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Abstract: This study investigates the echoes in axial gravitational perturbations in compact objects. Accordingly,

we propose an alternative scheme of the finite difference method implemented in two coordinate systems, where the

initial conditions are placed on the axis of the tortoise coordinate with appropriate boundary conditions that fully re-

spect the causality. The scheme is then employed to study the temporal profiles of the quasinormal oscillations in the

Schwarzschild black hole and uniform-density stars. When presented as a two-dimensional evolution profile, the res-

ulting ringdown waveforms in the black hole metric are split into reflected and transmitted waves as the initial per-

turbations evolve and collide with the peak of the effective potential. Meanwhile, for compact stars, quasinormal os-

cillations might be characterized by echoes. Consistent with the causality arguments, the phenomenon is produced by

the gravitational waves bouncing between the divergent potential at the star's center and the peak of the effective po-

tential. The implications of the present study are also discussed herein.
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I. INTRODUCTION

Compact objects, such as a neutron star or black hole,
produce gravitational waves (GWs) triggered by metric
perturbations. The dissipative process essentially features
three stages: the initial burst, quasinormal mode (QNM)
oscillations, and the late-time tail. In the initial burst
stage, the system's dynamical properties are determined
mainly by the initial conditions. In contrast, in the QNM
and late-time tail stages, the process is primarily gov-
erned by the intrinsic nature of compact objects. For
spherically symmetric metrics, the master equation can be
simplified, and in the frequency domain, the radial sector
can be expressed as a Schordinger type equation regard-
ing a complex eigenfrequency w. A variety of methods
were proposed, and one is expected to extract valuable in-
formation on the underlying stars or black holes from the
GW measurements [1-9]. The relevant studies in which
analysis of observed quasinormal frequencies, known as
QNM spectroscopy, was performed have gained consid-
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erable momentum recently [10—16].

Regarding black hole QNMs, the dynamic temporal
evolution of the initial perturbations is usually explored at
a given spatial point. However, it is more meaningful to
study the GW propagation for the entire range of spatial
coordinates, for instance, in the two-dimensional ¢—r,
coordinate space (where r. = [ dr/+/fh is the tortoise co-
ordinate). In literature, many semi-analytic methods, such
as the WKB approximation [17—23], continued fractional
method [24, 25], asymptotic iteration method [26—29],
and matrix method [30—34], among others [35—40], have
been proposed. These approaches have been extensively
adopted for evaluating black hole QNM frequencies w.
For star QNMs, however, they must be modified accord-
ingly and often used in conjunction with the shooting
method [41—47]. Nonetheless, the above approaches only
concern the QNM oscillation stage, and therefore, they
cannot be employed to address the entire process. In this
regard, the finite difference method (FDM) is a suitable
approach that can be used to provide a more general de-
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scription of the dynamical evolution for given initial per-
turbations [48—53].

In practice, to implement the FDM, the boundary con-
dition and initial conditions are often proposed on the
axes of the Eddington-Finkelstein coordinates, W(u,v = 0)
=0 and Y(u=0,v) =¥y (where u=t—r. and v=r+r,),
respectively. Assuming that the spacetime in the tortoise
coordinate is mainly flat, so that the speed of light of the
waveform ¢ ~ 1, the boundary placed on u =0 is mostly
in accordance with the causality that will never be at-
tained by the initial perturbations assigned to the surface
v=0. In practice, the assumption that ¢~ lhas been
clearly shown as a reasonable approximation in numeric-
al calculations. In principle, however, it might be viol-
ated in the vicinity of the black hole. More specifically,
although the above boundary condition is asymptotically
correct, for a finite period, the initial perturbations might
temporarily travel across the v axis. Thus, we propose an
alternative approach as follows. The initial conditions are
placed on the spatial surfacet = 0, and appropriate bound-
ary conditions are adopted in accordance with the causal-
ity. For the black hole spacetime, free boundary condi-
tions are implemented so that the initial perturbations will
propagate as an ingoing wave toward the horizon and an
outgoing wave toward spatial infinity. For the compact
star spacetime, the free boundary condition will be adop-
ted at the spatial infinity for the reason mentioned above,
and the perturbations must vanish at the center of the star
as the effective potential goes to infinity. Moreover, the
junction condition in terms of a vanishing Wronkian is
enforced at the star's surface. The proposed scheme is
more flexible as it can be easily modified to adopt the
case where the speed of light exceeds the unit. Therefore,
it is considered in the present work to investigate the tem-
poral profiles of both black holes and stars. The obtained
results are illustrated in a two-dimensional evolution pro-
file. In the case of black holes, it is found that the result-
ing ringdown waveforms are featured by the reflected and
transmitted waves as the initial perturbations evolve and
collide with the maximum of the effective potential.
Meanwhile, in the case of compact stars, temporal evolu-
tions may also be characterized by echoes. These echoes
have largely been speculated to be associated with com-
pact objects [54—57], such as black holes and wormholes,
which has become an intriguing topic in recent years.
Typically, their emergence is understood to be related to
the existence of an effective potential well. Specifically,
for the wormhole metric explored in Ref. [56], echoes are
intuitively attributed to the potential well between the two
maxima. Moreover, the echo's period is governed by
twice the distance between the peaks. In the context of a
black hole or other exotic compact objects, the period of
the echoes is related to the distance between the maxim-
um of the effective potential and the surface or inner
boundary of the compact object [55]. More recently, it

was pointed out that a discontinuity may also play such a
role in triggering echoes [57]. For the present scenario,
the echoes can be attributed to the repeated bouncing of
the waveforms between the star's center and its surface.

The remainder of the paper is organized as follows. In
the following section, we present the numerical schemes
of the FDM and the associated von Neumann stability
condition. In Section III, the obtained numerical results
are discussed. Section IV presents the concluding re-
marks.

II. FDM SCHEMES

For the sake of simplicity, we consider the spheric-
ally symmetric spacetimes, whose metric possess the
form

dr? 2 (302 | 2 2
—— +77(d6” +5sin” 6de”) . )]

ds® = —h(r)df® + 0

For the Schwarzschild black hole, we have

2M
f)=h)=1-=2, @)

where Ms and r, = 2M;s are the mass and horizon of the
black hole, respectively. The tortoise coordinate r, = [ dr/

\fh reads r, = r+rg log (rL - 1).
s

. . . 3M
For the stars with uniform density p = 4—?, where r,
TT

Ty
is the radial coordinate of the star's surface, the metricis
idential to Eq. (2) for the outside region r > r,. On the in-

side of the star (r < r,) [58],

L 2M(r)
fr)=1- punt

2
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0
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For the tortoise coordinate, the constant of integration is
chosen so that r.(r = 0) = 0.

Using the method of seperation of variables, the axial
gravitational perturbations are governed by [59]
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PY Y
I W =
a2~ an T VO¥=0.

Vaarr) = 1% (IUL+ D + 4o~ p)r = 6M),

h
Veu(r) = r—S(L(L+1)r—6MS). 4)

At spatial infinity, the boundary condition dictates that
waveform ¥ is a symptotic outgoing wave. For black
holes, ¥ must be an asymptotic ingoing wave at the hori-
zon. For stars, the wave function must be regular at the
center of the star, and the junction conditions at the star's
surface reads

Winside (r5) =Foutside (1),
0y Winside(1p) =0, outside (75),
or 0, ¥inside(7s) =ar‘q’,outside(rb)s ®)

if the effective potential is not divergent at the surface.

In the proposed scheme, as shown in the left plots of
Figs. 1 and 2, the initial conditions are given at the spa-
tial surface ¢=0, namely, ¥(t =0) and 9,¥(t =0). Sub-
sequently, the spacetime coordinates inr.and ¢ are discret-
ized, and the partial derivatives are approximated by first-
order finite differences. Specifically, t; = fo +iAt, r.j = r.o+
JAr. ‘I”] =¥(t=t,r=ry), and V;=V(r. =r,)); the
master equation (Eq. (4)) becomes

\Pil-*-l __\Ijif] + Aitz (\{/l +\Pi_—1)
i J Ar% Jj-1 J
AP -
+ (2—2p - Az2v,) b (6)

For the stars, the junction condition in Eq. (5) reads

0 rs

Fig. 1.

i i i _wi
Lij leh_l _ \P./l)+1 ‘ij
Ar, Ar,

where Wi | =Winae(r =ro+(p— DAr), W =
Woutside (7+ = 740 + (jip + 1DAF), and lPljh = Winside(r« = 1o+

JpAr) = Poussiage(re = rso + jpAry), SO that

o1
¥i=3

(1 +¥51). (7)
where subscript b indicates that the grid is on the star's
surface.

The temporal evolution is performed by iterating from
both boundaries toward the center. Usually, Eq. (6) is
utilized to determine the grid values for the next time
step, except for those on the star's surface where the itera-
tion formula would involve grids on both sides of the sur-
face. For the latter case, Eq. (7) is considered instead to
determine the value of the wave function on the surface;

then, the calculation is resumed with Eq. (6). To avoid the
2

. .- At
von Neumann instability [51, 52], we choose A—+

2
T

AP

TVmax <1.

Alternatively, one can explore the problem in the Ed-
dington-Finkelstein coordinates u=t—r,,v=r+r.. The
grid distributions are illustrated on the right of Figs. 1 and
2. Although the discretization of the master equation is
carried out in a different coordinate system, as discussed
below, it is noted that the essential difference from the
conventional approach resides in the boundary condi-
tions. Specifically, in the case of the black hole metric,
the free boundary condition is adopted instead of assign-
ing to the line v=0. In terms of the Eddington-Finkel-
stein coordinates, the master equation (Eq. (4)) can be re-
written as

u=tre P t=(vtuh2 A

V=itrs

4 . e @

A

‘\h\ .

re=(vu)f2 B -

(color online) Grid layouts of two FDM implementations in the case of a black hole. The left plot corresponds to the proposed

scheme in (r.,7) coordinates, and the right plot is that in the conventional (u,v) coordinates. The black points are the grids to which the
initial conditions are assigned, and one uses the iteration process to evaluate the red points, as described in the text.
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Fig. 2.
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(color online) The same as Fig. 1 but for the case of a star. Here, the light blue points correspond to the star's surface r=ry,

which should be evaluated according to the iteration process is described in the text.

Y 1

Similarly,onedenotes v; = vo +iAv, u; = up +iAu, ¥ = ¥(v;,
u;), and V; = V(v;,u;); therefore, the discritized equation
is found to be

) . A2 . ) )
Wil = it (1 - gv;) (W, + ), ©9)

where Av = Au = Ais considered. The iteration can be car-
ried out as the value of a grid point is determined by three
grid points to the immediate west, south, and south-west
of the grid in question.

In the case of a star, again, the above procedure
breaks when the iteration involves grids on both sides of
the star's surface, which is a straight line of 45°. Regard-
ing the relation 9, = 6—;6,#@6” the junction condi-

. . or. o,
tion can be rewritten as

6u\1'linside - av‘Pinside = 6u\Poutside - av‘"Poutside,

and therefore, its form using finite difference reads

b _ s i+ i,
Y- Y-
A A
iy i i, _ \pip—1
S N ks
A A ’
i, ip+1 _ iy, _ _ iy _ ip—1
or Wi, +WIT -4V =9 -, (10)

where ‘I”J’h =W¥(v;,u;,) is the grid on the star's surface with
radial coordinate r;,. It is readily confirmed that ‘I”j”,_ , and
‘I’;f’h“ are localed on the inside of the star, and ‘I”j”[ 4 and

‘I’;!;_l are localed on the outside. However, the above iter-
ation relation involves unkown grid points ‘I‘j?b“ and
‘I"]’, +1- This can be solved by substituting Eq. (9) for those
points, namely,

2
_wiel g il AT i i
_\IJ.//: + lPJh \IJj/y Vi V] ’

iy
‘Iljb‘*'l 4 Jotl "y
2
\Pi,,+l _\Pi,, +\Pi,,+l _\Pi;, _ Aivi,,+l\I/i,,
J» b Jp—1 Jr—1 4 Jo J=1 (11)

into Eq. (10), and the desired relation is obtained:

A .
i, _ ~ i,—1 i,+1
lIIjb _2 |:\le;+1 +lIIjh_l
A? (

iy i,—1 i+ 1\yl,
7 WVia¥i +Vj le,,—l)] (12)

AZ
We choose |1-— T3 Vinax

instability.

<1 to avoid the von Neumann

III. NUMERICAL RESULTS

Here, the numerical results obtained using the
schemes discussed in the previous section are provided.
The calculations presented below are completed for both
schemes, and the results are clearly consistent.

In Fig. 3, we show the temporal evolutions of the axi-
al gravitational perturbations of the Schwarzschild black
hole with the horizon r, = 1. The results are presented in
a two-dimensional profile and for given spatial positions.
The initial perturbations are placed on the outside of the
potential's peak. It is observed that the GW propagates in
both directions. The wave that propagates toward the po-
tential's peak is split into reflected and transmitted waves.
The reflected wave propagates to spatial infinity, which
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Fig. 3.  (color online) Temporal evolution of the axial gravitational perturbations in the Schwarschild black hole with the horizon
rp = 1. Top-left: Effective potential. The maximal value of the potential is located at r = 1.64039 (r. = 1.19471). Top-right: Two-dimen-
sional profile of the temporal evolution, where the initial conditions read ¥(s=0) = e=(==100%/2 and 9,¥(r=0) =0, placed outside the
maximum potential. Bottom-left: Temporal evolution evaluated at r = 1.278 (r. = 0), inside the maximum potential. Bottom-right: Tem-
poral evolution evaluated at r = 194.73 (r, = 200), outside the initial perturbations.

Fig. 4. (color online) Temporal evolution of the axial gravitational perturbations in the star with the surface r, = 1.13 (r. = 36.7). Top-
left: Effective potential. The maximal value of the potential is located at r=1.64039 (r. =38.8), outside the star's surface. Top-right:
Two-dimensional profile of the temporal evolution, where the initial conditions read ¥(t = 0) = e (+=150%/200 and 9.9(s = 0) = 0. Due to
the scale of the plot, the echoes are not visable in the two-dimensional plot. Bottom-left: Temporal evolution evaluated at r=173.937
(r. =216.7). Bottom-right: Temporal evolution evaluated at r = 7.256 (r. = 46.7).

085101-5



Kai Lin, Wei-Liang Qian

Chin. Phys. C 47, 085101 (2023)

v(r)
100

061

021

0.0 L L L L

Log|¥

L L
200 400 600 800

4

5l
Fig. 5.
bottom-right plot is evaluated at r = 10.104 (r, = 13.7).

eventually gives rise to the quasinormal oscillations, as
first pointed out by Andersson [60]. Meanwhile, the wave
that initially propagates outward is associated with the
initial burst, namely, the first stage of the dissipative os-
cillations, as clearly indicated by the bottom-right plot.
Thus, the time scales for the occurrence of different
stages of the QNM oscillations are in good agreement
with the causality arguments. Moreover, the amplitudes
of the GWs numerically satisfy the flow conservation in
the asymptotic regions, namely, |R?|+|772| = 1.

In Fig. 4, the temporal evolutions of the axial gravita-
tional perturbations in a star of uniform density are dis-
played as the simplest theoretical model for the neutron
star. The effective potential is featured by a valley
between two maxima located at the center and the max-
imum of the potential. As a result, the GWs are bounced
back and forth in the valley, and subsequently, the echoes
are produced in the late stage of dissipative oscillations.
Although the observer is located further away from the
star, the echoes eventually leak out and appear in the sig-
nals.

For comparison, as shown in Fig. 5, the calculations
were similarly conducted with the star's surface placed

(color online) The same as Fig. 4 but for r, =2.162 (. = 37). The bottom-left plot is evaluated at r = 177.141 (r, = 183.7); the

outside the "original" maximum of the effective potential.
However, as shown in the top-left plot, the valley of the
effective potential disappears in this case. This is be-
cause the matter distribution inside the star dictates that
the effective potential decreases monotonically with in-
creasing radial coordinates. Subsequently, no echo is ob-
served in the resultant temporal evolution.

IV. CONCLUSION

Using an FDM scheme with appropriate boundary
conditions and treatment for the discontinuous boundary,
we studied the temporal evolution of axial gravitational
perturbations in black holes and uniform stars. The res-
ults are shown to be consistent with causality and flow
conservation. In particular, echoes are observed in the
late-stage of the star QNM oscillations, which is under-
stood to be caused by the valley in the effective potential.
Interestingly, the echo period is numerically consistent
with twice the distance between the center of the star and
the maximum of the effective potential, regardless of the
discontinuity at the star's surface [57]. We plan to contin-
ue exploring the related topics in the future.
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