
−0 keV , Γpole = 48±2+0

−14 keV .

T+cc ccūd̄
X1(2900) uds̄c̄

The constituent of  is  and there is no annihilated
quark pair, similar to  ( ) [3, 4].

T+cc

This experimental  observation has stimulated numer-
ous  theoretical  discussions.  First  of  all,  there  have  been
some  dynamical  lattice  QCD  simulations  about  double
charmed  tetraquarks,  although  they  have  not  provided  a
definite conclusion on the existence of the  state [5, 6].
Recently, based on (2+1)-flavor lattice QCD simulations,

D∗D

ccūd̄ JP = 1+

D∗+D0

T+cc D∗+D0 D∗0D+

D∗Dπ

T+cc

T+cc

T+cc D∗+D0

T+cc D∗D

the  system was studied more carefully.  It  was veri-
fied that there is a loosely-bound state near the threshold
(–10 keV) [7]. Many phenomenological studies have also
been  conducted.  A  theoretical  prediction  indicated  that
there  may  exist  a  tetraquark  with  near  the

 threshold [8, 9]. In addition, the heavy meson chir-
al  effective  field  theory  (HMChEFT),  which  considers
contact  and  one  pion  exchange  (OPE)  interaction,  was
used. The preferred conclusion of the analyses is that the

 state is a molecule of  and [10, 11]. The
effect of the triangle diagram singularity was also evalu-
ated with  interactions. It was found that the contri-
bution is  very  weak  compared  with  that  of  the  tree  dia-
gram,  which  suggests  that  is  not  generated  from the
triangle  singularity  [12].  The  pole  parameters  of  ex-
tracted from a simple K-matrix amplitude were also stud-
ied and it was found that  may originate from a 
virtual state [13]. The extended chiral Lagrangian with K-
matrix  unitarity  approach  was  also  applied,  and  it  was
suggested that vector meson exchanges could play a cru-
cial role in forming the  bound state of  [14].

T+cc

D∗D
ccūd̄

D∗+D0 D∗0D+

In  this  work,  to  determine  whether  is  just  a
loosely-bound s-wave molecule of  or it contains the

 ingredient,  different  approaches  are  used.  First,  we
adopt an approach similar to that of Ref. [14], in which a
coupled  channel  unitarity  approach  (  and )
with  the  interaction  stemming  from the  extended  hidden
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D∗D
DDπ Dπ DD

T+cc

D∗+D0

T+cc D∗D

D∗D
Z≃ 1
T+cc

pp→ T+cc+X

local gauge lagrangian was also applied. In Ref. [14], the
authors  only  considered  the  vector  exchanging  diagram
contributions  and  there  was  no  fitting  of  the  lineshape
data. In this study, more complete interactions, including
pseudoscalar,  vector  exchanges,  and  contact  terms,
are introduced, and a combined fit of , , and 
channels is made. It indicates that the ρ vector meson ex-
change  couplings  really  make  non-negligible contribu-
tions  in  generating  the  resonance  compared  with  the
other  two  interactions.  In  this  scheme,  there  exists  a
bound state near the  threshold, which suggests that

 may be a  molecule. Furthermore, the Flatté-like
parametrization is also examined. Through a combined fit
on three-body and two-body invariant mass spectrum, we
find that the result is the same based on the pole counting
rule (PCR) and spectral  density function sum rule calcu-
lation [15−20]: there is only one pole near  threshold
and  the  corresponding .  We  also  attempt  to  judge
the  compositeness  of  by  comparing  its  production
( )  with  different  theoretical  estimations.
However,  it  is  difficult  to  make a  clear  judgement  using
this approach.

T+cc
T+cc

This paper is organized as follows: Sec. I is the intro-
duction,  in  Sec.  II,  the K-matrix  unitarization  approach
using an effective Lagrangian in s-wave approximation is
introduced and its numerical fit is shown. In Sec. III, oth-
er frameworks  are  employed  to  analyze  the  composite-
ness of . Finally, in Sec. IV, a brief conclusion on the
structure of  is drawn. 

II.  K-MATRIX UNITARITY APPROACH

SU(4)

SU(2)

We  start  off  from  a  invariant effective  Lag-
rangian, and then modify the relevant parameters to only
preserve  the  symmetry  later,  as  in  [21].  Here,  we
list the relevant coupling terms, 

L =L0− igTr([P,∂µP]Vµ)+ igTr([Vν,∂µVν]Vµ)

− g2

2
Tr([P,Vµ]2)+

g2

4
Tr([Vµ,Vν]2) , (1)

L0where  is the free Lagrangian for the pseudoscalar and
vector  mesons. P and V denote, respectively,  the  prop-
erly normalized pseudoscalar and vector meson matrices

P =



η√
3
+
η′√

6
+
π0

√
2

π+ K+ D̄0

π−
η√
3
+
η′√

6
− π0

√
2

K0 D−

K− K̄0 − η√
3
+

…
2
3
η′ D−s

D0 D+ D+s ηc


, (2)

 

V =



ω√
2
+
ρ0

√
2

ρ+ K∗+ D̄∗0

ρ−
ω√

2
− ρ0

√
2

K∗0 D∗−

K∗− K̄∗0 ϕ D∗−s

D∗0 D∗+ D∗+s J/ψ


. (3)

SU(2)

In the later discussions, all the coupling constants de-
noted  as g in  the  vertices  of  the PPV, VVV, and PPVV
types in  Eqs.  (2)  and  (3)  could  be  different  for  the  ver-
tices  of  different  isospin  multiplets,  such  that  only  the

 isospin  symmetry  is  retained.  Hereafter,  we  only
consider the vertices relevant to our discussions.  We ad-
opt  previous  theoretical  works  [18, 21, 22]  to  estimate
these  coupling  constants  because  the  interaction  vertices
are similar to theirs with only normalization constant dif-

ferences, which can be tracked with a careful analysis.

D∗+D0→ D∗0D+
From  Eq.  (1),  we  can  obtain  the  contact, t, and u

channel diagrams of the  process. We list
their amplitudes  successively.  First,  for  the  contact  dia-
grams in Fig. 1, 

iMc
i j = ig2

D∗DD∗D, (4)

i, j = 1,2 D∗+D0 D∗0D+

gD∗DD∗D

X(3872) g(= gD∗DD∗D) ≃ 16

where  refer  to  the  and  channels,
respectively.  The  coupling  was  estimated  when
studying  [18], that is, 1).

J/ψThe t channel diagrams include vector meson (  or
ρ, ω) exchanges [14], as shown in Fig. 2.2) We also neg-
lect the momentum dependence in the denominator of the
propagator  near  the  threshold.  Here,  the  estimates  about
the  coupling  constants  from  the PPV and VVV vertices

Chang Chen, Ce Meng, Zhiguang Xiao et al. Chin. Phys. C 48, 043102 (2024)

D∗D1) In Ref. [18], all short range  interaction effect is reflected in the contact coupling strength instead of separating them as contact and vector meson exchange
terms like what we do here. There may be some risk of the double counting to take this specific value. However, since these contact terms contribute just a smooth back-
ground, it would not affect the analysis of the sharp peak in our numerical analysis.

ρ02) The ω and  exchange diagram have the same coupling constant with opposite signs. So they almost cancel each other.
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i, j = 1,1 2,2
g(= gJ/ψD(∗)D(∗) ) ≃ 7.7 i, j = 1,2 2,1 g(= gρD(∗)D(∗) )
≃ 3.9

are as follows: For  or , the coupling constant
, and for  or , 

, which are obtained from the vector meson domin-
ance  (VMD)  assumption  [21].  The t-channel  amplitudes
are hence written down as follows: 

iMt
i j = iDi j(p1+ p3) · (p2+ p4) ϵ(p1) · ϵ∗(p3), (5)

where 

Di j =

ág2
J/ψD(∗)D(∗)

M2
J/ψ

g2
ρD(∗)D(∗)

m2
ρ

g2
ρD(∗)D(∗)

m2
ρ

g2
J/ψD(∗)D(∗)

M2
J/ψ

ë
i j

. (6)

The  third  type  are u channel  diagrams  with π ex-
changes as shown in Fig. 3, and the amplitudes are 

iMu
i j = iEi jg2

πDD∗
ϵ(p1) · (p1−2p4) ϵ∗(p3) · (p3−2p2)

(p1− p4)2−m2
π

, (7)

where 

Ei j =

Ö
−1

1
2

1
2
−1

è
i j

. (8)

gπDD∗

D∗+→ D0π+

g(= gπDD∗ ) ≃ 8.4
ηc

D∗+D0

mD∗ = mD+mπ

The  coupling  strength  can  be  restricted  by  the
decay  process ,  and  we  take  the  value

 [22]. u-channel  diagrams  with  pseudo-
scalar  meson  exchanges also  exist.  They  are  not  im-
portant at this energy range as it is tested numerically, so
we neglect these diagrams. As for the amplitudes corres-
ponding to Fig. 3, the u-channel π exchange is somewhat
special  because it  is  possible to exchange one on-shell π
meson. After partial wave projection, there exists, in tree
level  amplitudes,  an  additional  cut  in  the  energy  region
above the  threshold. Here, this singularity will af-
fect the unitarity. To remedy this, we adopt the approxim-
ate relation  to keep the unitarity threshold
away from the singularity, as in Refs. [10, 11]. At last, we
obtain the total coupled channel amplitudes 

Mi j = Mc
i j+Mt

i j+Mu
i j . (9)

Furthermore, with  the  assumption  that  the  full  amp-
litude is mainly contributed by the s-wave amplitude and

 

Fig. 1.    Contact diagrams.

 

Fig. 2.    t channel diagrams.

 

Fig. 3.    u channel diagrams.

T+ccSome remarks on compositeness of Chin. Phys. C 48, 043102 (2024)
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the d-wave  amplitude  can  be  neglected,  we  consider  the
s-wave amplitude, which can be unitarized by the relation 

T−1 =K−1−g(s), (10)

T K

Mi j g(s) ≡ diag{gi(s)}

where  is the unitarized s-wave scattering T matrix,  is
the two-channel s-wave scattering amplitude matrix from

 [23], and . In our normalization con-
vention 

gi(s; Mi,mi)

=−16π2i
∫

d4q
(2π)4

1
(q2−M2

i + iϵ)((P−q)2−m2
i + iϵ)

, (s = P2)

(11)

Mi mi

gi(s) MS

where  is the vector meson mass and  is the pseudo-
scalar meson mass in the i-th channel. The expression of

 in  Eq.  (11)  is  renormalized  using  the  standard 
scheme,  which  introduces  an  explicit  renormalization
scale  (μ)  dependence.  In  our  fit,  we  select  the  same μ
parameter in the two channels.

T+cc
D∗D
D∗

gi(s)
D∗

To  obtain  a  finite  width  for  the  state  below  the
 threshold, we need to consider the finite width of the

 state. This is accomplished by performing a convolu-
tion  of  the  functions  with  the  mass  distribution  of
the  states [24]: 

S (sV ; MV ,ΓV ) ≡ −1
π

Im
ß

1
sV −M2

V + iMVΓV

™
(12)

such that 

g̃i(s; Mi,mi) = C
∫ sV max

sV min

dsVgi(s;
√

sV ,mi)S (sV ; Mi,Γi) , (13)

C

sV ∼ M2
V sV min

sV max g̃1 (mD0+

mπ+ )2 (mD∗+ +2ΓD∗+ )2 g̃2

(mD0 +mπ0 )2 (mD∗0 +2ΓD∗0 )2 Γi

D∗+D0

where  is a normalization factor. The main contribution
to this integration is from the region around the unstable
mass ,  so  we  can  introduce  a  cutoff  and

.  For  example,  for ,  it  is  integrated  from 
 to ,  whereas  for ,  it  is  integrated

from  to . Here, in principle, 
is s-dependent as in Ref. [14]. However, we approximate
the decay widths as constants because we only focus on a
small region near the  threshold, and we also veri-
fied  that  it  makes  little  difference  if  the s dependence  is
included in  the  numerical  calculations.  The  constant  de-
cay widths suggested by PDG [25] read 

ΓD∗+ = 83.4 keV, ΓD∗0 = 55.3 keV. (14)

D0D0π+ pp→ X+D0D0π+

D∗+D0 D∗0D+

D∗+→
D0+π+ D∗+D0

To fit  the  final  state  three-body invariant  mass  spec-
trum of  in , the final-state inter-
action  (FSI)  [20]  between  and/or  needs  to
be considered as above, before contemplating the 

 decay.  The  amplitude  for  the  final  state
reads 

FD∗+D0 (s) = α1 T11+α2 T21 , (15)

α1 α2

D∗+D0 D∗0D+

D∗+D0 D∗0D+ T+cc→ D0D0π+

where ,  are smooth real polynomials parametrizing
the  amplitude  of  producing  and , respect-
ively,  and  as  the  energy  region  of  interest  is  very  small,
we treat them as constant parameters near the thresholds
of  and . Finally, the decay of 
can  therefore  be  expressed  as  in Fig.  4,  and  the  final s-
wave scattering amplitude is written as1) 

t =FD∗+D0

 ϵ · [(p1− p2)+
m2
π+ −m2

D0

m2
D∗+

(p1+ p2)]

M2
12−m2

D∗+ + iM12ΓD∗+ (M12)

+

ϵ · [(p3− p2)+
m2
π+ −m2

D0

m2
D∗+

(p3+ p2)]

M2
23−m2

D∗+ + iM23ΓD∗+ (M23)

 . (16)

M12 M23

si j = M2
i j = (pi+ p j)2 ϵ = ϵ(P)

T+cc P = (p1+ p2+ p3) P2 = s
M2

12+M2
13+M2

23 =

P2+ p2
1+ p2

2+ p2
3 T+cc

Here,  and  are  Dalitz  kinematic  variables  of  the
final  three-body  state.  The  corresponding  definition  is

,  and  corresponds to  the  po-
larization  vector  of , ,  and .
These  invariants  have  the  relation 

.  Finally,  the decay width of  is  given
by 

dΓ(
√

s) =
N
2

32
π

1
s3/2
|t|2ds12ds23. (17)

1
2

D0

N
α1

N α1 = 1
α2

D0D0π+

The factor  in the above equation results from aver-
aging the two integrals of  in the final state. To fit the
experimental  data,  the normalization factor  should be
introduced. As for the two FSI parameters,  can be ab-
sorbed  in  the  coefficients .  Thus,  is  fixed  and
there  remains  one  free  parameter .  Besides,  to  obtain
the  yields  for  the  invariant  mass  spectrum,  the
resolution function needs to be convoluted 

Yields(l) =
∫ l+2σ

l−2σ
dl′

1√
2πσ
Γ (l′)e−

(l′−l)2

2σ2 , (18)

Chang Chen, Ce Meng, Zhiguang Xiao et al. Chin. Phys. C 48, 043102 (2024)

D∗

D∗+D0
1) Analogous equation is used in [14] earlier. The difference is that here the propagator of  is written in unitary gauge rather than Feynman gauge. However, these

two gauges make little numerical difference near and below  threshold region.
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σ = 1.05×263 keVwhere  [1]. At last, invariant mass dis-
tributions for the selected two-body state (particles 2 and
3, for example) can also be derived as the following func-
tion: 

dBr
dM23

=N ′
∫ m2

max

m2
D0 D0π+

ds
∫

ds12|t(s, s12, s23)|2, (19)

N ′ M23

T+cc

mD0D0π+

mmax

where  is  another  normalization  constant,  and  is
the invariant mass of particles 2 and 3. The  energy is
integrated  from  the  initial  energy  to  a  cutoff

.1)

D0D0π+

D0π+ D0D0 D+D0

N N ′
α2

Data  obtained  from  the  LHCb  collaboration  about
three-body  final  states [1]  and  two-body invari-
ant  mass  distributions , ,  and  [2]  are
used to  make a  combined fit.  The normalization , ,
FSI  parameter ,  and  renormalization  scale μ are re-
garded  as  free  parameters  to  be  fitted,  and  all  coupling
constants  found  in  the  literature  are  regarded  as  fixed
parameters.

T+cc

µ = 1.5

The fit result is presented in Fig. 5 and Table 1. It is
found that the fit result is very sensitive to the parameter
μ. That occurs because the peak (  state) is too narrow,
considering that the unit of μ is GeV but the signal range
is  in  MeV.  The  discussion  above  seems  to  suggest  that
the fit result prefers a particular choice of parameter μ. In
[14], a specific fixed  GeV was also taken in their
analysis, which is similar to our result.

D∗

T+cc√
s = 3.8746

500 D∗+D0 √
s = 3.8751

T+cc

DD∗

D∗ D∗D
mD∗ +mD T+cc

The pole location on the s-plane is also studied. If 
is  taken as a stable particle,  then  appears as a bound
state  pole  located  at ,  that  is,  approximately

 keV  below  the  threshold  ( ).  As
there is  no  accompanying  virtual  pole  nearby,  we  con-
clude  that,  according  to  the  pole  counting  rule,  is  a
pure molecule composed of . However, due to the in-
stability  of ,  the  channel  opens  at  the  energy
somewhat  smaller  than  and  the  decay  of 
takes place [14].

D0π+

D∗+D0 mmax = 3.8751
D0D0 mmax = 3.8751

Furthermore, invariant mass distributions for any two
of three final state particles are also taken into considera-
tion.  The  fit  result  is  shown  in Fig.  6.  As  for  the 
state,  which  comes  from ,  we  take 
GeV. As for  states, we take the same 

N ′ =NDD D+D0

D+D0π0

D+D0 D∗+D0

D∗0D+

mmax = 3.8766 GeV
1/2

D0D0

N ′ = 2NDD

D0D0 D+D0

ΦDD

D+D0 T+cc→ D∗0D+→
D+D0π0/D+D0γ D∗0→ D0γ

D∗0

GeV  (  here).  The  final  state,  which
comes  from  the  final  state,  is  different.  Since

 state  may  come  from  two  channels,  and
,  they  need  to  be  considered  altogether  aided  by

isospin  symmetry.  Since  the  threshold  of  the  second
channel is higher, we take , and on ac-
count of a symmetry factor  in the channel including

,  the  normalization  constant  here  is  doubled
( ).  The  fitting  results  are  plotted  in Fig.  7.
Both invariant mass spectra (  and ) have an in-
coherent  background  component,  parametrized  as  a
product of the two-body phase space function  and a
linear  function.  For  from  channel 

,  because  the  decay  channel 
accounts for 35% of the total  decay width, this inco-
herent  background  contribution  is  non-negligible  and
needs to be counted specially. Here, we take this estima-
tion from Ref. [2] directly.

Finally, the fit parameters are listed in Table 1.
 

 

T+cc→ D0D0π+Fig. 4.    Process of .

 

D0D0π+

D∗+D0

D∗0D+

Fig. 5.    (color online)  final state invariant mass spec-
trum.  The  vertical  purple  dash  line  indicates  the 
threshold  and  the  green  one  corresponds  to  the 
threshold. Data obtained from Ref. [1].

 

D0π+

D0D0 +X
Fig. 6.    (color online)  invariant mass spectrum from the
three body final state  (Data from Ref. [2]).

T+ccSome remarks on compositeness of Chin. Phys. C 48, 043102 (2024)

T+cc D∗D1) Since  lies just below the threshold of  with a sharp peak, we can take a rough cutoff about one or two times its Breit–Wigner widths above the threshold.
The subsequent results are not sensitive to this uncertainty.
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T+ccIII.  OTHER INSIGHTS ON 

T+cc

D∗+D0 D∗0D+

T+cc

D∗

D∗D

N

In  this  section,  the  production  of  in  some  other
methods is also analyzed to determine its compositeness.
First of all, a single channel Flatté-like parametrization is
used, where we do not distinguish  and  any-
more. As in  the previous calculation in  Sec.  II,  this  pro-
cess  is  regarded as  a  cascade decay,  as  shown in Fig.  8.
The propagator of  is approximated by Flatté formula.
The  later  propagator  of  selected  here  is  a  simple
Breit–Wigner amplitude form because the energy of  this
process is near the threshold of  and its range is suffi-
ciently small enough. Besides, the momentum dependent
polynomial in the numerator is also normalized by a con-
stant  factor  for  convenience.  Numerical  calculations
indicate that these approximations make little difference.

T+cc→ D0D0π+
The  total s-wave  approximation  amplitude  about  the

process  can be written as
 

t =
1

s−M2+ iM (ĝρ(s))

×
Å

1
M2

12−m2
D∗+ + iM12ΓD∗+

+
1

M2
23−m2

D∗+ + iM23ΓD∗+

ã
,

(20)

ĝ D∗Dwhere  presents  the  coupling  strength  with .  The

D∗

Dπ
1
2

N

D∗

D∗D

mD∗

ΓD∗

doubling of  the kinetic  variables of  the  propagator  is
due to the indistinguishability of  in the three-body fi-

nal  state,  and  the  symmetry  factor  is  absorbed  by  the
total normalization . By this parametrization, we make
the  energy  resolution  convolution  as  that  before  and  fit
the three-body decay width and two-body invariant mass
spectra at the same time using the previous Eqs. (17) and
(19). It  is  worth  pointing  out  that  under  normal  condi-
tions,  it  will  form  a  divergent  peak  because  of  the  zero
partial decay width. However, if  we regard  as an un-
stable particle, in other words, if the amplitude can devel-
op an imaginary part when the energy has not yet reached
the  threshold,  the  peak  is  not  divergent  anymore.
We can  use  the  same stratagem as  Eq.  (13)  to  treat ρ in
Eq. (20), or more simply take the value  in ρ with an
imaginary part . This selection does not affect the res-
ult except for the goodness of fit. Here, we take the latter
scenario.  The  results  of  the  combined  fit  are  shown  in
Fig. 9.

We list the corresponding parameters in Table 2, and
the  pole  structure  of  the  Flatté  amplitude  is  displayed in
Fig. 10.

Furthermore, according to the Flatté-like parametriza-
tion, it is natural to calculate the probability of finding an
'elementary' state in the continuous spectrum by the spec-
tral density function [26]
 

 

D0D0 D+D0 D0D0 +X D+D0 +X

D0D0 D+D0
Fig. 7.    (color online)  ( ) invariant mass spectrum from the three body final state  ( ) [2], where the vertic-
al dashed line indicates the  ( ) threshold.

 

Table 1.    Parameters.

χ2/d.o. f 1.16

α2 −0.43±0.10

µ/GeV 1.122±0.001

gD∗DD∗D 16fixed=  [18]

gπDD∗ 8.4fixed=  [22]
gρD(∗)D(∗) 3.9fixed=  [21]

gJ/ψD(∗)D(∗) 7.7fixed=  [21]

 

Fig. 8.    Cascade decay.
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ω(E) =
1

2π
g̃
√

2M̃Eθ(E)+ Γ̃0∣∣∣∣E−E f +
i
2

g̃
√

2M̃E+
i
2
Γ̃0

∣∣∣∣2 , (21)

E =
√

s−mD∗D E f = M−mD∗D M̃
D∗D

g̃ = 2ĝ/mD∗D

Γ̃0

∼ Γ

where , ,  is  the  reduced
mass  of , θ is  the  step  function  at  threshold,

 is the dimensionless coupling constant of the
concerned  coupling  mode,  and  is  the  constant  partial
width for the remaining couplings. By integrating it with
a  cut  off  (usually  comparable  to  the  total  decay
width ), the possibility of finding an 'elementary' state
in the final state is 

Z =
∫ Emax

Emin

ω(E)dE. (22)

T+cc D∗D Γ̃0

Considering that no other channels are coupling with
 under the  threshold, the  here should be set to

zero. In  this  case,  the  integrated  results  in  different  sec-
tions are as follows.

T+cc

The  result  suggests  that  in  a  simple  single  channel
Flatté-like  parametrization framework,  is a  pure  mo-

lecular state. This is in agreement with the result of Ref.
[27], obtained using an effective range expansion approx-
imation. Our  result  is  much  more  definite  than  that  ob-
tained in Ref. [2].

Ξcc ccu/ccd
T+cc

pT

9 fb−1

Furthermore, the  compositeness  may  also  be  dis-
cussed  from  the  production  rate  of  a  particle.  The  cross
section relation between the confined states ( )
[28] and  can be obtained from the experiment. Since
2016, these two sets of experimental data are both collec-
ted  under  the  same  experimental  conditions,  such  as
transverse  momentum  truncation  and  luminance

.  After  taking  account  of  the  detection  efficiency
and  branching  fraction  differences  [29], there  is  an  ap-
proximate relation
 

σ(pp→ T+cc)
σ(pp→ Ξcc)

∼ 1
3
× 1

10
. (23)

(Q/QQ)q (Q/QQ)qq

1/3

σ(pp→ Ξcc) ≃ 3σ(pp→ (ccūd̄))
T+cc

If we agree that there exists a universal ratio between
the  and  productivities in  high  en-
ergy collision [30], where Q represents a heavy quark and
q is  a  light  quark,  we  can  obtain  a  factor ,  which
means that catching two light quarks is always more diffi-
cult, that is, . Thus, the ra-
tio between the cross sections of the observed  and the
hypothetical tetraquark can be obtained as
 

σ(pp→ T+cc)
σ(pp→ (ccūd̄))

∼ 1
10
. (24)

T+cc

X(3872)

X(3872)
T+cc

It  is  also  possible  to  estimate  the  different  orders  of
magnitude  of  the  theoretical  cross  sections  between  the
`elementary' and `molecular' pictures of . Because the

 resonance has analogous characteristics [31, 32]
(e.g., binding energy and quark composition), some com-
parisons have  been  made  about  these  orders  of  mag-
nitude for  [33, 34]. If one can borrow the discus-
sions here, it can be estimated that approximately for 
 

 

Fig. 9.    Three-body and two-body invariant mass spectrum.

 

Table 2.    Fit parameter.

χ2/d.o. f ĝ M

0.81 keV 0.075±0.015 3874.1±0.2MeV

 

Fig. 10.    Pole structure of flatté amplitude.
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σ(pp→ (cū)(cd̄))
σ(pp→ (ccūd̄))

∼ O(10−2)−O(10−3). (25)

T+cc

Tcc

T+cc

T+cc

A  similar  result  was  also  obtained  in  [35]. By  com-
paring Eq.  (24)  and  Eq.  (25),  one  can  find  that  the  pro-
duction  of  just  falls  in  between  two  different  cases.
However, this  analysis  depends  on  some  uncertain  as-
sumptions and is not quite reliable. In Ref. [36], the pro-
duction cross section for  as a molecule was estimated
to  be  approximately  an  order  of  magnitude  higher  than
that as a tetraquack, which creates more confusion. Thus,
using  the  production  argument  cannot  provide  a  clear
conclusion on the nature of . On the contrary, the ana-
lysis  provided  in  this  paper,  for  example  in Table  3,
clearly indicates the molecular nature of . 

IV.  SUMMARY

T+cc

D∗+D0 D∗0D+

T+cc→ D0D0π+

In this work, we study the nature of  using differ-
ent  methods.  First,  an  effective  field  theory  Lagrangian
with  two  channels  (  and )  combined  with  a
K-matrix  approach is  used to  describe  the 

T+cc

D∗D

process.  The  three-body  and  two-body  invariant  mass
spectrum can be fitted well at the same time. The numer-
ical  fit  results  reveal  that  vector  meson  exchanges  are
more  important  than π exchanges and  contact  interac-
tions.  Second,  the  Flattè  formula  is  used  to  study  the
same problem. Both approaches suggest that  is defin-
itely  a  pure  molecular  state  composed of , in  agree-
ment with many of the results found in the literature, but
on a much more confident level. 
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