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Abstract: The variation after projection (VAP) method is expected to be an efficient way of obtaining the optim-

ized nuclear wave functions, which can be as close as possible to the exact shell model ones. However, we found that
there are two additional problems that may seriously affect the convergence of the VAP iteration. The first problem
is the existence of irrelevant projected basis states. At a VAP iteration, the Hill-Wheeler (HW) equation is com-

posed of all updated projected basis states. If one of these projected basis states does not mix with a calculated wave

function of interest, which is obtained by solving this HW equation, it is likely that this basis state will never mix

with this wave function even after the VAP iteration converges. The other problem is the poor orthonormality among

the projected basis states, which seriously affects the accuracy of the calculated VAP wave function. In the present

work, solutions for these two problems are proposed, and examples are presented to test the validity. With the

present solutions, the most important projected basis states can be reliably obtained, and the fully optimized VAP

wave functions can be accurately and efficiently calculated.
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I. INTRODUCTION

Nuclei are complicated quantum many-body systems.
According to quantum mechanics, the wave functions of
low-lying nuclear states should be obtained by solving
Schrodinger's equation. Practically, this is done by per-
forming the full shell model calculation in a given model
space. However, the configuration space can easily be
huge in a large model space, which makes the full shell
model calculation almost impossible. This difficulty mo-
tivates theorists to develop approximated shell model
methods, so that the obtained nuclear wave functions are
expected to be as close as possible to the exact shell mod-
el ones. Various approximated shell model methods, such
as the shell model truncation [1], stochastic quantum
Monte Carlo approaches and their extrapolations [2—5],
the projected configuration interaction [6], the class of
variation after projection (VAP) methods [7—12], and re-
cent methods for shell model basis selection using the
generator coordinate method (GCM) [13—15], have been
developed. A relevant review can be found in Ref. [16].

Among these approximated shell model methods, the

VAP is an important one, and it is believed to have a
good shell model approximation in calculating low-lying
states of nuclei [7—12]. Such an approximation can be
continuously improved by adding more projected basis
states to the calculated states. Certainly, the added projec-
ted states should be important so that the calculated states
can be significantly improved. However, the problem is
that, if an added projected state is randomly generated
and does not mix with a calculated state at the beginning
of the VAP iteration, it is likely that this added projected
state will never mix with the state even after the VAP it-
eration converges. This means that such an added projec-
ted basis state is useless and must be abandoned. In this
sense, a useful new projected state should mix with a cal-
culated nuclear state at the beginning of the VAP itera-
tion. Therefore, an effective way of obtaining new useful
projected states before performing the VAP iteration is
crucial in the VAP calculation.

This problem can be solved via previous methods,
such as the Monte Carlo shell model (MCSM) [3]. In the
MCSM, one selects the best new basis state from the
stochastically generated candidates. To ensure the effect-
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iveness of the new candidate, shell model Hamiltonian is
diagonalized in a subspace spanned by all previously se-
lected basis states and the candidate basis. One can then
check the contribution of this candidate basis for redu-
cing the energy eigenvalue being calculated. If the contri-
bution is sufficient, this candidate basis will be added to
the group of basis states. Otherwise, one needs to check
the importance of the next basis candidate. After that,
only important basis states are selected, and a good ap-
proximation is expected. However, in such basis selec-
tion, one may sometimes check a large amount of useless
candidates before a new important basis is identified.
Herein, we propose a new reliable and efficient al-
gorithm that is completely different from the MCSM. In
the proposed algorithm, a randomly generated useless
projected state can be varied so that it may become a new
important basis state for the VAP calculation.

The second problem in the VAP calculation is the
poor orthonormality among the projected basis states,
which seriously affects the accuracy of the calculated
VAP wave functions and consequently reduces the stabil-
ity of the VAP iteration. This problem was considered in
our previous work [12], where the projected states were
subjected to two constraints to prevent the appearance of
redundant states throughout the VAP iteration. In the
present work, we replace these two constraints with a
new one, which is expected to be more efficient for keep-
ing the projected basis states in good condition during the
VAP calculation.

The remainder of this paper is organized as follows.
Section II provides a solution for generating the useful
projected basis states. Section III discusses the problem
of orthonormality among the projected basis states. Sec-
tion IV presents an example of the present VAP calcula-
tions. A brief summary and outlook are presented in
Sec.V.

II. IMPORTANT PROJECTED BASIS STATES

Let us first address the problem of the important pro-
jected basis states in the VAP calculation. We start with
the simplified VAP wave function taken from our previ-
ous work [12]:

WS () = > 7™ Pl®y), (1)

i=1

where |®;) is a Slater determinant (SD) composed of de-
formed single-particle wave functions in the model space
where the shell model calculation is performed. |®;) has a
good particle number but usually does not have a good
spin and parity. Thus, the particle number projection can
be omitted, but the angular momentum projection and
parity projection should be applied in Eq. (1) so that

I‘P(J’QMQ(K)) has a good spin J and parity z. Here, we as-
sume that all the adopted |®;) SDs are fully symmetry-un-
restricted. n represents the number of included |®;) SDs.
P47 represents the product of the angular momentum
projection operator P}, and the parity projection operat-
or P*. K can be randomly chosen in the range of |K| < J.
o is used to differ the states with the same J, 7, and M.
The f/™ coefficients and the corresponding energy E(J',‘T)a
are determined via the Hill-Wheeler equation:

n
> =T -EQ NS =0, )
=1

where HJ = (®;|AP{E|®;) and NiF = (0;|P{%|®;). The
normalization condition is imposed on the f/@ coeffi-
cients so that (‘P(J'?MQ(K)I‘I‘(J';)M(,(K)) = 1. Here, we assume
EWY <EY, <...<EY) foragiven n.

In the present VAP, all the |®;) SDs in Eq. (1) are
varied simultaneously, so that the E}”, energies and their
corresponding ¥, (K)) wave functions obtained from
Eq. (2) are as close as possible to the exact shell model
ones. Details of our VAP algorithm can be found in Ref.
[11].

Naturally, one can directly take the trial wave func-
tion in Eq. (1) to perform the VAP iteration with the ini-
tial |@;) SDs randomly generated. As a simple example,
we use the trial wave function in Eq. (1) with K=0 to
perform the VAP calculations for the ground 0* state in
%Ge. The GXPFI1A interaction [17] in the fp model
space is taken. Thus, the parity projection can be omitted
in this example. The results are shown in Fig. 1. It is seen
that in the simplest case of n =1, the VAP iteration con-
verges quite fast, and the converged energy is —302.983
MeV. However, if one takes n =2 with random initial
SDs, it is possible that the final converged VAP energy is
also —302.983 MeV, which is the same as that with n=1.
This strongly implies that one of the two projected SDs
does not contribute to the converged VAP wave function.

Let us try to understand why the above converged en-
ergy with n =2 is exactly the same as that with n=1. In
the n=2 case, one can obtain two E'. energies, and
only the lower one (« = 1) is minimized. The correspond-
ing a = 1 wave function can be explicitly written as

¥ (KDY = ™ PIA®@0) + ST P (3)

When the energy for Eq. (3) converges to E(ﬁr)1 =
—302.985 MeV (see red triangles in Fig. 1), it is found
that the corresponding coefficients in Eq. (3) are f/™! =
11.2256 and ff™' =4.5315x107%. The latter £/ is al-
most zero. This means that the second term in Eq. (3) is
useless. Therefore, such VAP with n =2 is essentially the
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Fig. 1.  (color online) VAP iterations with n=1 (black

square), n=2 without mixing (red triangle), and »=2 with mix-
ing (blue circle) for J* = 0* in % Ge.

VAP with n=1.

Now, we need to understand why the second projec-
ted state in Eq. (3) cannot mix with the calculated wave
function. Actually, during the VAP iteration, once the
f™ is zero, the derivatives of the E(, energy with re-
spect to all the variational parameters (see the Appendix)
for |®,) must be zero. Consequently, |®;) remains al-
most unchanged in the next VAP iteration, because the
direction of the energy minimization should be close to
the opposite direction of the energy gradient. Hence, it is
likely that £;™' remains zero at the next iteration. There-
fore, the second term in Eq. (3) becomes a complete
bystander. Certainly, this situation must be avoided in
practical calculations.

One may wonder under what condition the second
projected state can mix with the calculated wave function.
We address this issue from a theoretical point of view.

If there is a new state |¢) that does not mix with a
known wave function [), one can easily prove the fol-
lowing identity:

(Pl(H - E)ly) =0, “4)

where E = (y|H|y). Here is a brief proof of Eq. (4). Actu-
ally, |¢) is usually not orthogonal to |). Thus, |¢) needs
to be orthogonalized by performing Gram-Schmidt ortho-
gonalization, and the orthogonalized one can be written
as

16") = 1¢) = (WlH), ®)

so that (y|¢’) = 0. If there is no mixing between |¢) and
[y, one should have

(¢'|Hly) = 0. (6)

By substituting Eq. (5) into Eq. (6), one can obtain Eq.
4).

Therefore, one can simply introduce a real and non-
negative quantity that can be used to indicate the coup-
ling strength between the normalized |¢) and |y) states:

¢ = [pl(H - E)y)P*. (M

Certainly, if ¢ >0, then |¢) definitely mixes with |i).
Thus, one may need to consider how to find a |¢) so that
the ¢ value can be large enough.

In the present work, we take the |‘I’(J’2MQ(K)) wave
function in Eq. (1) as |¢) and the new candidate projec-

P @) )
ted state - as |¢). Therefore, one can rewrite
Q| P | D
Eq. (7) as (DIPKkI®)
_ KP@IPE (H = EQ )0 (KO)P
Co = , (8)

(DIP|D)

for the calculated |‘P(Jr2Ma(K )) state.

More generally, when one calculates the m lowest
states simultaneously using the algorithm in Ref. [11], the
candidate projected state is useful as long as one of the ¢,
quantities is large enough. Hence, one can define a glob-
al C quantity for the candidate projected state Pi7|®) as

C= Zjl Ca- 9)

It is easy to understand that if the C value is large enough,
the candidate projected state P47 |®) should be important
for the calculated states.

Now, let us try to solve the problem of the example in
Fig. 1. According to the converged VAP wave function
Pﬁ](|q)l>

(1| PID1)

eV, we randomly generate a second projected state
P{T|®,) and combine it with the projected basis in this
n=1 VAP wave function to form a n =2 wave function,
whose explicit form is also given by Eq. (3). This
I‘I‘(JZH)MI(K )y wave function will be further optimized fully
by simultaneously varying the |®;) and |®,) SDs, so that
an improved energy minimum lower than —302.983 MeV
is expected.

However, if a candidate projected state is randomly
generated in a huge configuration space, as in the present
example, the corresponding C value is likely to be ex-
tremely tiny. Indeed, in the present case, the calculated C

with n=1, whose energy is —302.983
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value between the random P |®,) and the converged
|‘I’(/172M1(K)) is as tiny as 107!°, which is almost equal to
zero. This leads to the fact that the second term in Eq. (3)
can be neglected again owing to Eq. (6), and the f/™
coefficient must be very tiny. Consequently, the gradient
of the energy for the wave function in Eq. (3) should be
small enough to terminate the VAP iteration at the very
beginning. Therefore, the VAP wave function cannot be
further improved.

This forces us to find an algorithm to vary the candid-
ate projected state P47.|®,) so that the corresponding C
quantity can be maximized. To make such maximization
more efficient, it is necessary to calculate the gradient
and Hessian of C with respect to the variational paramet-
ers of |@,). Fortunately, the matrix elements required by
this gradient and Hessian are available in the present
VAP calculations, which is very convenient for the max-
imization of C. Because such maximization is equivalent
to the minimization of —C, in the practical calculation,
we prefer to take the latter so that our present algorithm
for minimization in the VAP calculation can be directly
adopted.

The minimization iteration of —C is performed by
varying |®,) in the above example. The results are shown
in Fig. 2. It is interesting that although the C value is ex-
tremely tiny at the beginning, it quickly becomes large
enough that the second projected SD can sufficiently mix
with the original VAP wave function with n=1. In this
sense, we do not need to wait for the converged C. Ac-
cording to Fig. 2, one can simply take the projected SD at
the 4-th iteration so that the computational time for ob-
taining the useful projected SD can be considerably re-
duced.

With this useful projected SD PJr|®,), one can per-
form the VAP calculation using Eq. (3). The calculation
results are shown in Fig. 1. This time, the VAP energy is
indeed reduced from —-302.983 to —303.522 MeV. The
corresponding coefficients in Eq. (3) become f/™ =
—3.3264 +4.2404i and fJ”l 0.4038 +6.6283i, which in-
dicates that both projected states are important for the cal-
culated state.

With this new method, important projected SDs can
be selected one by one so that the VAP iteration can be
carried out normally. Thus, the VAP wave functions can
be continuously improved. At this point, one can imagine
that if the VAP process is omitted, the formed nuclear
wave function is very similar to that in the MCSM [3].
However, the major difference is that, in the MCSM, the
important projected SDs are selected from a large num-
ber of candidates, which are generated stochastically.
Therefore, it seems that we have proposed an alternative
method of basis selection, which can be used to replace
that in the MCSM.

However, before we put more projected states into the
VAP wave functions, we should solve another problem
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Fig. 2. (color online) Iteration of the C quantity in Eq. (9)
between the second candidate projected state and the n=1
converged VAP wave function in Fig. 1 for the J™ = 0* ground
state in % Ge.

that is associated with the orthonormality among the in-
cluded projected basis states, as will be addressed in the
next section.

IIT. ORTHONORMALITY AMONG PROJECTED
BASIS STATES

A natural deficiency of the projected states is their
poor orthonormality among themselves. A direct con-
sequence of this deficiency is the possible appearance of
the redundant projected states, which seriously affects the
stability of VAP iteration. This problem of orthonormal-
ity was addressed in Ref. [12]. In that work, the VAP cal-
culation was performed so that the following Q quantity
could be minimized:

m XZ n NJnNJrr
_ J. Jt
0=S e en S SRR o
a=1 il
i¢j

where Nl/” (@ P |D;). The first term is the sum of the
calculated state energies, and the last two terms are con-
straints that are expected to keep the projected basis states
in a good condition so that redundant states may not ap-
pear. One can easily understand that in Eq. (10), the
second term tends to push the N/ norms to large values,
and the third term tends to guide the projected basis states
to be orthogonal to one another. Here, we propose a more
reasonable constraint term that can be used to replace
those two constraint terms in Eq. (10). The new defini-
tion of the Q quantity can be written as

0= Z EJ+ W,,,l (11)

where |[N’7| is the determmant of the norm matrix in Eq.
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(2). Notice that this |N’*| value equals the product of all
the eigenvalues of N/7. If there is a redundant basis state,
an eigenvalue of N'* must be zero. Thus, the |[N/*| value
also must be zero, and the constraint term in Eq. (11) be-
comes infinite, which is impossible. This means that the
redundant state can be strictly forbidden by the new con-
straint term in Eq. (11). In contrast, the original con-
straints in Eq. (10) do not have such power in forbidding
the appearance of redundant states. For instance, suppose
that there are three normalized basis states |¢1), |#,), and
|#3), with the following relationships: (¢i|¢2) =0 and
[p3) = %(|¢1)+ |#2)). Then, |¢3) is clearly a redundant
state. In this case, one can easily obtain the value of the
last term in Eq. (10), and it turns out to be V2y,, which
seems not large enough to strongly restrict the basis
states. Furthermore, this lNl—,l term tends to increase the ei-
genvalues of N’7, playing a role similar to that of the
second term in Eq. (10). Therefore, it is very nice to take
the new constraint to keep the precision of the calculated
VAP wave functions.

In the present VAP calculations, the Q value in Eq.
(11) needs to be minimized. Thus, it would be better for
the gradient and the Hessian matrix of the INilfl term to be
calculated. Formulations of how to evaluate such quantit-
ies have been explicitly presented in the Appendix. Fortu-
nately, all the required matrix elements for the \Nilfl term
are actually available, because they were originally pre-
pared for the gradient and the Hessian matrix of the VAP
energies.

To show the effect of this new lNl—,‘ constraint, we per-
form the VAP calculations in the sd model space. Be-
cause this model space is quite small, the dimension of
the corresponding configuration space is not so large that
the randomly selected projected states can easily mix
with one another. This makes it very convenient that one
can avoid the complexity of combining this constraint
with the first problem addressed in the previous section.
Therefore, one can randomly generate a group of the pro-
jected SDs and directly perform the VAP calculation with
or without the \Nilfl constraint.

We randomly generate 10 projected SDs (n = 10) with
K =0 to construct the lowest 5 J™ = 8" states (m=35) in
2*Mg. The USDB interaction [18] is adopted, and K =0
is taken. Then, the Q quantity in Eq. (11) is minimized
with y =0 and y =0.01" MeV =107 MeV, respect-
ively. In principle, the y parameter should be as small as
possible provided that the VAP iteration can converge
normally, so that the second term in Eq. (11) can be as
small as possible. The associated quantities as functions
of the VAP iteration are shown in Fig. 3. It is seen that
without any constraint, the smallest eigenvalue of the N/7
shown in Fig. 3(a) tends to decrease, which is undesir-
able for obtaining precise VAP wave functions. There-
fore, the gradient of Q in Fig. 3(b) is not accurately calcu-
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Fig. 3. (color online) Calculated quantities as functions of

the VAP iteration for the lowest five states (m=5) with
J* =8" in 2*Mg. 10 projected SDs are adopted to construct the
VAP wave functions. The USDB interaction is adopted. (a)
Calculated 10 eigenvalues of N’7; (b) absolute value of the
gradient of the O quantity; (c) calculated lowest five energies.
The shell model (SM) energies are also shown, for comparis-
on.

lated, and it is very difficult for the gradient to be smaller
than 10~ MeV, which is the condition of our VAP con-
vergence. Next, we perform the same calculation but with
x = 1072 MeV. This time, the eigenvalues of N’* do not
become so small, and the VAP iteration converges quite
fast. The VAP energies are compared with the exact shell
model ones, and good approximation still can be achieved
even with the new constraint. The final U{,‘—,‘ value with
x =102 MeV is found out to be 0.0056 MeV, which is
sufficiently small.

IV. EXAMPLE OF 4* STATES IN NI

The above two problems may appear simultaneously
in a VAP calculation. Suppose that there are m lowest
states that need to be calculated. The VAP calculation can
be performed in two steps. In the first step, one generates
n=m projected SDs randomly and constructs the
simplest VAP wave functions for these m lowest states.
Then, these wave functions are varied simultaneously so
that the Q quantity with y # 0 in Eq. (11) can be minim-
ized. The second step is to improve the VAP wave func-
tions by adding a useful projected state using the al-
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gorithm addressed in Sec. II. Then, one can perform the
same VAP iteration as in the first step but with n=m+1.
In this way, projected SDs can be effectively added one
by one, and the approximations of the calculated m low-
est states can be continuously improved.

As a practical example, we calculate the lowest
J* = 4% states in *°Ni. The GXPF1A interaction [17] in
the pf shell model space is adopted, and K =0 is taken.
The constraint parameter y is assumed to be associated
with the number of included projected states and is
simply taken to be y = 1072" MeV. We first calculate the
yrast state (m = 1). The results are shown in Fig. 4. It is
shown that the calculated energy decreases steadily with
the addition of projected SDs one by one. This clearly in-
dicates that each of the added projected states is indeed
important for the lowest J* =4* state. One can also see
that the energy decreases rapidly at the beginning, and the
decrease slows as n increases. This can be understood as
follows: at each n, the most important projected state
should be obtained because it reduces the energy to the
maximum value in the VAP algorithm. This means that
the next added projected state should be less important
than the previous one.

Next, we calculate the lowest three 4* states in °Ni,
simultaneously. The calculation results are shown in Fig.
5. It is seen that all the calculated energies decrease as n
increases, which seems very similar to the trend in Fig. 4.
However, one can also see in Fig. 5 that the energies are
not always significantly improved by adding a new pro-
jected state. As mentioned previously, if the added new
projected state does not mix with one of the state wave
functions, the corresponding energy remains unchanged.
From Fig. 5, one can understand that the selected new
projected state can be important for at least one of the cal-
culated states but may not always be important for all of
them. Nevertheless, it is believed that the calculated three
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Fig. 4. Lowest (yrast) energy of J7=4* in °Ni calculated

with the present VAP as a function of 7, i.e., the number of in-
cluded projected basis states. The shell model (SM) energy is
shown for comparison.
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Fig. 5. Similar to Fig. 4 but for the lowest three energies of

J* =4% in S°Ni.

energies may be sufficiently close to the exact shell mod-
el ones if n is large enough. Unfortunately, this requires
more computational time, and one should consider how to
perform the VAP calculation more efficiently. This is an-
other important issue that should be seriously studied in
the future.

V. SUMMARY AND OUTLOOK

The projected wave functions with good quantum
numbers are effective blocks for the construction of nuc-
lear wave functions. The full optimized nuclear wave
functions expanded in terms of these projected states can
be obtained through the VAP calculation. However, when
the VAP calculations are performed in a large model
space, very few randomly selected projected basis states
are scattered in an extremely huge configuration space.
This means that the selected projected basis states are
likely to be too different to be linked by the Hamiltonian.
In other words, Eq. (4) always holds when |¢) and |¢)
refer to different projected basis states in a huge configur-
ation space. Thus, in a large model space, the randomly
selected projected state is likely to be irrelevant for the
calculated states. To solve this problem, we propose an
algorithm whereby such irrelevant projected states can be
varied so that they can be important for the calculated
states. However, we never encounter such a problem in
the small sd model space, because the configuration
space is very small. Another problem is that the projec-
ted basis states are far from orthonormality, which seri-
ously reduces the stability of the VAP iteration. We solve
this problem by imposing a new constraint on the sum of
the calculated energies. The proposed solutions for the
discussed problems are supported by the calculated ex-
amples.

Certainly, the discussed problems are general ones
and are independent of the specific form of the basis
states. Thus, the present work may be helpful in develop-
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ing various quantum many-body methods. For instance, if
the VAP wave functions are formed with the projected
Hartree-Fock-Bogoliubov quasipaticle vacuum states, one
may still encounter the same two problems. In this case,
we expect that the present solutions would still be valid,
which will be further investigated in the future. For an-
other example, in the GCM method, one can generate nu-
merous basis states by varying different deformation
parameters. Then, one does not need to include all the
GCM basis states but just pick up some of the most im-
portant ones one by one by evaluating the C quantity for
each basis state. Other possible applications will be in-
vestigated in the future.

APPENDIX A: GRADIENT AND HESSIAN
MATRIX OF CONSTRAINT TERM

For simplicity, let us rewrite the constraint term as
follows:

(A1)

where N;j = (®;|PZ%|®;). In the VAP method, one can
vary the |®;) states by applying the Thouless theorem to
find the best set of VAP basis states [19]:

) = Net 2 bl ) = Nedow b l@y),  (A2)
where N is the normalization parameter. A}:V is generally
a quasiparticle pair operator corresponding to the fixed
|®p) HFB vacuum state, but here it refers to a particle-
hole operator, and |®g) is a Slater determinant. d is a
complex skew matrix. The matrix elements d,, can be
complex numbers:

dyy = Xy + 1. (A3)
where x,, and y,, are real numbers and are the variation-
al parameters. For convenience, we use x,, Xg, etc., to
represent these variational parameters.

Then, the gradient of Qy can be expressed as

Ny - Ny,
aQO:_L%:_Lzﬂ: ON, ... ON,
O0xy |]V|2 0xy |N|2 P ox, ax,

Ny -+ Ny

1 <~ Ny —
=—— § ' A4
|N|2 P Oxy NHilk}, ( )

where N{ilk} = (-1)**|N{ilk}| is a cofactor of |N|. The sub-
matrix N{ilk} is obtained by removing the ith row and kth
column from the matrix N. If the variational parameter x,

. ONji  ON;
is the real part of d,, =2 can be expressed as
ool Oxy  Oxyy
ollows:
ON;
o = (OIPEALIDL), (A5)
uv
ON; ;
ot = (il PRI, (A6)
X,y
ONi _ (| PLEAT |y) + (DiJAL PL A7
oxi =(Di|PKk A, 1D +{(DilA,, PK|D:). (A7)
uy

If the variational parameter x, is the imaginary part of
ONy.  ONy

dyy, %0 Oy can be expressed as follows:
ONy. . .
3yﬁlv = (D | P AN D), (A8)
ON; ) ;
K = (DAL, PE D), (A9)
Oy
i _ i PIm AT |0y — (DA PIT |, Al10
(3yi —1< l| KK 'uvl l>_1< 1| yny Kl(l l)' ( )
nv
Details can be found in Ref. [10].
Similarly, the Hessian of Qy can be written as
>’ 1 GINIGIN| 1 &*IN
Qo - _L aNIOIN] 1 oI i (A11)
Axo0xp INP 0x, 0xg  INJ? dx,0x5

*IN|

where the in the second term of Eq. (A11) can be

calculated using the following equation:

Ny o+ Nip
INl | &Na 0*Nin
0x,0xp o 0x0xg 0x,0xp

an Nnn
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Nll . Nln
Ny OV
n | 0% 0xq
+>
0}% axﬁ
Ny o Ny
" PNy —
=> £ Niilk)
=1 0xa0xp
a‘]Vik aNil
axa (9xa —
* vy oy | VUKD
i) (k<D) axﬁ 6)% (A 1 2)

If i < j and k < I, then N{ijlkl} is usually called the second
order cofactor and is defined as

Nijlkly = (=1 N ik, (A13)
where the submatrix N{ijlkl} is obtained from the matrix
N by removing the i, jth rows and k,/th columns.

Both N{ilk} and N{ijlkl} can be easily obtained by us-
ing Jacobi's identity in the matrix theory [20]:

Niilk} = Nii”'INI, (Al4)
-1 -1

T Nkl Nki/
N{ijlkl} = . _, |INL (A15)

i Ny

_ Nk .

The expression of can be obtained as follows.

X, 0X,
If the variational parameters x, and xg are the real parts

PNy 0*Ni

of d,, then , and we have

0x,0xp B 0X,, 00X,

*Niy .

T g = CHPALAL 1O = Nudyewr,  (AL6)
uve ey

9N i Al pln

o g = (il A PR |P) = Niebyevrs (A7)
uve ey

9N i plr Akt

o ok (Pl PR Ay 1Ok, (A18)
ey

O*Nj;

W =<‘Di|Ai Ai P?K@i)
vy

wvEtuy
+(DJAL, P Al |D;)
+(Dj|AL, PEAL D)
+ (D4 PRAT AL D) = 2N;i6 e
(A19)

If the variational parameter x,is the real part and xz is the

L. d*N; O*N;
imaginary part of d,,, then L k. and we
0x,0xg  0X4, 0y,
have
N, P AR A, () (A20)
- KKy v s
ax;]jvay,t]i’v’ : :
_OPNie —i(D;AL, A PIT D) (A21)
3XLy3nyw il Ay KKk /s
_ 0PN _ (@Al PIR A D) A22
6x;lvay//fl/v’ _1 l #V KK H,V, k ’ ( )
azNi' : i i J
Ty M A PiID)
+ (DAL, PECATL | D;)
—(Di|A},, PEALID:)
+ (O PAT AL D). (A23)

If the variational parameter x, is the imaginary part and
Ny *Nix
= and

is the real part of d,,, then = s
b p i 0x,0x3  0Yy0x,y

we have

0”Nix : I Akt KT

ok = KIPRAL A 190, (A24)
ey
& Nix ; i Al pin

oo~ Qi A P00, (A25)
b %
0Nk : i pln Ak

W = —K®Qi|A,, Pk Ay |Pi), (A26)
Ay
&N o

By, = NP AL PR
Y

— (DAL, PECALL ;) + (DAL, PR AL D)

+i<q)i|P{(75<ALT‘,AzV,|CDi>. (A27)
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ary parts ofd,,, then

If the variational pafameters %o and xgare the imagin-

ik Nix

, and we have

ax(,ax/g a)’pvay#’v
P*Nig Kt Akt
ko ~( P AN AL 1P6) =~ NikOyrrs,  (A28)
0Ny l
W=—<<DAA y AL PRI = Nidyn s (A29)
el
*N;
ot = (DAL, PEALL D), (A30)
By;lvayﬁ,v,
References

(1]
(2]

[10]

M. Horoi, B. A. Brown, and V. Zelevinsky, Phys. Rev. C
50,2274 (1994)

S. E. Koonin, D. J. Dean, and K. Langanke, Phys. Rep. 278,
1(1997)

T. Otsuka, M. Honma, T. Mizusaki, N. Shimizu, and Y.
Utsuno, Prog. Part. Nucl. Phys. 47, 319 (2001)

N. Shimizu, T. Abe, Y. Tsunoda et al., Prog. Theor. Exp.
Phys., 01A205 (2012)

N. Shimizu, Y. Utsuno, T. Mizusaki et al., Phys. Rev. C 82,
061305(R) (2010)

Z. C. Gao, M. Horoi, and Y. S. Chen, Phys. Rev. C 79,
014311 (2009)

K. W. Schmid, Prog. Part. Nucl. Phys. 52, 565 (2004)

N. Shimizu, Y. Tsunoda, Y. Utsuno et al., Phys. Rev. C
103, 014312 (2021)

Z. C. Gao, M. Horoi, and Y. S. Chen, Phys. Rev. C 92,
064310 (2015)

T. Ya, Y. He, Z. C. Gao et al., Phys. Rev. C 95, 064307

(1]

[12]
[13]

[14]
[15]
[16]
[17]
[18]
[19]

[20]

074104-9

627]\] — (DAl Al P |D;)
Yy OV iy
+( DAL, PR ALl 107
+(DjAL,, PEAL D)
—(Di|PE AL AL D) = 2NiiG
(A31)
(2017)

J. Q. Wang, Z. C. Gao, Y. J. Ma et al., Phys. Rev. C 98,
021301(R) (2018)

Z. C. Gao, Phys. Lett. B 824, 136795 (2022)

C. Jiao and C. W. Johnson, Phys. Rev. C 100, 031303(R)
(2019)

A. M. Romero, J. M. Yao, B. Bally et al., Phys. Rev. C 104,
054317 (2021)

D. D. Dao and F. Nowacki, Phys. Rev. C 105, 054314
(2022)

J. M. Yao, J. Meng, Y. F. Niu et al., Prog. Part. Nucl. Phys.
126, 103965 (2022)

M. Honma, T. Otsuka, B. A. Brown et al., Eur. Phys. J. A
25(1), 499-502 (2005)

B. A. Brown and W. A. Richter, Phys. Rev. C 74, 034315
(2006)

P. Ring and P. Schuck, The Nuclear Many-Body Problem
(Springer-Verlag, New York, 1980)

Roger A. Horn and C. R. Johnson, Matrix Analysis
(Cambridge University Press 1994)


https://doi.org/10.1103/PhysRevC.50.R2274
https://doi.org/10.1103/PhysRevC.50.R2274
https://doi.org/10.1016/S0370-1573(96)00017-8
https://doi.org/10.1016/S0370-1573(96)00017-8
https://doi.org/10.1016/S0370-1573(96)00017-8
https://doi.org/10.1016/S0370-1573(96)00017-8
https://doi.org/10.1016/S0146-6410(01)00157-0
https://doi.org/10.1016/S0146-6410(01)00157-0
https://doi.org/10.1016/S0146-6410(01)00157-0
https://doi.org/10.1103/PhysRevC.82.061305
https://doi.org/10.1103/PhysRevC.82.061305
https://doi.org/10.1103/PhysRevC.82.061305
https://doi.org/10.1103/PhysRevC.82.061305
https://doi.org/10.1103/PhysRevC.79.014311
https://doi.org/10.1103/PhysRevC.79.014311
https://doi.org/10.1103/PhysRevC.79.014311
https://doi.org/10.1103/PhysRevC.79.014311
https://doi.org/10.1016/j.ppnp.2004.02.001
https://doi.org/10.1016/j.ppnp.2004.02.001
https://doi.org/10.1016/j.ppnp.2004.02.001
https://doi.org/10.1103/PhysRevC.103.014312
https://doi.org/10.1103/PhysRevC.103.014312
https://doi.org/10.1103/PhysRevC.92.064310
https://doi.org/10.1103/PhysRevC.92.064310
https://doi.org/10.1103/PhysRevC.92.064310
https://doi.org/10.1103/PhysRevC.92.064310
https://doi.org/10.1103/PhysRevC.95.064307
https://doi.org/10.1103/PhysRevC.95.064307
https://doi.org/10.1103/PhysRevC.95.064307
https://doi.org/10.1103/PhysRevC.95.064307
https://doi.org/10.1103/PhysRevC.98.021301
https://doi.org/10.1103/PhysRevC.98.021301
https://doi.org/10.1103/PhysRevC.98.021301
https://doi.org/10.1103/PhysRevC.98.021301
https://doi.org/10.1016/j.physletb.2021.136795
https://doi.org/10.1016/j.physletb.2021.136795
https://doi.org/10.1016/j.physletb.2021.136795
https://doi.org/10.1103/PhysRevC.100.031303
https://doi.org/10.1103/PhysRevC.100.031303
https://doi.org/10.1103/PhysRevC.100.031303
https://doi.org/10.1103/PhysRevC.100.031303
https://doi.org/10.1103/PhysRevC.104.054317
https://doi.org/10.1103/PhysRevC.104.054317
https://doi.org/10.1103/PhysRevC.104.054317
https://doi.org/10.1103/PhysRevC.104.054317
https://doi.org/10.1103/PhysRevC.105.054314
https://doi.org/10.1103/PhysRevC.105.054314
https://doi.org/10.1103/PhysRevC.105.054314
https://doi.org/10.1103/PhysRevC.105.054314
https://doi.org/10.1016/j.ppnp.2022.103965
https://doi.org/10.1016/j.ppnp.2022.103965
https://doi.org/10.1140/epjad/i2005-06-032-2
https://doi.org/10.1140/epjad/i2005-06-032-2
https://doi.org/10.1103/PhysRevC.74.034315
https://doi.org/10.1103/PhysRevC.74.034315
https://doi.org/10.1103/PhysRevC.74.034315
https://doi.org/10.1103/PhysRevC.74.034315

	I INTRODUCTION
	II IMPORTANT PROJECTED BASIS STATES
	III ORTHONORMALITY AMONG PROJECTED BASIS STATES
	IV EXAMPLE OF 4$ ^+ $ STATES IN $ ^{56} $NI
	V SUMMARY AND OUTLOOK
	APPENDIX A: GRADIENT AND HESSIAN MATRIX OF CONSTRAINT TERM
	References

