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Abstract: In  this  paper  we  analyze  and  discuss  2D  Jackiw-Teitelboim  (JT)  gravity  coupled  to  primary  fermion
fields in asymptotically anti-de Sitter (AdS) spacetimes. We obtain a particular solution of the massless Dirac field
outside the extremal black hole horizon and find the solution for the dilaton in JT gravity. As two dimensional JT
gravity  spacetime  is  conformally  flat,  we  calculate  the  two  point  correlators  of  primary  fermion  fields  under  the
Weyl transformations. The primary goal of this work is to present a standard technique, called resolvent, rather than
using CFT methods. We redefine the fields in terms of the conformal factor as fermion fields and use the resolvent
technique to derive the renormalized entanglement entropy for massless Dirac fields in JT gravity.
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I.  INTRODUCTION

2

Two dimensional  JT  gravity  [1−3]  is  a  model  of  2D
dilaton gravity that admits AdS  holography [4]; it is also
the simplest nontrivial  theory of gravity.  In recent years,
JT  gravity  has  provided  a  simple  and  meaningful  toy
model  for  the  study  of  the  black  hole  information  loss
problem.  In  particular,  it  has  been  able  to  describe  the
Page curve of black hole entropy, which is a key step to-
ward  solving  the  black  hole  information  paradox  [5−7].
All these works suggest that after the Page time, there is a
configuration in which the entanglement wedge of Hawk-
ing radiation includes an island inside the black hole  in-
terior, and the island configuration is the key to reprodu-
cing  the  Page  curve.  Therefore,  verifying  the  validity  of
the  island  configurationis  of  great  significance.  This  has
motivated several recent proposals to show the existence
of  the  island  by  proposing  ways  to  extract  information
from  the  island  to  the  radiation  [8−11].  One  of  them  is
achieved by making use of the modular Hamiltonian and
modular  flow in  entanglement  wedge reconstruction  and
the equivalence between the boundary and bulk modular
flow  [12].  As  a  concrete  example,  extremal  black  holes
with modular flow in JT gravity were considered coupled

to baths; it is claimed that the explicit information extrac-
tion  process  can  be  observed  in  the  case  where  the  bulk
conformal  fields  contain  free  massless  fermion  fields
[12].

While the proposal in [12] shows a promising way to
extract  information  from  the  island  configuration  in  JT
gravity,  the  details  of  this  process  have  not  been  fully
specified in the literature. In particular, the modular flow
of the free massless fermion field considered in [12] is in
two dimensional  Minkowski spacetime.  More details  are
needed  regarding  how to  apply  this  flow to  conformally
flat spacetime. Therefore, in this paper, we aim to fill this
gap in the literature by providing detailed calculations of
the entanglement entropy for massless fermion fields with
the help of the resolvent technique. Our goal is to provide
a clear  and  comprehensive  understanding  of  the  pro-
posed method and its  implications  for  the  black hole  in-
formation paradox.

This paper is organized as follows. In Sec. II, we ob-
tain  the  equations  of  motion  in  the  background  of  JT
gravity  coupled  to  primary  fermion  fields  and  find  the
particular solution  of  the  wave  function  outside  the  ex-
tremal  black  hole  horizon,  and  we  also  solve  for  the
dilaton  in  JT  gravity.  In  Sec.  III,  we  calculate  the  two
point  correlators  of  primary  fermion  fields  under  Weyl
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transformations by  the  CFT  method.  In  Sec.  IV,  we  re-
view the standard resolvent technique to derive the entan-
glement entropy in n disjoint intervals for a massless Dir-
ac field  in  two  dimensional  vacuum  Minkowski  space-
time  [13, 14].  Accordingly,  we  redefine  the  fields  in
terms  of  the  conformal  factor  as  fermion  fields  and  use
the  resolvent  technique  as  described  in  two  dimensional
vacuum Minkowski spacetime to derive the renormalized
entanglement  entropy  for  massless  Dirac  fields  in  JT
gravity. 

II.  PRIMARY FERMION FIELDS IN A JT
GRAVITY BACKGROUND

The JT gravity model consists of 2D gravity coupled
to a scalar ϕ called the dilaton, with a classical bulk term
action  in  the  Lorentzian  signature  on  an  asymptotically
AdS spacetime, 

S JT =
1

16πGN

∫
d2x
√−g (ϕR+2ϕ−2ϕ0) , (1)

2
lAdS = 1

where R is  the  Ricci  scalar  and  we  have  set  the  AdS
length .  The  JT  gravity  action  originates  from  a
dimensional reduction  of  the  four  dimensional  near  ex-
tremal magnetic charged black hole [15−17], and the two-
dimensional  JT  model  is  obtained  by  reduction  of  the
spherically symmetric metric, 

ds2
4 = gµν(t,r)dxµdxν+ϕ(t,r)dΩ2

2, (2)

gµν (t,r)

ϕ0

where  is the 2D part with coordinates  the dilaton
ϕ plays the role of the radius of the 2-sphere that we want
to  reduce,  and  is a  constant  proportional  to  the  ex-
tremal entropy of the higher-dimensional black hole geo-
metry.

Ψ(x)
In this paper, we consider the coupling of a massless

Dirac field  to JT gravity.  The massless Dirac field,
also called  the  primary  field,  satisfies  conformal  invari-
ance under  conformal  transformations  in  the  CFT meth-
od.  The  action  of  primary  fermion  fields  in  2D  curved
spacetime is [18−22]: 

SD =
i
2

∫
d2x
√−gΨ

(
γµ
←→
DµΨ

)
, (3)

−→
Dµ =

−→
∂µ+Γµ =

−→
∂µ+

1
8ηacωµ

c
b[γa,γb]

ωµ
c

b = −eb
ν
(
∂µec

ν−Γλµνec
λ

)
iΨ
(
γµ
−→
DµΨ

) i
2
Ψ

(
γµ
←→
DµΨ

)
where  is  the  spinor
covariant  derivative,  and  the  spin  connection  is

1).  Note  that  in  Eq.  (3),

 is not real, so we should choose 

←−
Dµ =

←−
∂µ−Γµ =

←−
∂µ−

1
8
ηacωµ

c
b[γa,γb] Ψ

←−
Dµ

−→
Dµ

as  the  Dirac  Lagrangian,  where 

 operates on , and  is different from

.
(−,+)

{γa,γb} = 2ηab111
(γ0)2 = −111

(γ1)2 = 111

We adopt the metric signature  and the anticom-
mutator  of  the  Dirac  gamma  metric  is .
The Dirac gamma matrices have this property: 
and ; we choose 

γ0 =

(
0 1

−1 0

)
, γ1 =

(
0 1

1 0

)
. (4)

Ψ = Ψ†γ0

γµ = ea
µγa ea

µ

The Dirac adjoint in Eq. (3) is  defined as ,  and
, where  is the vierbein.

κ2 ≡ 8πGN

We define α as  the  strength of  the  coupling between
the  massless  Dirac  field  and  JT  gravity,  and  we  also
define ,  whereupon  the  total  action  functional
is 

S =S JT+αSD =

∫
d2x
√−g
ï

1
2κ2 (ϕR+2ϕ−2ϕ0)

+
iα
2
Ψ

(
γµ
←→
DµΨ

)ò
. (5)

By varying the total action (5) with respect to the metric
field,  we  obtain  the  classical  equations  of  motion  (see
Appendix A): 

gµν(ϕ−ϕ0)+∇µ∇νϕ−gµν□ϕ =
iακ2

8
Ψ
Ä
γν
←→
Dµ+γµ

←→
Dν

ä
Ψ, (6)

γν γν = (gµνea
µ)γa = gµνγµ

iΨ
(
γµ
←→
DνΨ

)
iΨ
(
γµ
←→
DνΨ

)
= iΨγµ

−→
DνΨ+(

iΨγµ
−→
DνΨ

)† (
iΨγµ

−→
DνΨ

)†
= −i

(
Ψ
←−
Dν

)
γµΨ

where  is  defined  as ,  and
 is  defined  as 

, with .
 

A.    Massless Dirac fields outside the extremal black hole
horizon

x±In a generic conformal coordinate system , the met-
ric in two dimensional gravity is given by 

ds2 = −e2ρ(x+,x−)dx+dx−. (7)

x± = t± z

In this paper we consider a zero temperature black hole in
the  two-dimensional  Jackiw-Teitelboim  gravity,  and  we
can use the Poincaré coordinates  to describe the
extremal  black  hole  (see Fig.  1 for  more  details).  The
metric in the Poincaré patch is 
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ea
µea

ν = δνµ, ea
µeb

µ = δa
b gµν = ea

µeb
νηab, ηab = ea

µeb
νgµν

1) A  tetrad  is  a  set  of  linearly  independent  vectors  that  can  be  defined  at  each  point  in  a  Riemannian  spacetime,  the  tetrads  by  definition  satisfy  the  relations:
. The choice of the tetrad field determines the metric: .
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ds2 = − 4dx+dx−

(x+− x−)2 =
−dt2+dz2

z2 , z ⩽ 0. (8)

2 z = 0
x− = +∞

x+ = −∞

The  boundary  of  AdS  spacetime  is  at ,  the  future
horizon of the JT extremal black hole is at , and
the past horizon is at .

SDBy  varying  the  Dirac  action  with  respect  to  the
Dirac field, we obtain the massless Dirac field equation in
two dimensional conformally flat spacetime 

iγµDµΨ = 0. (9)

We can  write  the  2-component  massless  Dirac  spinor  Ψ
as 

Ψ =

(
Ψ1

Ψ2

)
=

(
ψ1+ iψ2

ψ3+ iψ4

)
. (10)

As  any  two  dimensional  spacetime  is  conformally
flat,  the  massless  Dirac  field  equation  in  the  conformal
gauge can be written1)
 

2∂+Ψ1−
Ψ1

(x+− x−)
= 0, −2∂−Ψ2−

Ψ2

(x+− x−)
= 0. (11)

2

The wave function in JT gravity spacetime must satis-
fy  the  following  two  boundary  conditions:  The  wave
function is  zero at  the  AdS  spacetime boundary and fi-
nite at the past event horizon or the future event horizon
of  the  extreme  black  hole  in  JT  gravity.  Combining  the
two boundary conditions and Eq. (11), we find a particu-
lar solution of the wave function distribution beyond the
extremal black hole horizon:
 

Ψ1(x+, x−) =
1√
x−
(

x−− x+
) 1

2 + i
1√
x−
(

x−− x+
) 1

2 ,

Ψ2(x+, x−) =
1√
−x+

(
x−− x+

) 1
2 + i

1√
−x+

(
x−− x+

) 1
2 . (12)

 

B.    The dilaton
In  the  conformal  gauge,  using  the  general  metric  in

two dimensional  gravity  in  Eq.  (7),  from  Eq.  (6)  we  fi-
nally have2),
 

(1) For the metric g+− :
e2ρ

2
(ϕ0−ϕ)−∂+∂−ϕ

=
iακ2

8
Ψ
Ä
γ−
−−→
D+−

←−−
D+γ−

+γ+
−−→
D−−

←−−
D−γ+

ä
Ψ,

(13)

 

(2) For the metric g++ : ∂+∂+ϕ−2∂+ρ∂+ϕ

=
iακ2

4
Ψ

(
γ+
−−→
D+−

←−−
D+γ+

)
Ψ,

(14)

 

(3) For the metric g : ∂−∂−ϕ−2∂−ρ∂−ϕ

=
iακ2

4
Ψ

(
γ−
−−→
D−−

←−−
D−γ−

)
Ψ.

(15)

e0
+ = e0

− = e1
− = −e−ρ e1

+ = e−ρ

Γµ

γµ

As the  direction  of  the  tetrad  can  be  arbitrarily  selected,
we choose  and . We then
obtain the expression for the connection  and the mat-
rix  in the conformal gauge:
 

γ+ =
eρ

2
(
γ0+γ1) , γ− =

eρ

2
(
γ0−γ1) , (16)

 

 

z ∈ (−∞,0] z = −∞

Fig. 1.    (color online) The Penrose diagram for the extreme
black  hole  in  JT  gravity.  The  yellow  region  is  the  Poincaré
patch  where  the  wave  function  is  distributed.  The  blue  null
line is the future event horizon and the red null line is the past
event  horizon.  Here z ranges ,  where  is  the
location of the horizon.
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η00 = −1 = 2g+−e0
+e0
− η11 = 1 = 2g+−e1

+e1
− η01 = η10 = 0 = g−+

(
e0
+e1
− + e0

−e1
+
)

e0
+ = e0

− = e1
− = −e−ρ(x+ ,x−)

e1
+ = e−ρ(x+ ,x−)

1) A tetrad is a set of four linearly independent vectors that the direction can be arbitrarily selected, four vierbeins are constrained by three equations in light cone co-
ordinates: , , .  We  choose ,  and

.
ds2 = −e2ρ(x+ ,x−)dx+dx−2) In conformal gauge , we use the the following identities to get the equations of motion.
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Γ+ =
∂+ρ

2
γ0γ1, Γ− =

∂−ρ

2
γ1γ0. (17)

Next,  we  substitute  the  2-component  massless  Dirac
spinor (10) into the right hand side of Eq. (14), Eq. (15),
and Eq. (16). Using Eq. (17) and Eq. (18), we then have 

Ψ

(
γ−
−−→
D+−

←−−
D+γ−+γ+

−−→
D−−

←−−
D−γ+

)
Ψ = 0, (18)

 

Ψ

(
γ+
−−→
D+−

←−−
D+γ+

)
Ψ =

eρ

2
(
−2Ψ∗2∂+Ψ2+2Ψ2∂+Ψ

∗
2
)

(19)

 

Ψ

(
γ−
−−→
D−−

←−−
D−γ−

)
Ψ =

eρ

2
(
−2Ψ∗1∂−Ψ1+2Ψ1∂−Ψ

∗
1
)

(20)

Substituting  the  particular  solution  of  the  2-component
massless  Dirac  spinor  (12)  back  into  the  right  hand  side
of Eq. (20) and Eq. (21), we find 

−2Ψ∗2∂+Ψ2+2Ψ2∂+Ψ
∗
2 = 0, −2Ψ∗1∂−Ψ1+2Ψ1∂−Ψ

∗
1 = 0.

(21)

Finally, the equation of motion for the dilaton becomes 

2
(x+− x−)2 (ϕ0−ϕ)−∂+∂−ϕ =0,

2
(x+− x−)

∂+

((
x+− x−

)2

4
∂+ϕ

)
=0,

2
(x+− x−)

∂−

((
x+− x−

)2

4
∂−ϕ

)
=0. (22)

We can solve the equation for the dilaton 

ϕ = ϕ0+
a+b

(
x++ x−

)
+ cx+x−

(x+− x−)
, (23)

where a, b, and c are constants that determine the dilaton
of JT gravity.

In  particular,  the  dilaton  diverges  at  the  conformal
boundary,  and  the  location  of  this  physical  boundary  is
imposed by the boundary condition [23]: 

guu |bdy=
1
ε2 , ϕ = ϕb =

ϕr

ε
+ϕ0, (24)

where u is  the  physical  boundary  time,  with ε the  UV

cutoff.
S L(2,R)

S L(2,R)
The  metric  in  JT  gravity  has  isometry.  For

the  extreme black  hole  in  JT  gravity,  under  the 
transformation the dilaton profiles can be recast as 

ϕ = ϕ0+
2ϕr

(x+− x−)
. (25)

 

III.  THE TWO POINT CORRELATORS
 

A.    The primary fermion field correlator in
two dimensional Minkowski spacetime

We consider  a  free  Dirac  field  in  two dimensions.  It
satisfies the  Dirac  equation  and  the  canonical  anticom-
mutation relations : 

(
iγµ∂µ−m

)
Ψ = 0, {Ψα(x⃗),Ψ†β (⃗y)} = δαβδ(x⃗− y⃗), (26)

where x and y lie on the Cauchy surface with t = constant.
The  two  point  field  correlator  in  two  dimensional
Minkowski spacetime is1): 

C(x⃗, y⃗) = ⟨0|Ψ(x⃗)Ψ† (⃗y)|0⟩ =
∫

dp
2π

(
pµγµ+m

)
2
√

p2+m2
γ0e−ip·(x−y).

(27)

The integral of the two point field correlator in Eq. (28) is
[13]: 

C(x,y) =
1
2
δ (x− y)1+

m
2π

K0 (m|x− y|)γ0

+
im
2π

K1 (m (x− y))γ0γ1, (28)

Kn(x)where  is the standard modified Bessel function; in
the  massless  limit  this  gives  the  two point  correlator  for
the primary fermion field  in  two dimensional  flat  space-
time: 

C(x,y) =
1
2
δ (x− y)1+

i
2π

1
(x− y)

γ0γ1. (29)

 

B.    The primary fermion field correlator in JT gravity
In general,  the  metric  in  2D  conformally  flat  space-

time is: 

Chang-Zhong Guo, Wen-Cong Gan, Fu-Wen Shu Chin. Phys. C 47, 085106 (2023)

Ψ† Ψ̄

2D Ψ̄Ψ ΨΨ̄ ⟨0|Ψ(x⃗)Ψ̄(⃗y)|0⟩
C(x⃗, y⃗) = ⟨0|Ψ(x⃗)Ψ† (⃗y)|0⟩

1) Note that in [13, 14] the authors used  instead of  in their computation for the two point field correlator. There exists local Lorentz boost transformations in
 spacetime, for which  is invariant for fermions, the vacuum expectation value of  called Feynman propagator is defined as  in QFT. In con-

trast, in [13, 14] they defined the two point field correlator as  in order to calculate the entanglement entropy of a massless Dirac field with
the correlator trace formula (38).
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ds2 = −e2ρ(x+,x−)dx+dx− = −Ω−2(x+, x−)dx+dx−, (30)

Ω = e−ρ

2

Ω =
(

x+− x−
)
/2

where  is  the conformal  factor.  Two dimensional
JT gravity is locally AdS  spacetime with the conformal
factor .

Ω−2g

In the  CFT  method,  the  two  point  correlation  func-
tion  for  primary  operators  on  a  curved  manifold  with
Weyl rescaled metric  in terms of those with metric
g satisfies  the  following  transformation  relation  under
Weyl transformations [5, 24]: 

⟨Φ (x1, x̄1) Φ̃ (x2, x̄2)⟩Ω−2g

=Ω (x1, x̄1)∆Ω (x2, x̄2)∆ ⟨Φ (x1, x̄1) Φ̃ (x2, x̄2)⟩g, (31)

⟨Φ (x1, x̄1) Φ̃ (x2 x̄2)⟩g
where  Δ  is  the  scale  dimension  for  the  twist  field  and

 is  the  two  point  correlation  function
for primary operators in two dimensional flat spacetime.

∆ = 1/2

C(x,y)Ω−2g
ds2 = −dx+dx− ds2 = −Ω−2(x+,

x−)dx+dx−

The  free  massless  fermion  field  is  also  the  primary
field  with  the  scale  dimension .  Combining  Eq.
(30) and Eq. (32), we obtain the two point correlators of
the primary fermion fields  in JT gravity when
Weyl transformed from  to 

: 

C(x,y)g =⟨Φ (x, x̄) Φ̃ (y, ȳ)⟩g =
1
2
δ (x− y)1

+
i

2π
1

(x− y)
γ0γ1

=⇒C(x,y)Ω−2g =⟨Φ (x, x̄) Φ̃ (y, ȳ)⟩Ω−2g =
(xy)

1
2

2
δ (x− y)1

+
i

2π
(xy)

1
2

(x− y)
γ0γ1. (32)

 

IV.  ENTANGLEMENT ENTROPY

ρ = |Ψ⟩⟨Ψ|
ρA = TrB|Ψ⟩⟨Ψ|

The  entanglement  entropy  (von  Neumann  entropy)
provides us with a convenient way to measure the degree
of  entanglement  between  two  quantum systems  in  QFT.
We choose  the  total  quantum system as  a  pure  quantum
state  with  the  density  matrix .  The  reduced
density  matrix  for  the  subsystem A is ,
which is  obtained by taking a  partial  trace  over  the  sub-
system B of the total density matrix (see Fig. 2). The en-
tanglement  entropy  for  the  subsystem A is the  corres-
ponding von Neumann entropy: 

S A = −Tr (ρA lnρA) . (33)

For the  1+1  dimensional  quantum system at  critical-
ity,  the  continuum limit  is  a  conformal  field  theory with
central charge c. The renormalized entanglement entropy

of a single interval in vacuum state in flat spacetime can
be calculated by the Cardy formula [25, 26]: 

S =
c
3

logℓ, (34)

ℓ

ds2 = −dx+dx−

ds2 = −Ω−2(x+, x−)dx+dx−

where is the length of the interval on the line in vacuum.
After  Weyl  transformation  from  to

,  the  entanglement  entropy  in
2D conformally flat spacetime is transformed as [5, 27]: 

SΩ−2g = S g−
c
6

∑
endpoints

log(Ω) = S g+
c
6

∑
endpoints

log(eρ). (35)

ρV

CV

The  entanglement  entropy  is  related  to  the  reduced
density  matrix  of  the  region V;  hence,  the  problem  of
finding an explicit expression for the local density matrix

is  equivalent  to solving the resolvent  of  the two point
correlators  in the massless case. Resolvent is a stand-
ard technique  in  complex  analysis;  the  use  of  the  re-
solvent technique for free massless fermions was first in-
troduced in [13] to study the entanglement entropy in va-
cuum on  the  plane,  and  subsequently  for  the  entangle-
ment entropy of a chiral fermion on the torus [28−30]. In
this section we first review the derivation of the entangle-
ment entropy for a massless Dirac field in two dimension-
al vacuum  Minkowski  spacetime  in  terms  of  the  re-
solvent  technique,  and  we  then  obtain  the  entanglement
entropy of  a  single  interval  for  a  massless  Dirac  field  in
2D conformally flat  JT gravity by redefining the field in
terms of the conformal factor as the Fermion field. 

A.    Entanglement entropy for a massless Dirac field in

two dimensional vacuum Minkowski spacetime
CVThe  two  point  function  is  related  to  the  reduced

density matrix of the region V by the condition: 

 

∂A

Fig.  2.    (color  online)  A continuum QFT has  been spatially
divided into two components on a Cauchy slice Σ. Region B is
the  complement  of  region A,  and the  red  curve  is the  en-
tangling surface, which is a spacetime codimension-2 surface.
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CV (x,y) = ⟨Ψ(x)Ψ†(y)⟩ = Tr
(
ρVΨ(x)Ψ†(y)

)
. (36)

The expression  for  the  entanglement  entropy  of  the  re-
gion V can  then  be  given  by  a  propagator  trace  formula
(see Appendix D) [13, 14, 31]: 

S V = −Tr[(1−CV ) log(1−CV )+CV logCV ]. (37)

CVThe resolvent of the two point function  is defined as: 

RV (ξ) := (CV + ξ−1/2)−1 . (38)

Combining the  the  expression for  the  resolvent  (39),  the
entanglement entropy can be rewritten as: 

S V = −Tr
∫ +∞

1/2
dξ
ï
(ξ−1/2)[R(ξ)−R(−ξ)]− 2ξ

ξ+1/2

ò
.

(39)

In Eq. (39), the inverse of an operator for the propag-
ator  is  understood  in  the  sense  of  a  kernel  that  satisfies
the following equation: ∫

V
dzRV (ξ; x,z)R−1

V (ξ;z,y) = δ (x− y)

=

∫
V

dzRV (ξ; x,z)[C(z,y)+ (ξ−1/2)δ(z,y)]. (40)

Substituting (30) into (41) yields a singular integral equa-
tion [32]: 

ξRV (x,y)− i
2π

∫
V

RV (x,z)
z− y

dz = δ (x− y) . (41)

(ui,vi)

CV

Fortunately,  we  can  solve  the  resolvent  for  this  integral
operator  inside  a  region  formed  by n disjoint  intervals

 by the Plemelj formulae [32] in the theory of sin-
gular integral equations (see Appendix B). The resolvent
of the two point function  (see Appendix C): 

RV (ξ)=
(
ξ2−1/4

)−1

Ñ
ξ δ(x− y) +

i
2π

e−
i

2π
log
(

ξ−1/2
ξ+1/2

)
(z(x)−z(y))

x− y

é
,

(42)

z(x)where the function  is 

z(x) = log
Å
−
∏n

i=1(x−ui)∏n
i=1(x− vi)

ã
. (43)

Substituting (43) into (40), we have 

S V =−
2
π

∫ ∞
1/2

dξ
∫

V
dx lim

y→x

×
sin
ï

1
2π

log
Å
ξ−1/2
ξ+1/2

ã
(z(x)− z(y))

ò
(ξ+1/2)(x− y)

. (44)

Integrating  over ξ first, we  obtain  the  entanglement  en-
tropy in n disjoint  intervals  for  a  massless  Dirac field in
two dimensional vacuum Minkowski spacetime: 

S V =2
∫

V
dx lim

y→x

z(x)−z(y)
2 coth((z(x)− z(y))/2)−1

(x− y) (z(x)− z(y))

=
1
6

∫
V

dx
n∑

i=1

Å
1

x−ui
− 1

x− vi

ã
=

1
3

Ä∑
i, j

log |vi−ui| −
∑
i< j

log |ui−u j|

−
∑
i< j

log |vi− v j| −n logϵ
ä
, (45)

ϵ

c = 1

S =
c
3

logℓ

where  is a distance cutoff introduced in the last integra-
tion, and  the  Virasoro  central  charge  of  the  primary  fer-
mion  field  is .  For  a  single  interval  in  2D  vacuum
flat spacetime on the plane, we verify the Cardy formula
for the renormalized entanglement entropy .
 

B.    Entanglement entropy for a massless Dirac field in
JT gravity

In this subsection, we apply the resolvent technique to
2D  conformally  flat  spacetime.  We  begin  by  redefining
the field in terms of the conformal factor as the Fermion
field 1). Let  us consider the rescaling field,  which is  giv-
en by: 

Ψ̂(x⃗) = Ω∆(x⃗)Ψ(x⃗) = Ω
1
2 (x⃗)Ψ(x⃗), (46)

Ψ(x⃗)

Using this rescaling field, we can use the same approach
as  described  in  the  previous  subsection  and  obtain  the
same results as in Eq. (46). After performing the calcula-
tions using the original field , one finally finds 

S V =
1
3

Ñ∑
i, j

log | vi−ui

(uivi)1/2 | −
∑
i< j

log | ui−u j

(uiu j)1/2 |

−
∑
i< j

log | vi− v j

(viv j)1/2 | −n logϵ

é
, (47)

Chang-Zhong Guo, Wen-Cong Gan, Fu-Wen Shu Chin. Phys. C 47, 085106 (2023)

1) We would like to thank Yiming Chen for bringing this point to our attention.
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The renormalized  entanglement  entropy  for  a  mass-
less Dirac field of a single interval in JT gravity is 1): 

S =
1
6

log
ℓ2

ΩAΩB
=

1
3

log
|x− y|
(xy)

1
2

, (48)

c = 1
where  the  Virasoro  central  charge  of  the  massless  Dirac
field is . 

V.  CONCLUSION AND DISCUSSION

In  this  paper  we  obtain  the  particular  solution  of  the
wave function outside the extremal black hole horizon in
JT  gravity,  which  is  very  important  for  research  on  the
extraction of extremal black hole information with modu-
lar  flow  in  JT  gravity.  The  specific  expression  for  the
modular  flow  of  2D  free  massless  fermions  depends  on
the wave function.  Other papers have derived the modu-
lar  flow  formula  for  2D  free  massless  fermions,  but  did
not  report  the  specific  expression  for  the  wave  function
[12, 28, 33, 34].

2In  CFT  methods, a  convenient  way  to  compute  en-
tropies  of  intervals  is  by  using  the replica  trick to com-
pute the Rényi entropy for integer index n: 

S n(V) =
1

1−n
logTrρn

V . (49)

n→ 1Taking  the  limit ,  we  can  derive  the  entanglement
entropy of the primary fermion fields [5, 25, 26]. The re-
solvent technique is a simpler way to derive the entangle-
ment entropy for 2D free massless fermions than the CFT
method called the replica trick. In this paper we calculate
the two point correlators of primary fermion fields in JT
gravity  under  Weyl  transformations  and  redefine  the
fields  in  terms  of  the  conformal  factor  as  the  fermion
fields,  then  use  the  resolvent  technique  as  described  in
two dimensional vacuum Minkowski spacetime to derive
the renormalized entanglement entropy for massless Dir-
ac fields in JT gravity.

In  this  work,  we  have  calculated  the  wave  function
and derived the entanglement entropy for the primary fer-
mion fields outside the extremal black hole horizon in JT
gravity.  We  only  consider  the  quantum  entanglement
between  free  massless  fermions  outside  the  extremal
black  hole  horizon.  For  the  entanglement  between  free
massless  fermions  inside  and  outside  the  horizon,
however, we should regard the entirety of spacetime as a
total  quantum  system  composed  of  the  extremal  black
hole and Hawking radiation outside the horizon. The de-
grees  of  freedom  for  the  free  massless  fermions  located
inside the horizon represent the degrees of freedom of the
extremal  black  hole,  and  the  degrees  of  freedom for  the

free massless fermions located outside the horizon repres-
ent  the  degrees  of  freedom  of  Hawking  radiation
particles.  In  order  to  calculate  the  entanglement  entropy
for the free massless fermions both inside the horizon and
outside the horizon, we should consider the entanglement
island inside the extremal black hole interior in JT grav-
ity. We may calculate the fine grained entropy of the ex-
tremal black  hole  and  Hawking  radiation  via  the  semi-
classical method called the island rule. We leave the full
analysis of this for future work.
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APPENDIX A:THE EQUATIONS OF MOTIONS IN
THE BACKGROUND OF JT GRAVITY COUPLED

TO PRIMARY FERMION FIELDS

The  total  action  functional  for  JT  gravity  coupled  to
primary fermions is given by Eq. (5), from which we ob-
tain the classical equation of motion by varying the met-
ric of the total action:
 

δS
δgµν

= 0, =⇒−δS JT

δgµν
=
αδS D

δgµν
. (A1)

eaµ
The variation  of  (3)  with  respect  to  the  frame vector

indices  is [18]:
 

δS D =

∫
d2x

i
4
√−gΨ

[
γa
←→
Dµ+γµea

ρ←→Dρ

]
Ψδeaµ, (A2)

ηabeb
µ = eaµ δeaµ =

1
4

ea
νδgµν

gµν
where .  We use . By the vari-
ation of the metric , Eq. (52) can be written:
 

δS D =

∫
d2x

i
16
√−gΨ

[
γν
←→
Dµ+γµ

←→
Dν

]
Ψδgµν, (A3)

where we have used the following contractions in (53),
 

γaea
ν = γν, ea

ρea
ν = δ

ρ
ν . (A4)

For  the  classical  bulk  term  action  of  JT  gravity  (1),
using the standard relations [35],
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δ
√−g =− 1

2
√−ggµνδgµν, ϕgµνδRµν

=−
[(
∇µ∇ν−gµν□

)
ϕ
]
δgµν. (A5)

gµνBy varying the metric  in 2D spacetime, we obtain:
 

δS JT =
1

16πGN

∫
d2x
î
δ(
√−g) (ϕR+2ϕ−2ϕ0)

+
√−gϕδ(gµνRµν)

ó
=

1
16πGN

∫
d2x
√−g
ï
− 1

2
√−ggµνδgµν (ϕR+2ϕ−2ϕ0)

+
√−gϕRµνδgµν+

√−gϕgµνδRµν

ò
=

1
16πGN

∫
d2x
√−g
ï
− 1

2
√−ggµνδgµν (ϕR+2ϕ−2ϕ0)

+
√−gϕRµνδgµν+

√−g
[
gµν□−∇µ∇ν

]
ϕδgµν

ò
=

1
32πGN

∫
d2x
√−g
ï

2gµν (ϕ0−ϕ)+2ϕ
Å

Rµν−
1
2

gµνR
ã

+2gµν□ϕ−2∇µ∇νϕ
ò
δgµν.

(A6)

Gµν = Rµν−
1
2

gµνR = 0

In 2D  gravity,  we  can  easily  calculate  that  the  Ein-
stein tensor is zero. In the last term in Eq. (56), we have

. Eq. (56) then becomes
 

δS JT =
1

32πGN

∫
d2x
√−g
î
2gµν (ϕ0−ϕ)

+2gµν□ϕ−2∇µ∇νϕ
ó
δgµν. (A7)

Finally, substituting (53) and (57) into (51) yields the
classical  equation  of  motion  in  JT  gravity  coupled  to
primary fermion fields:
 

gµν (ϕ−ϕ0)+∇µ∇νϕ−gµν□ϕ =
iακ2

8
Ψ

(
γν
←→
Dµ+γµ

←→
Dν

)
Ψ.

(A8)
 

APPENDIX B: SINGULAR INTEGRAL EQUA-

TIONS AND THE PLEMELJ FORMULAE

φ(t0)
For the entire complex plane (see the Fig. 3), we ob-

tain  the  integral  formula  of  the  function  using
Cauchy's integral formula [32]:
 

φ(t0) =
1

2πi

∮
L1−L2

φ(t)dt
t− t0

=
1

2πi

∫
L1

φ(t)dt
t− t0

− 1
2πi

∫
L2

φ(t)dt
t− t0

.

(B1)

From the Eq. (59) we easily see:
 

1
2πi

∫
L1

φ(t)dt
t− t0

=
1
2
φ(t0),

1
2πi

∫
L2

φ(t)dt
t− t0

= −1
2
φ(t0). (B2)

Equations of the type
 

A(t0)φ(t0)+
B(t0)
πi

∫
L

φ(t)dt
t− t0

= f (t0) (B3)

are called singular integral  equations.  We define the fol-
lowing functions:
 

Φ(t0) ≡ 1
2πi

∫
L

φ(t)dt
t− t0

(B4)

 

Φ+(t0) ≡ 1
2πi

∫
L1

φ(t)dt
t− t0

+
1

2πi

∫
L

φ(t)dt
t− t0

=
1
2
φ(t0)+

1
2πi

∫
L

φ(t)dt
t− t0

(B5)

 

Φ−(t0) ≡ 1
2πi

∫
L2

φ(t)dt
t− t0

+
1

2πi

∫
L

φ(t)dt
t− t0

=− 1
2
φ(t0)+

1
2πi

∫
L

φ(t)dt
t− t0

. (B6)

Substituting Eq. (62) into Eq. (61), we have
 

 

t0 L1

L2

L1 +L

t0 L2 +L

t0 L1 −L2

Fig. 3.    (color online) L is a line segment with two endpoints
a and b, and  is the midpoint of the line segment L.  is the
blue  semicircle  in  the  counterclockwise  direction,  and  is
the red semicircle in the clockwise direction.  represents
the contour that contains , and  represents the contour
that does not contain .  represents a complete circle in
the counterclockwise direction.
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(A(t0)+B(t0))Φ+(t0)− (A(t0)−B(t0))Φ−(t0) = f (t0)

(B7)

 

=⇒ Φ+(t0) =
A(t0)−B(t0)
A(t0)+B(t0)

Φ−(t0)+
f (t0)

A(t0)+B(t0)
.

(B8)

G(t0) ≡ A(t0)−B(t0)
A(t0)+B(t0)

g(t0) =
f (t0)

A(t0)+B(t0)
We  define  and ,
and  Eq.  (65)  then  reduces  to  a  simpler  singular  integral
equation:
 

Φ+(t0) =G(t0)Φ−(t0)+g(t0). (B9)

We define a homogeneous equation :
 

X+(t0) =G(t0)X−(t0), G(t0) =
X+(t0)
X−(t0)

=
A(t0)−B(t0)
A(t0)+B(t0)

. (B10)

By taking logarithms, we obtain
 

log X+(t0)− log X−(t0) = logG(t0), (B11)

where Eq.  (69)  is  the  Plemelj  formulae  with  the  corres-
ponding solution [32]:
 

log X(t0) =
1

2πi

∫
L

logG(t)dt
t− t0

, log X±(t0)

=± 1
2

logG(t0)+
1

2πi

∫
L

logG(t)dt
t− t0

. (B12)

X±(t0)The solution to  is
 

X±(t0) = e±
1
2 logG(t0)+ 1

2πi

∫
L

logG(t)dt
t−t0 . (B13)

Combining Eq. (67) and Eq. (68), we have
 

Φ+(t0)
X+(t0)

− Φ
−(t0)

X−(t0)
=

g(t0)
X+(t0)

. (B14)

Eq. (72) is also the Plemelj formulae, and the correspond-
ing solutions are
 

Φ+(t0)
X+(t0)

=
1
2

g(t0)
X+(t0)

+
1

2πi

∫
L

g(t)dt
X+(t)(t− t0)

Φ−(t0)
X−(t0)

=− 1
2

g(t0)
X+(t0)

+
1

2πi

∫
L

g(t)dt
X+(t)(t− t0)

. (B15)

 

APPENDIX C: THE RESOLVENT OF THE
PRIMARY FERMION CORRELATOR IN

TWO DIMENSIONAL VACUUM MINKOWSKI
SPACETIME

To solve  the  singular  integral  equation  of  the  re-
solvent (42), we define 

Φ±(x,y) = ±1
2

R(x,y)+
1

2πi

∫
L

R(x,z)
z− y

dz, (C1)

from which we obtain 

Φ+(x,y)−Φ−(x,y) =R(x,y), Φ+(x,y)+Φ−(x,y)

=
1
πi

∫
L

R(x,z)
z− y

dz. (C2)

Eq. (42) can then be written Å
ξ+

1
2

ã
Φ+(x,y)−

Å
ξ− 1

2

ã
Φ−(x,y) = δ (x− y) . (C3)

We define a homogeneous equation: 

X+(x,y) =G(ξ)X−(x,y), G(ξ) =
ξ− 1

2

ξ+
1
2

. (C4)

By taking logarithms, we obtain 

log X+(x,y)− log X−(x,y) = logG(ξ), (C5)

with the corresponding solution: 

log X(x,y) =
1

2πi

∫
L

logG(ξ)dz
z− y

,

log X±(x,y) =± 1
2

logG(ξ)+
1

2πi

∫
L

logG(ξ)dz
z− y

. (C6)

L = [a,b] X±(x,y)For a single interval , the solution to  is 

X±(x,y) = e
± 1

2 logG(ξ)+ 1
2πi logG(ξ) log b−y

y−a . (C7)

Combining  Eq.  (76)  and  Eq.  (77)  yields  the  Plemelj
formulae: 

Φ+(x,y)
X+(x,y)

− Φ
−(x,y)

X−(x,y)
=

f (x,y)
X+(x,y)

, f (x,y) =
δ(x− y)

ξ+
1
2

. (C8)
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Combining the solution to the Plemelj formulae (73), we
obtain the solution to (81):
 

Φ+(x,y)
X+(x,y)

=
1
2

f (x,y)
X+(x,y)

+
1

2πi

∫
L

f (x,z)dz
X+(x,z)(z− y)

Φ−(x,y)
X−(x,y)

=− 1
2

f (x,y)
X+(x,y)

+
1

2πi

∫
L

f (x,z)dz
X+(x,z)(z− y)

(C9)
 

=⇒ Φ+(x,y) =
1
2

f (x,y)+
1

2πi
X+(x,y)

∫
L

f (x,z)dz
X+(x,z)(z− y)

=⇒ Φ−(x,y) =− 1
2

f (x,y)
G(ξ)

+
1

2πi
X−(x,y)

∫
L

f (x,z)dz
X+(x,z)(z− y)

.

(C10)

R(x,y)From this we obtain the solution to the resolvent 1):
 

R(x,y) =Φ+(x,y)−Φ−(x,y) =
ξ

ξ− 1
2

f (x,y)

− 1
2πi

X+(x,y)
ξ− 1

2

∫
L

f (x,z)dz
X+(x,z)(z− y)

=
ξδ(x− y)

(ξ− 1
2 )(ξ+ 1

2 )
− 1

2πi
X+(x,y)

(ξ− 1
2 )(ξ+ 1

2 )

∫
L

δ(x− z)dz
X+(x,z)(z− y)

=
ξδ(x− y)

(ξ− 1
2 )(ξ+ 1

2 )
− 1

2πi
X+(x,y)

(ξ− 1
2 )(ξ+ 1

2 )(X+(x, x))(x− y)
.

(C11)

R(x,y) L = [a,b]
Substituting  (80)  into  (85),  we  obtain  the  expression  for
the resolvent  of a single interval :
 

R(x,y) =
(
ξ2−1/4

)−1

×

Ö
ξδ(x− y)+

i
2π

e
− i

2π
log
Ä

ξ− 1
2

ξ+ 1
2

ä(
log
(
− (x−a)

(x−b)

)
−log
(
− (y−a)

(y−b)

))
(x− y)

è
.

(C12)

L = (a1,b1)∪
(a2,b2)∪ . . .∪ (an,bn)
When L contains n disjoint intervals, where 

, the  resolvent  of  the  primary  fermi-
on  correlator  in  multicomponent  subsets  of  the L in  two
dimensional vacuum  Minkowski  spacetime  can  be  writ-
ten as
 

R(x,y) =
(
ξ2−1/4

)−1

×

Ñ
ξ δ(x− y) +

i
2π

e−
i

2π
log
(

ξ−1/2
ξ+1/2

)
(z(x)−z(y))

x− y

é
, (C13)

z(x)where the function  is
 

z(x) = log
Å
−
∏n

i=1(x−ui)∏n
i=1(x− vi)

ã
. (C14)

 

APPENDIX D: ENTANGLEMENT ENTROPY FOR
PRIMARY FERMION FIELDS GIVEN BY A COR-

RELATOR TRACE FORMULA

Ψ
†
i Ψ j

{Ψi,Ψ
†
j } = δi j

The creation and annihilation operators  and  for
primary fermion  fields  satisfy  the  anticommutation  rela-
tions: .  The  two  point  correlators  are  then
given as
 

⟨ΨiΨ
†
j⟩=Ci j, ⟨Ψ†iΨ j⟩= δi j−Ci j, ⟨ΨiΨ j⟩= ⟨Ψ†iΨ

†
j⟩= 0 (D1)

The reduced density matrix of the fermion system can be
written in the exponential form [14]:
 

ρV = Ke−H = Ke−ΣV Hi jΨ
†
iΨ j , (D2)

H
TrρV = 1

Ci j

ρV

where  is the modular Hamiltonian of the system and K
is  the  normalization  constant,  which  satisfies .
The two point correlators  in the region V of space are
related to the reduced density matrix  by the following
equation:
 

Ci j = Tr(ρV ·ΨiΨ
†
j ). (D3)

dℓ = UℓmΨm

{di,d
†
j } = δi j

UHU† = {ϵi}
ϵi

TrρV = 1
ρV

We  can  diagonalize  the  exponent  by  the  Bogoliubov
transformation  with  unitary  operator U to
maintain  the  anticommutation  relation .  We
choose U such that  is a diagonal matrix and

 is the eigenvalue of Hermitian matrix H. Using the nor-
malization condition  and the Bogoliubov trans-
formation, the reduced density matrix  can be rewritten
 

ρV =
∏
ℓ

e−ϵℓ ·d
†
ℓdℓ

1+ e−ϵℓ
. (D4)

The relation between H and C can then be rewritten
 

K ·Tr(e−ΣV HlmΨ
†
lΨm ·ΨiΨ

†
j ) = K ·Tr(

∏
ℓ

e−ϵℓ ·d
†
ℓdℓ

1+ e−ϵℓ
·ΨiΨ

†
j ) =Ci j.

(D5)

Ci jNext  we  diagonalize  the  two  point  correlators  by
Bogoliubov transformation, obtaining
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diag{Ci j} =
N∏
ℓ=1

1
1+ e−ϵℓ

. (D6)

Cℓ diag{Ci j}We define  as the eigenvalues of the matrix ,
giving
 

ϵℓ = − log
Å

1
Cℓ
−1
ã
, Cℓ ∈ (0,1). (D7)

In  terms  of  the  definition  of  the  von  Neumann  entropy
(34), the entanglement entropy for primary fermion fields
of the region V can be written as
 

S V =−Tr(ρV lnρV ) = −Tr

(∏
ℓ

e−ϵℓ ·d
†
ℓdℓ

1+ e−ϵℓ
· log

(∏
ℓ

e−ϵℓ ·d
†
ℓdℓ

1+ e−ϵℓ

))

=
∑
ℓ

Å
log
(
1+ e−ϵℓ

)
+
ϵℓ · e−ϵℓ
1+ e−ϵℓ

ã
 

=−
∑
ℓ

(
(1−Cℓ) · log(1−Cℓ)+Cℓ · logCℓ

)
=−Tr

[
(1−CV ) log(1−CV )+CV logCV

]
, (D9)

|0⟩
|1⟩
where we have traced two quantum states such as  and

 for primary fermion fields in the second line.
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