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Abstract: In  this  study,  we consider  a  nonsingular  two-field  bounce scenario  with  non-minimal  kinetic  coupling
between two scalar fields. We derive constraints on the model parameters from the finiteness of the physical quantit-
ies at the classical level and from the relation between the late-time accelerated expansion and particle production up
to the bounce phase. We then determine the allowed parameter space for the model.
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I.  INTRODUCTION

The  inflationary  scenario  [1] has  become  the  stand-
ard paradigm for the early universe. It solves many of the
theoretical problems  of  Big  Bang  cosmology  and  ex-
plains  the  observed  cosmological  perturbations  [2].
However,  the  initial  singularity  problem  [3]  of  the  Big
Bang cosmology remains unsolved under the inflationary
paradigm [4, 5], i.e., ever expanding cosmologies must be
past incomplete. This motivates us to explore alternatives
to the inflationary cosmology.

A bouncing universe [6, 7] (for reviews, see [8−10]),
an alternative to the inflationary cosmology, offers a po-
tential  solution  to  the  initial  singularity  problem.
However, the bounce scenario also faces several theoret-
ically and phenomenologically challenging issues. Firstly,
a  cosmic  nonsingular  bounce  can  only  occur  when  the
null  energy  condition  is  violated,  which  typically  gives
rise to a ghost instability. This issue can be circumvented
by introducing a new kind of  matter  field,  such as ghost
condensates [11, 12], Galileons [13], quintom fields [14],
or Lee-Wick fields [15]. Secondly, a contracting phase of
a  bouncing  cosmology  is  generally  unstable  under  the
growth of  anisotropies,  which  is  known  as  the  BKL  in-
stability [16]. The solution to this problem is to introduce
a  scalar  field  with  a  steep  and  negative-valued  potential
that  dominates  over  anisotropies  during  the  contracting
phase  [17, 18].  During  this  ekpyrotic  contracting  phase,
homogeneity, isotropy, and flatness can be achieved after
the  scale  factor  of  the  universe  shrinks  by  just  a  few  e-
folds, even if the initial state is highly non-homogeneous
and non-isotropic [19, 20].

Another important issue with bounce models is that it

N = 1

is relatively difficult to obtain them based on the low-en-
ergy  effective  field  theory  of  string  theory  or  quantum
gravity.  In  [21],  a  nonsingular  bounce model  based on a
ghost condensate  and  a  Galileon  field  theory  that  in-
cludes  a  ekpyrotic  phase  was  constructed  within 
supergravity.  In  [22],  this  model  was  improved  into  a
much  simpler  model  where  the  nonsingular  bounce  is
supported by a scalar  field with a pure ghost  condensate
kinetic term and ekpyrotic potential.

To generate nearly scale-invariant curvature perturba-
tions  with  small  non-Gaussianities,  in  [23],  the  model
proposed  in  [22] was  combined with  the  entropic  mech-
anism  [24]  where  the  entropy  field  is  coupled  to  the
bounce field by a non-minimal kinetic coupling [25, 26].
In  [27],  the  possibility  of  incorporating  the  late-time ac-
celerated expansion was explored, and two phenomenolo-
gical constraints  were  obtained  by  comparing  the  amp-
litude of curvature perturbations with the observed value
[2].  In  [28],  the  amount  of  generated  particles  up  to  the
bounce phase was evaluated based on detailed investiga-
tion  of  the  background  evolution  during  the  bounce
phase.

All previous  studies  indicated  that  the  models  con-
sidered in [22, 23, 27] can be not only theoretically prom-
ising but  also phenomenologically viable.  However,  it  is
unpreferable if  the model  suffers  such severe constraints
that  the  allowed  parameter  space  has  a  much  smaller
volume than other models for the early universe.

In this  paper,  we  aim  to  derive  theoretical  and  phe-
nomenological  constraints  on  the  nonsingular  bounce
scenario  considered  in  [22, 23, 27] to  investigate  the  al-
lowed parameter space. Concretely, one constraint is ob-
tained by requiring the model not to have a singularity at
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the  background  level,  and  the  other  is  derived  by  using
the  relation  between  the  energy  density  of  the  particles
created by the classical backgrounds and the late-time ac-
celerated expansion [27]. We then determine the allowed
parameters  of  the  model  by  combining  these  with  the
constraints obtained in [27].

h̄ = c =
8πGN = 1 GN

(−,+,+,+)

Following [28],  we use the Planck units with 
 (where  is  Newton's  gravitational  constant)

and take the sign of the metric to be  in this pa-
per. 

II.  LAGRANGIAN

The model  that  we  consider  consists  of  two  kinetic-
ally-coupled  scalar  fields:  a  bounce  field ϕ that  violates
the Null Energy Condition for a short period and induces
the cosmic bounce and an entropic field χ that is respons-
ible for generating nearly scale-invariant scalar perturba-
tions. The corresponding Lagrangian is given by [22, 23,
27]1) 

L =
R
2
− 1

2
K(ϕ)∂µϕ∂µϕ+

1
4

Q(ϕ)(∂µϕ∂µϕ)2

−V(ϕ)− 1
2
Ω(ϕ)2∂µχ∂

µχ, (1)

where R is the Ricci scalar, and 

K(ϕ) = 1− 2
(1+ 1

2ϕ
2)2
, Q(ϕ) =

q
(1+ 1

2ϕ
2)2
. (2)

Ω(ϕ)The  form  of  should  be  chosen  such  that  nearly
scale-invariant entropic  perturbations  are  generated  dur-
ing the ekpyrotic  contracting phase.  A simple such form
is [25, 30] 

Ω(ϕ) = exp
Å

b
2
ϕ

ã
, (3)

b ≃ 1.02λ
ns (0.95,0.97)

where  the  parameter b is  slightly  larger  than λ (i.e.,
; see, e.g., [23]) so that the scalar spectral index

 falls in the range of . However, this simple
form leads to an extremely inefficient conversion process
from the  entropic  perturbation  into  the  curvature  fluctu-
ation after the ekpyrotic contracting phase, due to the sig-
nificant  scalar  curvature  in  the  field  space  [31].  The
curvature  perturbation  then  has  a  small  amplitude  and
large non-Gaussianities, which is clearly in contradiction
with observations [31]. For this reason, it is necessary to
flatten the field space metric after the ekpyrotic phase. As

ϕ =

−
»

2(
√

2−1) ≃ −0.9 Ω(ϕ)
the  ekpyrotic  phase  contracting  ends  at  around 

 [28], we take the function  as
 

Ω(ϕ) = exp

Ç
b
2

(x+1)
2
π

arctan(−100(x+1))+1
2

å
, (4)

−∞

Ω(ϕ)

see Fig. 1 for comparison of (3) and (4). As in [28], here,
we assume that the scalar field ϕ evolves from  in the
positive  direction  without  loss  of  generality.  In  Section
IV, we give results for particle creation significantly dif-
ferent  from  in  [28],  which  is  due  to  the  change  of  the
form of .

The scalar potential is given by [22, 23, 27, 32] 

V(ϕ) = VDE−V0 · sech(λϕ), (5)

VDE > 0

√
6

where ,  which is  almost equal to the dark energy
density, is introduced to account for the late-time acceler-
ated expansion [27, 32]. This parameter is so small that it
can be neglected before the late-time accelerated expand-
ing phase.  As  mentioned  in  the  Introduction,  the  poten-
tial (5) should be so steep that the unwanted anisotropies
are  sufficiently  diluted  before  the  bounce.  This  is
achieved by setting the parameter λ to be greater than 
[17, 33]. 

III.  BACKGROUND DYNAMICS AND
CLASSICAL SINGULARITY

a(t)

We take  the  background  metric  to  be  a  flat  Fried-
mann-Lemaître-Robertson-Walker (FLRW) universe with
a  scale  factor .  The  background  equations  of  motion
are then [23, 28] 

3H2 =
1
2

K(ϕ)ϕ̇2+
3
4

Q(ϕ)ϕ̇4+V(ϕ), (6)

 

Ḣ = −1
2

K(ϕ)ϕ̇2− 1
2

Q(ϕ)ϕ̇4, (7)

 

0 = (K(ϕ)+3Q(ϕ)ϕ̇2)ϕ̈+3Hϕ̇(K(ϕ)+Q(ϕ)ϕ̇2)

+V,ϕ+
Å

1
2

K,ϕ+
3
4

Q,ϕϕ̇2
ã
ϕ̇2− 1

2
Ω,ϕ

Ω
χ̇2, (8)
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1) In most of the nonsingular bounce models including the one discussed in this work, the speed of sound squared of primordial scalar perturbations becomes negat-
ive around the bounce point, leading to gradient instabilities. This issue can be resolved by adding the Degenerate Higher-Order Scalar-Tensor (DHOST) terms [29].
Since  inclusion  of  these  additional  higher-order  derivative  terms  do  not  alter  the  background  dynamics,  the  analysis  below is  still  valid  even  including  the  DHOST
terms.
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0 = χ̈+

Ç
3H+2

Ω̇

Ω

å
χ̇, (9)

H ≡ ȧ/a

ϕ

where the Hubble parameter H is  given by ,  and
the  over-dot  refers  to  the  derivative  with  respect  to  the
cosmic time t; the subscript,  denotes the derivative with
respect to ϕ.

K(ϕ)
|ϕ| ≤

»
2(
√

2−1) ≃ 0.9

Q(ϕ)

K(ϕ)

One can readily see from (2) and (7) that violation of
the  null  energy condition can occur  only  when  be-
comes  negative,  or .  At  this  time,

 that controls the magnitude of the higher derivative
term  becomes  large  so  that  the  ghost  condensation  can
occur [11, 21, 22, 28]. Here, we define the bounce phase
by the period when  has negative value.

Outside of the bounce phase, the Lagrangian (1) is ef-
fectively reduced  to  the  canonical  form,  and  the  back-
ground  dynamics  in  this  case  were  analysed  in  detail  in
[27].  In  summary,  the  universe  undergoes  the  ekpyrotic
contracting phase,  bounce  phase,  kinetic  energy  domin-
ated expanding phase, and finally the standard Big Bang
cosmology, which is a typical evolution of the nonsingu-
lar bounce scenario [22, 23, 27, 28], see Fig. 2.

qV0

Note that it is not clear whether this means of evolu-
tion of the bouncing universe holds true for any values of
the parameters in the model (1). It was indeed reported in
[28] that when  has a large value, the Hubble paramet-
er decreases rapidly after the bounce phase so that it can
become a negative infinity in a finite time, which leads to
a new kind of classical singularity. Hence, we would like
to derive a necessary condition for this sort of singularity
not to occur.

It is  obvious  that  this  classical  singularity  will  cer-
tainly  appear  if  the  Hubble  parameter  takes  a  negative
value at the end of the bounce phase. As the Hubble para-
meter  is  negative  at  the  beginning  of  the  bounce  phase,
one can immediately see that the necessary condition is ∫ tB+

tB−

dt Ḣ > 0, (10)

tB− tB+where  and  refer to  the  cosmic  time  at  the  begin-
ning and end of  the bounce phase,  respectively.  In  addi-
tion, it holds that during the bounce phase [28], 

ϕ̇2 ≃ −K(ϕ)+
√

K2(ϕ)−12Q(ϕ)V(ϕ)
3Q(ϕ)

. (11)

Therefore, we find that the necessary condition becomes 

∫ ϕB+

ϕB−

dϕ

 
−K(ϕ)+

√
K2(ϕ)−12Q(ϕ)V(ϕ)

Q(ϕ)

×
Ä
−2K(ϕ)−

√
K2(ϕ)−12Q(ϕ)V(ϕ)

ä
> 0, (12)

ϕB− = −
»

2(
√

2−1) ϕB+ = +

»
2(
√

2−1)

1 ≤ Q(ϕ)/q ≤ 2 ϕB− ≤
ϕ ≤ ϕB+

where  and  rep-
resent  the  values  of ϕ at  the  beginning  and  end  of  the
bounce phase, respectively. Using the fact that K, Q, and
V are  even  functions  and  for 

,  the  above  necessary  condition  is  reduced  into  a
simpler form, namely, 

∫ ϕB+

0
dϕ

√
|K(ϕ)|+P(ϕ)

Ä
2
√

2|K(ϕ)| −P(ϕ)
ä
> 0, (13)

where 

P(ϕ) ≡
√

K2(ϕ)−12Q(ϕ)V(ϕ). (14)

We then proceed as follows: 

 

Ω(ϕ)
b = 1.02

√
20

Fig. 1.    (color online) Log-plot of  given by (3) and (4)
for .

 

λ =
√

10 q = 108 V0 = 2×10−10

Fig.  2.    (color online) Plot  of H for  the  model  parameters
given  by , ,  and .  The  horizontal
axis denotes ϕ. The scalar field ϕ evolves in the positive direc-
tion.  The  universe  undergoes  ekpyrotic  contracting  phase,
bounce phase, and kinetic energy-dominated expanding phase.
The  final  Big  Bang  standard  evolution  is  not  depicted.  The
plot  is  insensitive  to  the  initial  condition  due  to  the  attractor
nature of the ekpyrotic solution [34, 35].

Cosmological constraints on the background dynamics of a two-field nonsingular bounce model Chin. Phys. C 48, 115103 (2024)

115103-3



(13) =⇒ 2
√

2
∫ ϕB+

0
dϕ |K|

√
|K|+P >

∫ ϕB+

0
dϕ P

√
|K|+P

=⇒ 2
√

2
∫ ϕB+

0
dϕ
Ä
|K|3/2+ |K|

√
P
ä
>

∫ ϕB+

0
dϕ P3/2

=⇒ 4
√

2
∫ ϕB+

0
dϕ |K|3/2+2

√
2(12qV0)

1
4

∫ ϕB+

0

dϕ

cosh
1
4 λϕ

> (12qV0)
3
4

∫ ϕB+

0

dϕ

cosh
3
4 λϕ

=⇒ 4
√

2λ+10
√

2(12qV0)
1
4 >

3
2

(12qV0)
3
4 ,

(15)

where in the last line, we used
 

λ

∫ ϕB+

0

dϕ

cosh
1
4 λϕ
< 5, λ

∫ ϕB+

0

dϕ

cosh
3
4 λϕ
>

3
2
,

which can be verified numerically.
qV0

qV0 ≲ 16.2 λ =
√

20
Equation (15) sets a λ-dependent upper bound on .

For instance, one can find that  when ;
otherwise,  the  divergence  of  the  Hubble  parameter  will
surely appear (see Fig. 3).
 

IV.  PARTICLE PRODUCTION AND LATE-TIME

ACCELERATED EXPANSION

Particle  production  in  nonsingular  bounce  scenarios
has  been  discussed  in  [28, 36, 37],  where  it  was  shown
that, during the ekpyrotic contracting and bounce phases,
particles  are  generated  enough  to  reheat  the  universe.
Meanwhile,  the  amount  of  particle  production  up  to  the
bounce  phase  should  not  exceed  a  certain  bound  for  the
nonsingular bounce scenario, such as that given by (1), to
be consistent with the currently observed accelerated ex-
pansion of the universe, namely [27],
 

…
ρm0

ρ0

1+
…

1+
ρm0

ρ0

<

Å
ρCC

2λV0
eλϕB+

ã 1−wm
λ

√
3
8

, (16)

or
 

λ

1−wm

…
3
2

log
ρm0

ρ0
< ϕB+λ+ log

ρCC

2λV0
, (17)

ρm0 ρ0

wm

ρCC

10−120

where  and  refer to the energy density of matter/ra-
diation  with  equation  of  state  and  background  at  the
end of the bounce phase, respectively, and  represents
the  observed  dark  energy  density,  which  is  of  the  order

 in Planck  units.  Obviously,  we  can  obtain  a  con-
straint  on the bounce scenario from (17),  once the lower
bound of energy density of the generated particles is ex-
pressed in terms of the model parameters.

vk v ≡ aΩ(ϕ)χ

Hence, we would like to estimate the lower bound of
energy  density  of χ-particles  generated  up  to  the  bounce
phase. The whole procedure is similar to that in [28]. The
first step is to solve the differential equation for the Four-
ier mode  of , which is given by
 

v′′k +
(
k2−µ2(η)

)
vk = 0, µ2(η) ≡H 2+H ′+

Ω′′

Ω
+2H

Ω′

Ω
,

(18)

dη = a−1dt
Ω(ϕ) µ2(η)

Ω(ϕ)

vk

where the prime denotes the derivative with respect to the
conformal  time η defined  by .  Note  that  the
contribution of -related terms to  becomes neg-
ligible from the bounce phase, which is in contrast to the
case  in  [28],  where -related  terms  played  a  major
role  in  particle  creation  during  the  bounce  phase.  As  in
[28, 36, 37],  we assume the initial  conditions for  cor-
responding to a Bunch-Davies vacuum state, i.e.,
 

 

λ =
√

20 q = 108

V0 = 1.7×10−7

Fig. 3.    (color online) Plots showing divergence of the Hubble parameter H for the model parameters given by , , and
. The left panel shows the evolution of H according to the cosmic time t, while in the right panel, the horizontal axis de-

notes ϕ. As mentioned before, the form of these plots does not depend on the initial conditions.
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lim
η→−∞

vk =
e−ikη

√
2k
. (19)

µ2(η)As  can  be  seen  in Fig.  4,  during  the  ekpyrotic
and  kinetic  phase  is  much  less  than  during  the  bounce
phase. This implies that the solution of (18) during these
phases is effectively given by a plane wave, namely, 

vk ≃
e−ik(η−ηB−)

√
2k
, η ≤ ηB−, (20)

 

vk ≃
1√
2k

(
αke−ik(η−ηB+)+βke+ik(η−ηB+)

)
, η ≥ ηB+,

(21)

ηB− ηB+

αk βk

nk = |βk |2

βk

where  and  denote the  conformal  time at  the  be-
ginning and  end  of  the  bounce  phase,  respectively.  Re-
call  that  and  are  the  so-called Bogolyubov  coeffi-
cients,  and  gives the  number  density  of  gener-
ated  particles  with  comoving  wave  number k.  Once  the
Bogolyubov  coefficient  is determined,  we  can  com-
pute the energy density of the generated particles via [36] 

ρm0 =
1

2π2

∫ ∞

0
dk k3|βk |2. (22)

βk

µ2(η)

ρm0

ρm0 µ2(η)

Determining  requires  us  to  solve  (18)  during  the
bounce  phase  as  in  [28],  which  is  non-trivial  because

 takes the complicated form in this phase (see, e.g.,
Fig.  4).  As  our  aim  is  just  to  use  the  inequality  (17),
which contains only the logarithm of , we only need to
estimate  the  order  of .  To  this  end,  during  the
bounce phase can be approximated by a certain constant
value, namely, 

µ2(η) ≃ Λ2, (23)

µmax =where  Λ  is  an  order  one  fraction  of 

maxηB−≤η≤ηB+ |µ(η)|
βk

ρm0

.  It  is  now  simple  to  compute  the
Bogolyubov coefficient , and hence, the energy density

 becomes 

ρm0 ≃
1

8π2

∫ Λ

0
dk k3

∣∣∣∣∣∣∣∣
…
Λ2

k2
−1− 1…

Λ2

k2
−1

∣∣∣∣∣∣∣∣
2

sinh2(T
√
Λ2− k2)

+
1

8π2

∫ +∞

Λ

dk k3

∣∣∣∣∣∣∣∣
…

1− Λ
2

k2
− 1…

1− Λ
2

k2

∣∣∣∣∣∣∣∣
2

× sin2(T
√

k2−Λ2),

(24)

T ≡ ηB+−ηB−

µ2(η)
kmax

kmax 3µmax

k ≥ 3µmax ρm0

where  is  the  duration  of  the  bounce  phase.
Obviously,  the  second  integral  in  the  above  expression
logarithmically diverges for  large k,  which has its  origin
in the approximation (23). Namely, this ultraviolet diver-
gence disappears for smooth function  [28, 38]. We
therefore assume that there is an ultraviolet cutoff . In
fact, as shown explicitly in [28], we can set  to ;
the  produced  particles  with  comoving  wave  number

 provide  a  minor  contribution  to .  After  a
change in variables, we get 

8π2

Λ4
ρm0 ≃

∫ 1

0
ds s

∣∣∣∣2s− 1
s

∣∣∣∣2

sinh2(ΛT s)+
∫ 3

0

ds
s

sin2(ΛT s).

(25)

O(1)

ΛT

One  can  readily  see  that  the  second  integral  is ,
while  the  first  one  has  an  exponential  relationship  with

.
µmax

ϕ̇ ∼ 1/
√

q

Now, we only have to express  and T in terms of
the  model  parameters.  It  follows  from  (6)  that  we  have

 up  to  an  order  one  factor  during  the  bounce
phase; therefore, the duration T of the bounce phase is up
to an order one constant (cf., Eq. (24) in [28]) 

T ≃
∫ ϕB+

ϕB−

dϕ
ϕ̇
∼ √q, (26)

µ2(η) ≃H ′+H 2

H 2≪H ′ ≲
1

9q

where we have used the fact that the change of the scale
factor a during the  bounce  phase  is  negligible.  Mean-
while, as mentioned before, during the bounce phase, we
have ,  which can be estimated by using

 [28]. It follows that up to order one con-
stants, 

µmax ∼ Λ ∼
1
√

q
. (27)

 

µ2

λ = 3
√

20 q = 108 V0 = 2×10−10

Fig.  4.    (color online) Plot  of  for  the  model  parameters
given by , ,  and .  The horizontal
axis denotes ϕ.
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ΛTCollecting  the  results  above,  we  find  that  is  order
one, and therefore, 

ρm0 ∼
1

8π2q2
, (28)

ρm0

ρm0

up to an order one factor (cf., Eq. (46) in [28], where 
depends on both q and b). The dependence of  only on
q among the  model  parameters  is  obvious;  most  particle
creation  by  classical  backgrounds  occurs  during  the
bounce phase, whose background dynamics basically de-
pend on q.

ρ0 ρ0 = 3H2
B+ HB+

1/
√

q

Moreover,  is  given  by ,  where ,  the
Hubble  parameter  at  the  end  of  the  bounce  phase,  is  an
order  one  fraction  of  [28].  Combining  this  with
(17) and (28), we get a constraint 

λ

2
logq+λ+ log

ρCC

2λV0
> 0, (29)

wm = 1/3
where  we  consider  the  fact  that  most  of  the  created
particles  have  the  equation  of  state  and  ignore
some order one factors. 

V.  PARAMETER SPACE

The two  constraints  we  derived  in  the  previous  sec-
tions can be used in determining the parameter space for
the nonsingular bounce scenario (1), in combination with
other constraints already available in literature: 

V0 ≤ 10−4, (30a)
 

√
6 < λ ≲ 38, (30b)

 

Å
λ2

2
−3
ã

cosh
(»

2(
√

2−1)λ−2
)Å

λ2

2
−1
ã2 ≲ 107F 2V0,

(30c)

F

O(104)

V0

VDE

where , an amplification factor of the entropy perturba-
tions across the bounce phase, is at most  [23]. The
first constraint comes from the fact that we are using the
low-energy effective field theory description and have to
suppress any quantum gravity effect [22]. The second and
last  constraints  are  due  to  suppressing  the  anisotropic
stresses  during  the  ekpyrotic  contracting  phase  [39]  and
having  the  amplitude  of  the  curvature  perturbations  in
agreement  with  the  observations  (see  Eq.  (4.26)  and
(4.27) in Ref. [27]). Note that all of these constraints are
for  the  model  parameters q, ,  and λ;  the  other  ones, b
and , are fixed in terms of λ and observations, as men-
tioned before.

√
6 7 λ =

√
20

V0

V0 12 ∼ 13
λ = 32

5 ∼ 7

We plot  the  parameter  space  for  the  model  (1)  de-
termined by the constraints (15), (29), and (30) (see Fig.
5). One can clearly see that the lower bound of λ is lifted
from  to ;  for  instance, ,  which  is  typically
used in the literature [22, 23, 27], is not allowed. In addi-
tion, it is evident that the greater the value of λ, the larger
the allowed range of parameters q and . For instance, q
and  can  vary  by  orders  of  magnitude  for

.  This  is  indeed  a  large  space;  for  instance,  under
minimal warm inflation [40], the parameters can vary by

 orders of  magnitude.  This  implies  that  the  nonsin-
gular bounce scenario (1) is preferable for the  large val-
ues of λ.
 

 

V0 V0

λ ≤ 7

Fig. 5.    (color online) Allowed space for the model parameters q, , and λ. Two dimensional space for q and is plotted for various
values of λ in the left figure, while the total three dimensional space is plotted in the right figure. The left figure shows that  is not
allowed.
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VI.  CONCLUSIONS

In  this  study,  we  derived  two  constraints  (15)  and
(29): one from the possible appearance of the singularity
in background evolution and the other one from the rela-
tion  between  particle  creation  and  late-time  accelerated
expansion. Combining these with the already known con-
straints,  we  determined  the  allowed  parameter  space  for

the nonsingular bounce scenario.
We emphasize that there can be other constraints; for

instance,  non-Gaussianity  of  the  curvature  perturbation
may  put  a  severe  constraint  on  the  model.  For  this,  one
must  investigate  the  conversion  of  entropy  perturbations
into  curvature  perturbations  in  detail,  which  we  plan  to
address in future work.
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