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Abstract: We propose a simple algorithm to further improve the previous variation after projection (VAP) wave

functions for low-lying nonyrast states. We attach a weight factor to each calculated energy; then, the sum of these

weighted energies is minimized. It turns out that a low-lying nonyrast VAP wave function can be further optimized
when the weight factor for the corresponding energy is far larger than the other ones. Based on the improved WVAP
wave functions, the energy-variance extrapolation method is applied to estimate the exact shell model energies. The
calculated results for nuclei in the sd and pf model spaces clearly show that the extrapolated energies for all the cal-

culated states are very close to the exact shell model ones within 10 keV.
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I. INTRODUCTION

The nuclear shell model (SM) is one of the funda-
mental frameworks in nuclear physics. In this model, the
wave function of a many-body quantum system can be
obtained by diagonalizing a shell model Hamiltonian in a
given model space. Theoretically, the SM can describe
various properties of nuclei throughout the mass region.
However, owing to the limitation of conventional diagon-
alization approaches, the full SM calculations have been
restricted to rather small model spaces. To tackle the
many-body problem in a large model space, the large
configuration space must be truncated into a small sub-
space so that the diagonalization can be performed on a
present-day computer. Certainly, the energies obtained in
the subspace are approximate eigenenergies of the
Hamiltonian. Various approximate SM methods with dif-
ferent choices of the configuration subspaces have been
developed in an attempt to make the SM approximation
as good as possible [1-6].

Among these approximate methods, the variational
methods, such as the VAMPIR method [4] and the vari-
ation after projection (VAP) method [5, 6], are important
ones. These methods have proven to be useful in extend-
ing the SM applicability from its traditional sd and pf
model spaces to larger ones. In the variational methods,
the yrast state with given quantum numbers J and M can
be easily obtained by solving the variational equation [7].
However, for the first excited state with the same sym-

metry, the calculation is slightly more complicated. To
ensure the orthogonality between the first excited state
and the yrast one, Gram-Schmidt orthogonalization is
usually adopted to eliminate the yrast state from the vari-
ational space, as has been done in the VAMPIR method
[4]. In principle, this procedure can be generalized to
higher nonyrast states, but in fact it quickly becomes
rather complicated. In Ref. [8], we proposed a new al-
gorithm in the VAP method for the calculations of
nonyrast states. It is found that the yrast state and
nonyrast states with given spin J can be optimized simul-
taneously by minimizing the sum of the energies of the m

m
lowest calculated states, S, = ZE Jo- During the vari-
a=1
ational process, the orthogonality among the calculated
states is automatically fulfilled by solving the Hill-
Wheeler (HW) equation.

Although this algorithm avoids the complexity of the
frequently used Gram-Schmidt orthogonalization, there
exists an inadequacy. The VAP calculation converges
when §,, is minimized. At this minimum, the gradient of
Sm 1s zero. However, this does not guarantee that the
gradient of each energy in S, is also zero. Consequently,
the calculated energies in S, are not at their own minima.
In this sense, one may expect that the wave function of
each calculated state can be further optimized individu-
ally, so that the gradient of this energy can be as close as
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possible to zero. Recently, we realized that such an im-
provement of the VAP wave function can be achieved by
assigning different weights to the calculated energies.
The purpose of the present work is to develop a weighted
VAP method for the calculation of low-lying nonyrast
states so that the VAP approximation can be further im-
proved. Furthermore, these improved VAP wave func-
tions are applied to the energy-variance extrapolation,
which was addressed in Ref. [9], and we expect that this
may reduce the gaps between the approximate energies
and the exact SM ones.

The remainder of this paper is organized as follows.
Section II introduces the framework of the weighted VAP
method. The energy-variance extrapolation method for
the nonyrast states is discussed in Sec. III. A brief sum-
mary and outlook are presented in Sec. IV.

II. WEIGHTED VAP METHOD

The Hamiltonian of a nuclear many-body system is
invariant under a number of symmetry operations, such as
rotation and reflection. Thus, a nuclear wave function
should have good spin and parity. Generally, such a nuc-
lear wave function can be constructed by adopting the
techniques of angular momentum projection and parity
projection. With these techniques, the nuclear wave func-
tion can be expressed as

n J
) =D S HePlPrI®y), 1)

i=1 K==J

where P4, and P™ are the projection operators of angu-
lar momentum (J) and parity (r), respectively. a is used
to label the states with the same J, 7, and M. n represents
the number of adopted |®;) reference states with good
particle numbers. Here |®;) is assumed to be a fully sym-
metry-unrestricted deformed Slater determinant (SD).
One can vary [¥9”,, ) so that it is as close as possible to
the corresponding exact shell model one. This is usually
called variation after projection [7].

Actually, the wave function in Eq. (1) can be further
simplified. In Ref. [10], we found that for each |®;), it is
enough to pick up just one of its (2J + 1) projected states
to form a VAP wave function, i.e.,

n
Ky =D 1" Pl PTIDy), )
i=1

where K can be randomly chosen from -J, —-J+1, ---,
J -1, J. The same good approximation of Egs. (1) and (2)
can be achieved if full optimization is performed [10]. In
the following, all the discussions are based on the simpli-
fied wave function in the form of Eq. (2).

Given a set of |@;) states, the coefficients, £/, in Eq.
(2) and the corresponding energy

E%, = (P (KOLAN S, (KDY, 3)

are determined by solving the following HW equation:
D (Dil(A ~ E) Py PI® ) £/ = 0. )
=1

The coefficients f/ should also satisfy the normaliza-
tion condition:

D @i PR PRI £ = 1. (5)

ir=1

By solving Eq. (4), one can obtain n approximate ener-
gies, EY,, with @ = 1,2,---,n, and the corresponding n or-
thogonal wave functions, |‘I‘(J’2M(,(K)>, if the included pro-
jected states are independent. Here, we assume E’}; <
El, <---<E", . Clearly, the wave functions, [¥'",,.(K)),
are determined by the selected reference states, |®;).
Hence, the VAP calculation is essentially the process of
finding a set of |®;) states such that the obtained nuclear
wave functions, |‘P(J'QMQ(K)>, are as close as possible to
the corresponding SM wave functions.

Generally, for the yrast state, such optimization can
be easily performed by minimizing E’},. However, for the
nonyrast states with the same J, M, and =, the optimiza-
tion is far more complicated. Traditionally, for the
nonyrast state a, Gram-Schmidt orthogonalization must
be first applied to ensure the orthogonality between the
calculated state and all the lower ones. Such orthogonal-
ization is rather complicated if o is large. In Ref. [8], we
proposed an algorithm for calculating the nonyrast states
in which the Gram-Schmidt orthogonalization is no
longer necessary. It is found that the lowest m (m <n)
states can be optimized simultaneously by minimizing the
sum of the calculated lowest projected energies:

m

Sn=Y_Ej, (6)

a=1

Such minimization of S is ensured by the
Hylleraas —Undheim —MacDonald (HUM) theorem [11,
12]. According to this algorithm, the VAP calculation
converges when the gradient of S”,, VS” , becomes zero:

m>

m
vSy =Y VEj, =0. (7)
a=1

Apparently, Eq. (7) does not guarantee that each
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VE’, member in VS, is also zero. To show this, we take
27 Al as a simple example and perform VAP calculations
for the lowest two J™ =5/2" states in the sd shell with n
ranging from 2 to 6. Here, we take K = 1/2 and adopt the
USDB interaction [13]. The calculated energies and the
absolute values of the corresponding energy gradients are
shown in Fig. 1. The exact SM energies are calculated
with the NUSHELLX code [14]. One can see that the dif-
ferences between the converged VAP energies and the
exact SM ones decrease with n. The two corresponding
energy gradients are clearly far from zero but very close
to each other because they are mutually canceled accord-
ing to Eq. (7). However, such energy gradients also de-
crease gradually as n increases. This implies that smaller
gradients may correspond to better approximation. At this
point, one may expect that a converged VAP wave func-
tion with a fixed # can be further optimized if its energy
gradient can be further reduced.

The HUM theorem clearly states that, with a given
Hamiltonian, the approximate energy, i.e., E},, for any
excited state must be at or above the corresponding SM
eigenvalue, e;,. Thus if £}, = ¢j,, we must have

oo O 3100 (K _

SEN W9, (K)] =6 L L
e (PG BN (K))

®)

According to the Ritz variational principle [7], Eq. (8) is
equivalent to the exact Schrodinger equation

AN (K)) = €50l P900 (K). ©9)

Equation (9) indicates that when the approximate en-
ergy of the a-th state, E’,, is equal to the corresponding
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Fig. 1.  (color online) Calculated results for the lowest two
JT=5/2* states in ?’Al with VAP. (a) Differences between
the VAP energies and the exact SM ones with respect to the
number of SDs n. (b) Absolute values of the corresponding
gradients of the VAP energies when VS?, =0.

SM eigenvalue, ie., ej,, the projected wave function
must be also the same as the SM one regardless of what
E’(i < @) is. Thus, the wave function for the a-th lowest
state may be individually optimized by minimizing only
the E’, energy. However, in practical calculations, the
situation seems more complicated. In Fig. 2, we take the
same VAP calculation used for Fig. 1 but only minimize
the energy of the J* =5/2} state with n=2. The two ini-
tial projected states are generated randomly, and the cal-
culated results are denoted by the black symbols. It is
nice that both 5/2* energies decrease at early iterations,
but later, the 5/2] energy gradually increases and be-
comes very close to the 5/23 energy. This stops the 5/23
state from being further optimized.

To ensure the convergence of such VAP iteration, we
propose a weighted VAP method (called as WVAP), so
that the 5/27 energy may not be so close to the above
5/23 one. In this method, a real and positive weight
factor, w,, is assigned to each E’, by hand. Then, the
VAP calculation for the i-th lowest state is performed by
minimizing the weighted energy sum:

i
St= waEly (10)

a=1

where w,(a < i) is expected to be far smaller than w;. Of
course, the WVAP can be reduced to the normal VAP
when all the weight factors, i.e., w,, in Eq. (10) are the
same.

To check the convergence of the present method, we
repeat the above calculation to optimize the second low-
est J™ =5/2* state in 27 Al but with (w;,w») = (0.01,1) ad-
opted. The calculated results are denoted by the red sym-

— (0,,0,) =(0,1)
(0.01,1)

z
e
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Gradient (MeV)
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(&1 3 ., o
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| e
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Iteration
Fig. 2. (color online) (a) Convergence pattern of the ener-
gies of the lowest two JT=5/2% states in 2’Al with
(w1,w2) =(0,1) and (0.01,1), respectively. (b) Absolute value of
the corresponding gradient of the approximate energy of the
J7=5/2} state as a function of the iteration number. The US-
DB interaction is adopted.
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bols in Fig. 2. It is clearly shown that with a small weight
of 0.01 assigned to the 5/2} energy, a gap between the
two approximate energies appears, and the iteration now
can be well converged. Correspondingly, the final abso-
lute value of the gradient of the 5/27 energy is remark-
ably reduced, and it turns out to be approximately 0.05
MeV.

In Fig. 3, one can see the improvement of WVAP
compared with the original VAP results with different »n
numbers. The calculated energies from WVAP are gener-
ally more than 100 keV lower than those from VAP, and
the former energies are closer to the exact shell model
one. More interestingly, the WVAP energy with n=3 is
already as low as the VAP one with n = 6, which implies
that the WVAP wave functions can be more compact.
From Fig. 3(b), one can also see the difference between
WVAP and VAP. The absolute values of the calculated
gradients of the WVAP energies are far smaller than
those of the corresponding VAP ones and are very close
to zero. This indicates that the wave functions obtained
from WVAP are indeed improved from VAP.

The next example is calculated in the pf shell. We
perform similar calculations for the J* =03, 03, 23, and
2% states in “Cr with K =0. Here (w;,w,) is taken as
(0.01,1) for both the 0f and 27 states, and (w;, w2, ws) is
taken as (0,0.01,1) for the 03 state. For the 2] state, the
exact SM energy of the 27 state is close to that of the 23
state, whose energy difference is only approximately 0.7
MeV. In order to ensure the convergence for this 27 state,
the weights of the lowest two 2* states are slightly in-
creased to (w1, w,,w3) =(0.01,0.1,1). The GXPF1A inter-
action is adopted [15], and the calculated results are
shown in Fig. 4. For all the calculated states, the energies

obtained from WVARP are still lower than the correspond-
ing VAP ones. Moreover, it seems that the improvement
of the second excited states is better than that of the first
excited states in WVAP.

The B(E2) values are also calculated using the wave
functions corresponding to the energies with n =8 in Fig.
4. The calculated values are listed in Table 1. One can see
that the B(E2) values obtained from both VAP and
WVAP are in good agreement with the SM ones.
Moreover, one can observe that the B(E2) values with
WVAP are generally closer to the exact shell model ones,
except for the 25 — 0] transition.

As an application of the present method to heavier
nuclei, we calculate the lowest three 0 states in “°Ni
with n =15 independently. Here, (w;,w;) is taken as
(0.001,1) for the 0F state, and (w;,w;,ws3) is taken as
(0.001,0.001, 1) for the 03 state. The FPD6 interaction is
adopted [16]. The calculated energies are E(07)=
-203.160 MeV, E(03)=-198.611 MeV, and E(0})=
—198.147 MeV, which are only 38, 112, and 57 keV
above the corresponding exact SM ones, respectively.

A very similar study related to the minimization of
Eq. (10) was performed by Puddu [17]. However, the
present work is essentially different from that one. In the
method of Ref. [17], when calculating an excited state
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Fig. 4.
proximate energies of nonyrast states in “Cr obtained from
VAP and WVAP and the exact SM ones with respect to the
number of SDs n. (a) J*=0§; (b) J*=03; (c) J7=23; (d)
J =2},

(color online) Energy differences between the ap-

Table 1. B(E2,J — J-2) (in ¢ fm*) values of the states in
48Cr obtained using VAP, WVAP, and the SM.
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Fig. 3. (color online) Calculated results for the J™=5/27

state in 27 Al with VAP and WVAP, respectively. (a) Differ-
ences between the approximate energies and the exact SM
ones with respect to the number of SDs n. (b) Absolute values
of the corresponding gradients of the approximate energies
when the iteration converges. The USDB interaction is adop-
ted.

VAP WVAP SM
2l > 0] 64.062 59.491 58.825
2} -0} 0.492 0.629 0453
2l > 0] 1.392 1.240 1.123
2} -0} 19.257 20.890 22.941
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with given quantum numbers, one must also calculate the
wave functions for the yrast state and all the lower non-
yrast states with the same quantum numbers. In contrast,
in the present method, one can directly calculate an arbit-
rary highly excited state even without knowing the wave
functions of any other states. This is a very useful feature
of the present method for studying the high-lying excited
states. The rationality of our method is still based on the
HUM theorem, whose advantage seems not to be taken
by Ref. [17]. From the HUM theorem, we know that all
the approximate excited energies are always above the
corresponding exact ones. The present algorithm is de-
signed so that the calculated excited energy can be as low
as possible. Therefore, the best approximation for this
state can be achieved with a given number of projected
basis states.

Because the wave functions for the excited states are
optimized independently, they are not obtained from the
same diagonalization. This may lead to non-orthogonal-
ity among the calculated wave functions. In principle, this
problem can be easily solved by performing a final diag-
onalization in the space spanned by all the projected basis
states taken from all the calculated wave functions.
However, it is known that the exact wave functions are
strictly orthogonal; thus, if the calculated WVAP wave
functions have sufficiently good approximations, their or-
thogonality should be automatically fulfilled, and such fi-
nal diagonalization may be less important. For instance,
in the calculations of Fig. 4, all the overlaps among the
calculated WV AP wave functions of different states with
n = 8 are within 0.003.

There is another difference between the present work
and Ref. [17]. In Puddu's work, the projected SDs are
varied one by one. In contrast, here, all the included pro-
jected SDs are varied simultaneously. Although the com-
putational costs are higher, one may expect that the
present WVAP wave functions are more compact. The
above WVAP energies of the lowest three 0* states in
SNi with n = 15, indeed, are slightly lower than the res-
ults obtained with the same number of SDs in Ref. [17].

III. ENERGY-VARIANCE EXTRAPOLATION
WITH WEIGHTED VAP WAVE
FUNCTIONS

Theoretically, in any approximate SM method, the
obtained energies can be close to the exact SM ones to
any extent as long as the adopted configuration subspace
is large enough. Without exception, in VAP or WVAP, a
large number of SDs are also required if one wants to ob-
tain the precise eigenenergies of a Hamiltonian. However,
this is impossible because VAP calculations with large n
are very computationally expensive. Alternatively, the
exact SM energies may be estimated according to the ap-

proximate VAP or WVAP wave functions. Such energy
estimation can be done by adopting the energy-variance
extrapolation method, which has been introduced in the
nuclear physics [18].

Given a Hamiltonian A, the energy variance with re-
spect to an approximate SM wave function, ie.,
¥4, (K)), is defined as

AE}, =¥, (KIH - E5 )95, (K))
=P FOIEP W) Ky —ER2. (1)

Details regarding how to compute the matrix elements of
the energy variance can be found in Ref. [9]. As shown in
Ref. [18], if AE"}, is not too large, E’, can be approxim-
ately expressed as a quadratic function of its energy vari-
ance, i.e.,

E", ~aAE"> +bAE" +c, (12)

where a, b, and ¢ are parameters to be fitted with a series
of (AE",.E},) values. Considering the fact that
I¢'Y (K)) must be an exact SM wave function if
AE'j, =0, the parameter ¢ can be regarded as an estima-
tion of the exact SM energy.

In previous works [9, 19-21], the energy-variance ex-
trapolation has been performed with various approximate
SM wave functions, including those from VAP. All those
extrapolations work well in the prediction of exact SM
energies of the low-lying states provided the approxima-
tions of the adopted wave functions are good enough.
However, for nonyrast states, the WVAP is able to fur-
ther optimize the normal VAP wave functions. This is
definitely helpful for increasing the precision of the en-
ergy-variance extrapolation for the calculated nonyrast
states.

To confirm this point, we perform the WV AP calcula-
tions for the 5/25 state in 2’ Al starting from n=2. We
still take K=1/2 and (w;,w>)=(0.01,1). Once the
WYVAP iteration with n converges, a new projected SD is
added to this converged wave function, and the next
WVAP iteration with n+1 is performed. One can keep
increasing n so that the converged WVAP energy can be
continuously reduced. Here, we stop adding projected
SDs when n=12. For comparison, Fig. 5 shows the
(AE’,, E',) values calculated from WVAP and VAP with
n ranging from 2 to 12. One can see that the (AE",E’,)
values from WVAP are significantly smaller than those
from VAP with the same n. Moreover, such quantities
from WVAP with n =7 are even smaller than those from
VAP with n=12. This good improvement of the WVAP
results convinces us that the quality of the energy extra-
polation may be significantly improved. To estimate the
exact SM energy, the last 6 points of the (AE"},,E",) val-
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Fig. 5. (color online) Energy extrapolations with Eq. (12)

for the J*=5/2} state in 27 Al based on the wave functions
from VAP and WVAP. The solid black (red) symbols and sol-
id black (red) lines denote the VAP (WVAP) results and their
second-order fit, respectively. The exact SM energy is indic-
ated by the dashed line. The USDB interaction is adopted.

ues are used for the curve fitting with Eq. (12). The extra-
polated energies are the ¢ numbers, which are the inter-
cepts of the fitted lines at the vertical (energy) axis with
the energy variance being zero. From Fig. 5, it is clearly
observed that the extrapolated energy with WVAP is very
close to the exact SM ones within a 10-keV difference,
while the result with VAP seems unsuccessful owing to a
lack of sufficiently good approximation of the VAP wave
functions. Certainly, precise energy extrapolation also
can be achieved with VAP if more projected SDs are in-
cluded in the VAP wave functions, but this will take too
much computational time.

As a more practical application, we further perform
energy extrapolations for the energies of the 0}, 0%, 27,
and 2% states in ®Cr in the pf model space. In this case,
we still take K =0 and adopt the GXPFIA interaction.
The same weights used in the above section are adopted.
For each state, the extrapolated results are also obtained
by fitting the last 6 points. The calculated results are
shown in Fig. 6. For all the calculated states, the extrapol-
ated energies are in excellent agreement with the exact
SM ones, and all the deviations of the estimated values
are within 10 keV.

IV. SUMMARY AND OUTLOOK

We have proposed a weighted VAP method to fur-
ther improve the original VAP wave functions for low-ly-
ing nonyrast states. In the previous VAP, the low-lying
states are calculated by minimizing the sum of the lowest

S
2 v
2 o5} N ]
3 v v
5 av # 7
c v
e 3
v 0
N
96} a AvVY 4
__'______M 2
0 1 2 3 4 5 6
Energy variance (MeV?)
Fig. 6. (color online) Energy extrapolations with Eq. (12)

for the J* =0}, 0f, 2§, and 2} states in *8Cr based on the
WVAP wave functions. The solid symbols and solid lines de-
note the WVAP results and their second-order fits, respect-
ively. The open symbols denote the corresponding VAP val-
ues with the same n. The exact SM energies are indicated by
the dashed lines. The GXPF1A interaction is adopted.

energies. In this study, a weight factor is attached to each
calculated energy, and then, the sum of these weighted
energies is minimized. When calculating a nonyrast state
that we are interested in, the weight for the correspond-
ing energy is set to be far larger than the other factors.
Our calculations clearly show that the WVAP can signi-
ficantly improve the approximation of the original VAP.
However, owing to the limited number of included pro-
jected SDs, the obtained WVAP energies are approxim-
ate ones. Nevertheless, one can estimate the exact shell
model energies according to the WV AP results by adopt-
ing the energy-variance extrapolation method. Our calcu-
lations indicate that such wave functions improved by the
WVAP method indeed present excellent energy extrapol-
ations with deviations less than 10 keV.

As a proof-of-the-principle study, the calculations in
the present work mainly focus on the low-lying nonyrast
states of nuclei within the capacity of the shell model.
One may be interested in how well it works when it is ap-
plied to heavy nuclei. Additionally, the weight of each
state is assigned by hand, which is somewhat inconveni-
ent. It is necessary to develop a novel algorithm to de-
termine the weights in a consistent way. Such work is in
progress.
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