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Abstract: We investigate the axial vortical effect in a uniformly rotating sphere subject to finite size. We use the

MIT boundary condition to limit the boundary of the sphere. For massless fermions inside the sphere, we obtain the

exact axial vector current far from the boundary that matches the expression obtained in cylindrical coordinates in

literature. On the spherical boundary, we find both the longitudinal and transverse (with respect to the rotation axis)

components with magnitude depending on the colatitude angle. For massive fermions, we derive an expansion of the

axial conductivity far from the boundary to all orders of mass, whose leading order term agrees with the mass correc-

tion reported in literature. We also obtain the leading order mass correction on the boundary, which is linear and

stronger than the quadratic dependence far from the boundary. The qualitative implications on the phenomenology of

heavy ion collisions are speculated.
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I. INTRODUCTION

Relativistic heavy ion collisions (RHICs) are utilized
to produce quark-gluon plasmas (QGPs) at high temperat-
ure and nonzero baryon density. A typical (off-central)
collision exposes the QGP thus generated under an ultra-
strong magnetic field and endows it with a high angular
momentum. A number of novel transport phenomena [1-15]
have been proposed, including the axial-chiral-vortical-
effect (ACVE). The ACVE refers to the axial vector cur-
rent, i.e., the spin density of fermions in response to the
global angular momentum, and it is expected to be detec-
ted via the polarization of Lambda post hadronization.
The ACVE is also expected inside the core of a fast spin-
ning neutron star [16—18]. In this work, we shall focus on
the theoretical aspect of the ACVE.

In a thermal equilibrium ensemble, the ACVE is rep-
resented in terms of the global angular velocity w by the
formula

Ja=ow+---, )

where the coefficient o is referred to as the axial vortical
conductivity and the ellipsis represents higher power in
. Based on a pioneer work by Son and Surowka [7, 19]
and a supplemental work by Neiman and Oz [8], the axi-
al vortical conductivity is restricted by thermodynamic
laws to the following general form in the chiral limit,
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where py and py are the vector and axial vector chemic-
al potentials, respectively, and the coefficient ¢ in front of
the temperature square has to be determined by other
means.
Besides the hydrodynamic approach, Eq. (2) with
¢ =1/6 was first derived by Vilenkin via the solution of a
free Dirac equation in a rotating cylinder [20-22], and the
axial vortical conductivity for non-interacting fermions
reads
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The same expression was obtained by Landsteiner et al.
via the Kubo formula to one-loop order [23]. There is
also a large body of literature on the derivation of Eq. (3)
from kinetic theory [24, 25] or holography [26, 27]. Bey-
ond Eq. (3), the authors of [10, 14] discovered higher or-
der corrections to the coefficient ¢ in QED or QCD coup-
ling. The authors of Ref. [28] determined the higher or-
der terms in w, i.e., the ellipsis in Eq. (1) for massless fer-
mions, and ended up with a closed form of the axial-vec-
tor current, and the authors of Ref. [9] derived the lead-
ing order correction of the fermion mass. A recent calcu-
lation [29] of axial current for massless fermions in a
general thermodynamic equilibrium with rotation and ac-
celeration (within a formalism “far from the boundary,”
that is, without enforcing boundary conditions) repro-
duces the known results for rotating equilibrium, such as
those in Ref. [28], but it extends them to systems includ-
ing acceleration.

In this study, we explore the axial vortical effect in a
finite sphere of radius R subject to the MIT boundary
condition. Our motivation is twofold. First, a system ro-
tating with constant angular velocity has to be finite in
the direction transverse to the rotation axis, as restricted
by the subluminal linear speed on the boundary. Second,
a finite sphere serves as a better approximation to the
shape of the QGP fireball in heavy ion collisions and the
quark matter core of a neutron star than the infinitely long
cylinder considered in literature. The MIT boundary con-
dition effectively separates the deconfinement phase of
the interior and the confinement phase outside. However,
we could neither include the strong coupling underlying
the near-perfect fluidity inside an actual QGP fireball nor
describe its rapid expansion, especially in the early stage
of its evolution. Far from the boundary, where the finite
size effect can be ignored, we reproduce in spherical co-
ordinates exactly the same form of the axial-vector cur-
rent in the chiral limit derived in cylindrical coordinates
[28]. We also carry out the fermion mass correction to all
orders with the leading order matching the result in Ref.
[9], which was derived with the Kubo formulation. The
infinite series in powers of the mass correction indicates
that the leading order correction for the mass of an s
quark at the RIHC temperature is quite accurate. More
importantly, we obtain an analytic approximation of the
axial vector current on the spherical boundary with the
aid of the asymptotic formula of the Bessel function of
large argument and large order. For w = wZ, we find that

Ja=(02+0'e)w, 4

where e, is the unit radial vector of the cylindrical co-

ordinate systems (p,¢,z). For T > 1/R and the fermion
mass M <« T, the axial vortical conductivity parallel to w
is

g-:{éu—;+éT2—%[,u+2Tln(l+e7)]}008297 (5)

and that perpendicular to w is

o = {%; + 4L8T2 - % [,u+2T1n(l +e‘;)]}sin29,
(6)

where 6 is the polar angle with respect to the direction of
the angular velocity. Note that we have to set us =0 and
uy = because the MIT boundary condition breaks the
chiral symmetry even for massless fermions. To the best
of our knowledge, the perpendicular component has nev-
er been reported in literature, and its existence may shed
some light on the longitudinal (with respect to the beam
direction) polarization in heavy ion collisions.

The organization of the paper is as follows. In Sec. II,
general properties of the axial vortical effect are dis-
cussed from symmetry perspectives. In Sec. III, we lay
out the general formulation of the chiral magnetic effect
in spherical coordinates with the MIT boundary condi-
tion. The axial vortical effects of massless and massive
fermions are calculated in Sec. IV and Sec. V, respect-
ively. Sec. VI concludes the paper with a qualitative spec-
ulation on the impact of the finite size effect for heavy
ion collisions. Some technical details are deferred to Ap-
pendices. We also include two additional Appendices for
self-containment, one for an alternative derivation of the
closed end formula of the axial-current in cylindrical co-
ordinates and the other one for the mass correction via the
Kubo formula under dimensional regularization.
Throughout the paper, we shall stay with the notation of
Egs. (5) and (6) by setting us =0 and u = puy. Further-
more, the size of the sphere is assumed to be sufficiently
large in comparison with the length scale corresponding
to the temperature or chemical potential for the boundary
condition to be analytically soluble.

II. SYMMETRY CONSIDERATION

In this section, we explore the axial vortical effect
from symmetry perspectives. The validity of the conclu-
sion reached here is not limited to a free Dirac as con-
sidered in literature and the subsequent sections of this
work.

The axial vortical effect refers to the thermal average
of the spatial component of the axial vector current dens-
ity J in the presence of a nonzero angular momentum.
Taking the direction of the angular momentum as z-axis,
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we have
(T a(®) = Tro(u, )T 4(r) = Ja(r). (7
In terms of the field theoretic Hamiltonian H, conserved

charge Q, and z-component of the angular momentum
9, the density matrix at thermal equilibrium reads

®)

Q(ll,w) = Z_1 exp(w)’

T

where T is the temperature, u is the chemical potential, @
is the angular velocity, and Z is the normalization con-
stant such that Tro = 1.

Introducing the basic vector of cylindrical coordin-
ates z and

e,(¢) = Xcosp+Jsing,

es(¢) = —Xsing +ycosg, )

the ensemble average (7) can be decomposed into its lon-
gitudinal component

Ji(p. ¢, 2w, w) = 2+ J a(p, b, 2l w), (10)

and its transverse components

Jj(p,(P,Zl/J,w):et((ﬁ)'JA(p,(ﬁ,ZLU,OJ), (11)

e:t(¢) (ep—le(l))’ (12)
\/_2

where the dependence on the cylindrical coordinates,
chemical potential, and angular velocity is explicitly in-
dicated and will be suppressed in subsequent sections.
We have

J1 (0, 9.2l w) = I3 (0, b, 2l w), (13)
and consequently

Jﬁ(p’ ¢7 Z|/1, w) = ep(¢) . JA(p’ ¢v Zl/J’ w)
= V2ReJ} (0, b, Zlu, ),

T30, 8,20, 0) = es(d) - Ja(p, b, 2lut, )
= V2ImJ3 (o, ¢, zlu, w). (14)

Assuming that the Hamiltonian and the boundary con-
dition are invariant under spatial rotation, spatial inver-
sion, time reversal, and charge conjugation, we have

R(@)o(u, w)R@)™" = o, w), (15)
Po(u, )P = o, w), (16)
T o, )T = o(i, ~w), (17)
Co(u,w)C™" = o(—p, w), (18)

where R(a) is a Hilbert space operator of a rotation about
the z-axis by an angle a, and £, 7, and Care Hilbert
space operators for spatial inversion, time reversal, and
charge conjugation, respectively. Together with the trans-
formation laws of the axial vector current J 4(r)

R@)T (¢, 2)R@) ™" = D (@) Ta(p.o-a.2), (19)

PT 40,4, 2)P " =T alp. ¢ +7,-2), (20)
TjA(P’ ¢’Z)T_l = _jA(p’¢’Z)’ (21)
CT a(p:$,20C™" =T alp,4,2), (22)

it follows that

J (0,8, 21, ) = TER(@)0 (1, )T 40, 6, )R ()
= (B)(G.’)‘JA(pv(p_a’Z';u’w)’ (23)

Ja(p,$.2u,0) = TrPo(u, )T 4(p, . 2)P~"
= JA(p7¢+7Ta _Z|ﬂ,w), (24)

Ja(p, ¢, 2, 0) = TeT o(t, )T 4, $,2)T ™"
= _JA(P’ ¢,z|,u,—a)), (25)

Ja(p, ¢, 2lu, ) = TrCo(u, w) T a0, ¢, 2)C™"
= JA(P’¢aZ|_Ha¢U)7 (26)

where D (@) is the dyadic notation of the 3x3 rotation
matrix
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D(a)=| sina cosa O |. (27)
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Because of the relations

ex(#) D (@) =e,(#—a).(s = £1) (28)
and es(¢ + 1) = —es(p)s, Egs. (23) and (24) imply that the
longitudinal and transverse components of the axial cur-
rent defined in Eq. (10) and (11) are independent of the
azimuthal angle as expected, and the transverse compon-
entisoddinz, ie.,

Jy (o, ¢, —zlu, w) = =J3 (0, . Zlu, w). (29)

Consequently, there cannot be a transverse axial vor-
tical effect for an infinitely long cylinder because the axi-
al vector current is independent of z. This, however, is not
the case with a sphere as the z dependence cannot be ig-
nored. The oddness with respect to z implies only zero
transverse axial vector current on the equatorial plane of
the sphere. Indeed, the subsequent sections show that the
transverse component of the axial-vector current does ex-
ist on the spherical boundary for a free Dirac field and
does vanish on the equatorial plane. The other two equa-
tions, Eqs. (25) and (26), imply that the thermal average
of the axial-vector current is always odd with respect to
the angular velocity and even with the chemical potential.

Before concluding this section, we remark that some
of the relations above can be readily generalized to a non-
equilibrium density matrix with its time development dic-
tated by the Liouville theorem. For instance”, for a ho-
mogeneous and expanding system, as long as relations
(15), (16), and (18) hold initially, they will hold always.
Then, relation (29) and its implications discussed above
remain valid always.

III. AXTAL VECTOR CURRENT IN
SPHERICAL COORDINATES

A. Hamiltonian

The Hamiltonian for a Dirac fermion in a uniformly
rotating system with angular velocity w = we; can be
written as [28, 31]

H=Hy-wl;—pu, (30)

where Hy=-ia-V+BM is the free Hamiltonian, J, =

=X3 —i(xd, —yd,) is the z-component of the total angular

momentum, y is the the chemical potential of the system,
M is the mass of the Dirac fermion, and @ ="y, B=9°.
We work in the Dirac representation for gamma matrices
v# as follows:

y°=(é ° ) y"=(_?r,- - ) (1)

The last two terms of Eq. (30) are included in the single
particle Dirac Hamiltonian because it is Eq. (30), when
being sandwiched between Dirac fields v,y

H = f &Eryt (N HY(r), (32)

to define the density operator -7 for the thermal aver-
age.

In this section, we consider the eigenfunctions of the
Hamiltonian in spherical coordinates. The eigenfunctions

of the Hamiltonian satisfy
Hy = (E-wl]. -y, (33)

where E is the eigen-energy of Hy. The solutions of Eq.
(33) can be chosen as the common eigenfunctions of
these four commutative Hermitian operators: Hamiltoni-
an H, square of total angular momentum J?, z-compon-
ent of total angular momentum J,, and parity operator P.
We list the eigenfunctions in spherical coordinates as fol-
lows,

FOZ; 1 (0.0) )

¢j,l=j+%,m(r» 95 ¢) = ( —ig(r)Z,,‘/,%,,n(Q, ¢)

f(r)Zj,j—%,m(G’(P) ), (34)

w‘y:‘_l, (r,9,¢) = ( .

Jl=j=3.m 1g(r)Zj,j+g,m(9,¢)
where j, I, m denote the eigenvalues j(j+1),(=1)\,m of
J?,P.J,, respectively; the spinor spherical harmonics
Z; j=1 m(0,) are defined as

. 0.0 — j—m+1Y j+i m_,(@ ¢)
Jj+ 3 m\Os \/2(]+ D\ = Vj+m+1Y 1 ,1(6,6)
Zisim0.8) = —— iy e
hi=3m\ 0 P) = \/2_] J—— m+ 3 (CA ¢)

(35)

1) The original MIT boundary condition in [30] also applies to a time-dependent shape of a bag
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and f(r), g(r) are the radial wave functions. Making use
of the following relations,

o-FZ; 3T m(9 ¢) _]j+ m(9 ¢)

oV 1z, ,-ié,mw 9]
1\ f()
=|F 01225 ) =2 Zsn@.0). (36)

one can obtain the following differential equation satis-
fied by f(r) in Eq. (34),

P+ 2rf (r) + [ PE2 = MB) = 10+ D] () =0, (37)

which is the /-th order spherical Bessel equation. The ra-
dial function g(r) in Eq. (34) can be expressed by f(r),

E+M 2’
g(r) = (38)

1
f(r)——f(r)] f0rl=j—§.

f( )+—f(r)] forl—]+1

E+M

We list the solutions of f(r) and g(r) in Table 1, with
k>0, Ex = Vk? + M?, and C the normalization factor.

Table 1. Solutions of f(r) and g(r).
l:ji% E =E; E =-E;
. . Ei—M
iG) Cjitkr) - EZ g kD)
Ey,—M .
g c,/ EZW Jie1(kr) Cjiz1(kr)

For a spherical volume of radius R, the quantization
of the radial momentum k depends on the boundary con-
dition. An approximate boundary condition for a fireball
of QGP is derived from the MIT bag model [30] and
reads

=1y P jimlin=r = ¥ jimlr=r, (39)

which requires that the solution of the Dirac equation on
the boundary implements the eigenfunction of —iy -7 of
eigenvalue one. As ysy-#=—y-fys, the MIT boundary

condition breaks the chiral symmetry even for massless
fermions. In accordance with Eqgs. (34) and (36), the radi-
al wave function satisfies

Jf(R) = +g(R), (40)

for I=j+1/2. For the solutions of the free Dirac equa-
tion in Table 1", the MIT boundary condition reads

Jj-12(kR) = jjs12(kR) tany, 41)
for the positive energy state of / = j—1/2 and
Jjr12(kR) = —jj_12(kR) tany, (42)

for the positive energy state of / = j+ 1/2, where

E
tany = ) (43)

The boundary conditions for the negative energy states
are based on the charge conjugation, i.e.,

jlm_y d/jlm (44)
Employing the integration formula

2

f Rdrrﬁ(kr): i J20R) + (1= —~— | 2(kR)|, (45)
o Ty 2 |7 2R )Y

and the formulas of the derivative J,(z) in terms of J,(2)
and J,.1(z), the normalization constant in Table 1 is read-
ily determined

2 i
R (Sec2X+ esc?y - k_lje coty
2 - e g ]
IC]2 = kR tany ]j—l/z( ) or _]_5’
12 9i
R (SeCQX +escly + é tany
2j+2 -1 . o
" kR COtX) Jj+]/2(kR)’ forl = Jj+ 5
(46)

The boundary conditions Eqgs. (41) and (42) can be
solved approximately for kR > 1 and j <« kR with the aid

1) For a finite sphere, one has to examine whether there are edge states with 0 < E < M. Setting k = VM?2 — E2, the MIT boundary conditions Egs. (41) and (42)

becomes ij_1/2(kR) =

—ijr12(kR)tany” and ijy1/2(kR) = —i;j—1/2(kR)tany’ with i;(z) the modified spherical Bessel function and tany’ =

There is no

M+E’

solution for « in either case and the edge states are ruled out by the MIT boundary condition.
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of the asymptotic formula of the spherical Bessel function
1 I
Ji(x) = — sm (x— ?) as x> max(1,]). 47)

We find
In
kR—E+)(=mr, (nez) (48)

for /= j+1/2. The summation of k can be converted to an
integral

R 00

Z(...)z—f dk(..), (49)
k T Jo

and the normalization constant in Eq. (46) under both

conditions of Egs. (41) and (42) is simplified to

V2k 1k
VR \tan2y+1 VR

Er+M

ICl= (50)

B. Quantized Dirac field

The quantized Dirac field can be expressed by the ei-
genfunctions of the Hamiltonian H as follows:

Y(r) = Z [akjlmukﬂm(") + bzﬂmvkﬂm(")], (51)

kjlm

where a' .
kjlm

erators of particles, whereas ijlm and by, are those of
anti-particles. The explicit forms of u i, (r) and vijim(r)
are

and ayji, are the creation and annihilation op-

g jim(r) = Y jin (1),
Vijim() = Y2 5 (). (52)
We have
Huy ji = (Ex — mw — (ug jim,

Hvijim = (—Ex +mw — @V jim, (53)

where Ep= Vk?+M?2. The ensemble average (7) of
azﬂmakﬂm and bzﬂmbkﬂm with the density operator (8)
gives rise to the Fermi-Dirac distribution functions,

1
i N
<akjlmakﬂ’"> - efE—mw—p) 41’
bl b ! 4
By jimkjim) = PE D 11’ (54)

and the thermal expectation values of az . bz -
Jim” kjlm

b,:ﬂmazﬂm, i jimbr jim» and by jimagjim are all zero.

In the following, we calculate the axial vector current
of the uniformly rotating system of Dirac fermions. The
axial vector current is the ensemble average of the corres-

ponding operator, i.e.,

Ja = Zy)

vac
+ Z <akﬂmakﬂm>ukﬂmzukﬂm
kjlm

<bkﬂmbk]lm>vk]lm2vkjlm)

1 1
B Z [eﬁ(EA —-mw—p) 4 | e/)’(EA—mw-m) +1 k]lm):'ukﬂm’

kjlm
(55)

where J* = - Z vzﬂm}:vk jim =0 is the vacuum term, and
kjlm

the charge conjugation relation in Eq. (39) has been em-

ployed in the last step. It follows from the relation

Zijein @) = £("Z: L 0.0, (56)

J, J+% m
that

Xty jim = _uzﬂ_mzukﬂ—m, (57)

uk]lm

and Eq. (55) becomes

~ I 1 .
Ja= Z PE—mo—w) 4 | PEtmoti) 4 | lem U jim-

kjlm
(58)

Introducing the following ¢ independent functions
Lim(0) = Z3,,(6,0)3Z,im(6), (59)
and

Njim(0) = Z3,,,(0,0)0 Zjim(60, ), (60)

we have
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0 PS80 (1) =ICaP | s Rt n©)
+j§:5 (kr)gj js1 m(0) tan2Xk] i
(61)
and
Lfr (r)z Uy ;=1 (r) =|C |2 2 (kr) . (9)
kjjw3m kL m + ]ﬂ% jj%im

+j§i§ (k) j1 m(6) tanz/\/k] i
(62)

with |C.|> given by the upper (lower) line of Eq. (46) In
particular, the expression of 7;;,(6) can be reduced to

1
77“—— m(g) —JC_I¢Y* —1 (9 ¢)L+ J—t m—f(g ¢) (63)
and
Pl = — _l¢ *
77],]+5,m(9) 2(]"’ 1)6 j %’ 1(9 ¢)L+ J+ m—f(g ¢)
(64)
with
0 0
_ alp| _
Li=¢ (6 +1cot90¢) (65)
It follows from the property Y, (mr—0,¢+n)=

(=) Y (6,¢) that

v/
njlm(z) =0.

Before concluding this section, we point out an inter-
esting property of the MIT boundary condition, which is
not dictated by symmetries: the axial vector current van-
ishes along the equator of the fireball. Indeed, Eq. (40)
implies that

njlm(ﬂ - 0) = _Ujlm(g) and thereby

iy 1 3t jim = [ (R j(6), (66)
with
©n(®) =2, (0.0)03Z; - 1,n(60.4)
+ZJ}J+ m(g’(p)o—SZj’j%,m(gs‘ﬁ)- (67)

Writing ©;,(6) in terms of associated Legendre functions
P/(cos®) and using the explicit form of P{(0), we find
that

® jm(f) 0. (68)
See Appendix A for details of the proof.

IV. AXIAL CHIRAL VORTICAL EFFECT OF
MASSLESS FERMIONS WITH
FINITE-SIZE EFFECT

A. Axial vector current far from the boundary

For massless fermions, M =0 and E; =k in Table 1.
Far from the boundary, the main support of the axial vec-
tor current comes from the spherical Bessel function with
[=0(1). Together with the condition 7 > 1/R and k~ T,
we have kR > 1 for typical radial momentum and the ap-
proximation in the last paragraph of Sec. III.A becomes
useful. Using the relations

1 1
e+l ertl (69)
the z-component of Eq. (55) reads
Ji= dk ! )
2 Z efk— mw—u)+1 eﬁ(k+mw—/1)+l ukﬂm 3UL jlm>
(70)

where we have turned the summation over & to integral
according to Eq. (49) and extended the integration do-
main to (—co,0) via Eq. (69).

The Taylor expansion of the axial current in Eq. (70)
reads

— chw2n+l’ (71)
n=0

where the coefficient

J
=~ G | ()5 5
n InT"

j om==j

i ;
X (uk,j,j—%,mzz’uksjyj—%sm + uk,j’]q_; m 23U i+t m)

4 oo i
—_ dkk2 (2n+1) 2 k
(n+ 1)laT2n1 LO s T ;]’( )

i 1 2n+1
3 (m’+§) Yine 0.0

(72)

with f(x)=1/(e*+1) the Fermi-Dirac distribution func-
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tion and f"(x) its n-th derivative. In the second step of
Eq. (72), we have substituted the explicit form of the
wave function in Eq. (51) together with Eq. (35) for the
spinor spherical harmonics. Applying the addition for-
mula

k|r r 4772 Jo(kr) jo (k") Z (0,0 Y1y (6',¢"),
(73)
forr =r, 8 =6, and ¢’ = ¢ +¢, we find
_\n 2n+1
C,=i ) d
2n+ Dg2T@n+D) de2n+l
[efz f dkke fr+D (k )sm(kg)] . (74
—c0 e=0

where ¢ = 2rsin65in§. After 2n times of integration by

part with respect to k, we obtain that

i d2n+ 1

(2n+ 1)!7T2T(2n+l) d62”+1

n=

{eiigz”‘2 f dkkf’ ( ) [2ncos(ké)+ké sm(kf)]}
(75)

Only the (2n+1)-th power of ¢ inside the curly brackets
contributes to C,,. Together with the integrals

f T e () = -

we have

00 2
f dxx?f'(x) = %, (76)

2
C, = (n+1)(,uz+%T2)p +—n(2n—1)p2" 2

(77)

1
22

with p =rsinf. Substituting into Eq. (71) and summing
up the series, we end up with

= 1T2+i w w? 1+3a)
416 212 | (1 — w*p?)? 24712 (1-w? 2)3’

(78)

which is in agreement with the closed-end formula de-
rived in cylindrical coordinates in Ref. [28]. An alternat-
ive derivation in cylindrical coordinates is presented in
Appendix B. To the cubic order in w, Eq. (78) yields the
formula derived in Ref. [28]. As is shown in the step from

Eq. (74) to Eq. (75), the key reason for having the closed
form of the axial current Eq. (78) is that the density of
states for massless fermions is proportional to an integer
power of the energy Ej = k so that the integration by part
terminates with a finite number of terms for arbitrary n.
This is no longer the case for massive fermions.

Equation (78) is plotted in Fig. 1, where we set
w=0.01T, a rough estimate of the vorticity of the QGP
fireball created in RHICs. The pole at wrsind =1 occurs
where the linear speed of rotation reaches the speed of
light and the linear speed beyond the pole becomes super-
luminal, which is not admissible. Therefore, the Hamilto-
nian in Eq. (30) applies only to a finite volume, which in
the case of the sphere discussed in this section requires its
radius below 1/w. The axial vector current in Eq. (78) is
thereby free from the pole within the sphere, but the fi-
nite size effect becomes significant. Unless the finite size
effect falls to zero faster than a power series in r/R > wr,
its contribution will be of the same order of importance as
that of the higher order terms of Eq. (78).

Regarding the transverse component far from the
boundary, the typical contribution to the thermal average
comes from j < kR, and the sum over k£ in Eq. (55) and
wave function normalization can be approximated by
Egs. (49) and (50), respectively. Following Egs. (60),
(63), (64), and (65), we obtain

s

2 .
5i=2 [ Y a0 2y )
Jm
ST ()

kz[;‘%;gw B3 k)Y, (O.BL Y1 (0.0)]

100
80f
. 60f
~ 5
S 4
aF 3
2
1
20F 00 02 04 06 08 10
I —— n . .
0 20 40 60 80 100
pT
Fig. 1. (color online) Ratio of axial vector current J5 over

T3 of massless fermions far from the boundary in Eq. (78)
with the angular velocity w =0.01T as a function of pT, where
p and T are the radius and temperature, respectively. The
black, blue, and red lines indicate x/T = 0.5, 1.0, and 1.5, re-
spectively. The inner panel is for p7= 0-1.0.
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-2 27+l¢1 > 8wt O Kkr)Y, (0. )L i (0,0)]
=1 m

2 : . .
0
(79)
where
o= ! ! 80
gm(k) = Plh—mw—) 4 | + eBlk—mw+p) 4 1° (80)

The absence of the transverse components is expected be-
cause the finite size effect can be neglected in the bulk,
and the spherical and cylindrical shapes of the volume
make no difference there.

B. Axial vector current on the boundary

Regarding the boundary of a QGP fireball, we have to
distinguish the radial momentum k of the wave function
ugjim for I=j—1/2 and I = j+1/2 because of the differ-
ent quantization conditions in Egs. (41) and (42). Based
on Table 1 and Eq. (50), for M =0,

Uy et 2 E3 M 21 2 = %‘ 81
( +L) &1

The radial momentum & of Eq. (81) follows from Eqgs.
(41) and (42). The axial vector current on the boundary is
obtained upon substitution of Eq. (81) into Eq. (55). An
analytic expression of the boundary axial vector current
can be derived for the linear order term of the Taylor ex-
pansion in o, i.e., the chiral conductivity, at high temper-
ature, i.e. T > 1/R. We have

Ak, —p /lk:l’j —u
= A
w
Fimm | Y 2 S )
A RT ) 2j+1 ) 2j+1
A=£lnj 2— —— A=%1n,j 2+ "
kR kR
J
D" m8n(6) + 0w, (82)
m==j

where k; stands for the solutions of Eq. (41) ("-" sign)
or Eq. (42) ("+" sign). According to the definition in Eq.
(67) and the explicit form of the spinor spherical harmon-
ics in Eq. (35),

Z m® j(6) =

+p] 1/2(9) p]+1/2(9) (83)

m=—j
where
l
pi(0) = Z ') Yo (6,9)
=312 Z e (0,010 (0,6 + €)
e=0
1 d I+1
= ———Pl(l—ZSiHZOSin2E) = U+ )sin29,
2r de? 2/, 4m
(84)

and the addition formula of the spherical harmonics has
been employed. Combining Egs. (82), (83), and (84), we
arrive at

Ak =) 2j+1
nj J+
JA cos 29 Z T 241
A==+1,n,j 2-—
kan
k=) 2j+1
/ nj J+
+f[ T ]2 2j+1 (85)
k;jR

To evaluate the summation over k and j under the condi-
tion T > 1/R or u> 1/R, we notice that kR > land the
wave functions of the large j become important because
of the centrifugal force. The asymptotic formula Eq. (47)
is no longer sufficient to serve the purpose, and one has
to switch to the Debye formula [32] for the Bessel func-
tion of a large argument and large order , !

[ 2
Jy(vsecf) = m— cos (vtanﬂ—vﬁ— ;—r), v>1,

(86)
which implies
(R = [ —— Ty 1 (kR
JikR) = %R 1+1(kR)
= 1 ! cos[(l+%)(tan,8—,8)—g],
(l+ 5) VsecBtanf
(87)

1) The Debye formula is instrumental to reproduce the same density of states in spherical coordinates as that derived in Cartesian coordinates under a periodic bound-

ary condition [33].
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for a spherical Bessel function. Then, the MIT boundary
conditions in Egs. (41) and (42) become

m cos|jtans - )~ |
=+ e ])WCOS[(j+1)(tanﬁ/—,8’)—g . (88)
with
jsecB = (j+1)secf =kR. (89)

The large j serves as the guideline to sort the order of ap-
proximation. Eq. (89) gives rise to the leading order rela-
tion between S and g’

B =B- % cotg. (90)

Substituting Eq. (90) to the RHS of Eq. (88) and drop-
ping the terms beyond the order of 1/j, the boundary
condition is reduced to

cos| j(tanB—B) — g] = +cos

jtang-p)-2-p. O

with the solutions

1
j(tanﬂ—ﬂ)—g =(n+ Z)n, (92)
for the upper sign and
3
j(tanﬁ—ﬂ)—g = (n+ Z)ﬂ' (93)

for the lower sign, where # is a positive integer. Together
with the relation between £ and the radial momentum £ in
Eq. (89), we have [33]

R R i\
on = —sinBok ~ ~ /1— (i) sk, (94)
n b/d kR

to the leading order of a large j for both signs in Eq. (88).
Converting the summation over k and j in Eq. (85) to in-
tegrals, we obtain the leading order axial vector current
on the boundary

~ w 200 [
Ji:—mCOS 9]; dk

D 1_(1)2 j_ (M
J kR 1—1 1+i A==1 r
kR kR
5 COS Hf dkk?
47'[ 0
1
( i
= T 0 1 u 1+u

00 1
2 2 / u
- cos ef dik® ( )f du
0 \7 0 Vi-u?

A=+1
® 2 /
cos@fo dkk Zf( - )
A=+1
( T2w+ )00529. (95)

Therefore, the longitudinal axial vortical conductivity
vanishes along the equator, which is consistent with the
general statement according to Eq. (68) and matches the
axial vortical conductivity far from the boundary at the
poles (6 =0,x).

To the linear order in w, the transverse component of
the axial vector current J4 is obtained by replacing
0;,,(0) of the formula for the longitudinal component Eq.
(82) by

1jj—tm(0) +1; j 1 (6)

| B
= —e ¢Yj_%’ln_%(9’¢)L+Yj—%,

_ -ig y+
3D it OOLY s G0, (96)

ie.

(= (M-
f T f T
w
pemely AT ) e LT )
R3 ) 2j+1 ) 2j+1
A=£lnj 2——— A=%1n,j 2+
k, R kiR

|
)(Zm[z—je ¢YJ 1, 1(9 ¢)L+ ]—jm—f(g ¢)

m=—j
1
_ —igy*
2(j+1)e j +1m 1(9 ALY j+i m——(e ¢)}

e

The summation over m can be carried out in a similar

. . 1
manner to that in Eq. (84), and we find, with m =m’ + 3

1
andlzjii,that
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1
Z(m’ ) e (OB (0,0)

m

C 0 iy
=i lim e —e L,y Y, (0/,6")Yin (0,
@.)—~00) 0P +; (0" )Y i (0, 9)

21+1 lim e:? 0 e i £+1c0t0 9
T dr weo08 0P 96 n
.Pi[cos® cosB+sinb’ sinfcos(¢’ — ¢)]
I+ DQ2I+1
=— i+ H@Ei+1) sin26, (98)
167

where the derivative formula of the Legendre polynomial

[+

5 (99)

P(1)=

is employed. Approximating the sum over n and j by in-
tegrals of Egs. (97) and (98), we obtain the transverse
component of the axial vector current

I = ‘Zzsmzef dk

ZF | ()

R
Ak—
sm29f dkaZf( “)
A==+1
1
fdu\ll—lﬂ( “ U )
0 1-u 1+u

1

=T6n 2( T2+ 12 )wsm29

(100)

which is of the same order of magnitude as the longitud-
inal component. Restoring the cylindrical coordinates via

cosf = <
2122
sinf = —2 (101)
2+ 22
we have
1 (n? 0z
J=— || L
A 8ﬁ2(3 u) oy (102)

which is independent of the azimuthal angle and odd in z
and is consistent with the symmetry argument in Sec. II.

V. AXTAL CHIRAL VORTICAL EFFECT OF
MASSIVE FERMIONS WITH
FINITE-SIZE EFFECT

A. Mass correction of axial vector current
far from the boundary

For massive fermions, the same approximation of the
MIT boundary condition applied to massless fermions re-
duces the axial vector current J4 in Eq. (55) far from the
boundary to

R 1
Ja= ﬂf de[eﬁ(Ek —mw—p) 4 ]

Jjlm

1

 fEmo—p) 4 | (103)

Xk jims

.
W jim

with Ep= Vi2+ M2. As dkk2=dEkEk,/E,§—M2, the

density of states is no longer an integer power of the en-
ergy Ey, and a closed-end formula such as Eq. (78) does
not exist. We shall stay with the linear response of J5 to
w in what follows and calculate the axial vertical con-
ductivity. It is straightforward to verify that the combina-
tion

f . f y
uk,j’j,l/z,mzuk,],]—l/Z,m + Mk’j,jJr]/Q’mzuk,j,]-%—l/lms

(104)
with the radial wave functions in Table 1 and the normal-
ization constant Eq. (50) at a given £, is independent of
the mass M and thereby takes the same massless form.
For the longitudinal component, the spinor spherical har-
monics part can be reduced the same way as in Sec. [V.A,
and Eq. (103) becomes, to the order w,

e el ) (5
i (kr)Z(nH )|Yzm(e¢>|2 (105)
R

Using the relation of Eq. (73), Eq. (105) becomes

1 00 M 2 /lx—u/T
J? = _T2 f Ax)2 ( )
Ao M/T A:Zil ‘) G

(106)

where we have transformed the integration variable from
k to x=E/T with E = Vk*+ M?. The integral Eq. (106)
can be converted to a contour integral by the observation
that
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Z Ax / (Ax)? - % et
M/T/] ~ T (BT 412 1)2
00+i0* e“_”/T
fooJrlO V (e (eHIT +1)2 \

=Re[l+I'],

=Re

(107)

where the first two terms of the Taylor expansion of
2

M= . . . .
- T in the powers of M are included in I, i.e

oo+10 a ez—y/T
Re[I'] =R ——|——=d
elfl=ke wﬂo[ 2}(ez-ﬂ/T+1>2 Z}
2 X
E _“_ — % dx
T (e*+1)2
7T a
==t 5 108
3 5 (108)
. M . .
with a = —. Then, the integrand of / vanishes suffi-

ciently fast at infinity so that the integration path can be
closed from infinity on the upper or lower z-plane and the
integral equals the sum of residues at the poles of the dis-
tribution function within the contour. Closing the path
from the upper plane, we have the poles

2= %+(2n+1)i7rzivn, (109)
within the contour, i.e., n=0,1,2,.... Consequently,
eZ—/l/T

dz,

0o+i0*
I=f [Z\/zz—az—z

—o0+i0 (ez_”/T +1)?

LT

Combining Egs. (106), (107), and (108), we have

=2Re

F = oo, (111)

with the axial vertical conductivity of massive fermions

2 (o)
:éT2+%+T—Re[ﬂZV ((1+—) +(1+— —1—2)}
(112)

n

The binomial expansions of the square roots in Eq. (112)
enable us to write

D@2r=3))(=1y’
r12r-1

1, [(r—
7T Z
1 b
Quy¥e2r-1, 2+ — |a*, (113)
2 2m

where {(...) denotes the Hurwitz zeta function defined by

S|
4’(s,b)=ZO<n+b)x. (114)

Away from the branch points of the square roots in the
summands, the infinite series Eq. (110) converges uni-
formly with respect to a, and thereby, the radius of con-
vergence of the power series Eq. (113) corresponds to the
absolute value of the closest branch point to the origin of
the complex a-plane, i.e., /72 + (u/T)?. This can also be
inferred from the asymptotic behavior of the expansion
coefficients of Eq. (113). We also obtain Eq. (113) in Ap-
pendix B by using a cylindrical coordinate system and in
Appendix C by the Kubo formula via a thermal diagram,
which shows that this result, derived by different meth-
ods, is robust. In particular, the thermal diagram requires
UV regularization, but the result is independent of regu-
larization schemes.

At zero temperature, the summation over n in Eq.
(112) can be converted to an integral, and we obtain that

_#2 M2 00—ip {’;2
_ﬁ—m+I‘ dé: \’§2+M2+W—2§

in
0 (< M)

= 1 .
2—7TZM\/112—M2 (u>M)

(115)

The zero o for u< M is obvious from Eq. (105), where
the derivative of the distribution function vanishes expo-
nentially in the limit 7 — 0 for all k. The case with > M
returns the massless result derived in Sec. IV.A for
M=0.

The axial vector current with mass correction is plot-
ted in Fig. 2, where the solid line is Jg(”), and the dashed
line is Ji(l). Here, Jf‘(o) is the axial vector current at
M=0, Jf‘(l) is the axial vector current with only M? cor-
rection (the result of Jf‘(” is also obtained in Ref. [9]), and
Jz(”) is the result including mass correction up to M>".
Their concrete expressions are

T2 2 T2 2 M2
20) _ Jz (1) _ H
T (6 +2_n2)‘” T _(F+2n2)‘”_ﬁw’
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T2 2 M? ¢
JW o 2 w——w+T2w§ AMY 116
A 6 2x2 472 o (116)

12
Dashed line J5("
1.0
Solid line J
os}
g
N
= osf
£
Nﬁ<
04}
0.2}
N,
0.0 . . . .
0.0 05 1.0 15 2.0 25
T
Fig. 2.  (color online) Ratio of axial vector current Jj;(") in-

cluding mass correction up to M?* over massless current J,i«))
(Jj‘(") /J;"fo)) as a function of the product of M over T (M/T),
where the black, blue, green, and red lines indicate p/7=0,
0.5, 1.0, and 1.5, respectively. The dashed lines are Jj“)/JZ(O),
and the solid lines are Jj(”)/Jf\(o).

We can see clearly that J/i(")/ Jf‘fo) decreases with
M/T. This is because the presence of mass generally in-
hibits the fluidity, thus suppressing the vortical conduct-
ivity. While the presence of chemical potential slows
down this inhibition, when we fix M/T, Ji(") /Jf\(O) and
Jz(l) / JZ(O) increase with increasing u/T .

An s quark is taken as an example. We set M =150
MeV, u/T = 1.0, and n=2000 and list the numerical val-
ues of the mass correction in Table 2.

Far from the boundary, the mass correction for the s
quark is modest for the selected temperature and chemic-
al potential and is dominated by the leading order O(M?)
correction. On the boundary, the leading order mass cor-
rection is O(M), as shown below. The mass suppression
for the s quark is thereby much stronger there.

For the transverse component of the axial vector cur-
rent of massive fermions far from the boundary, all we
need is to replace & in g,,(k) of Eq. (79) with Ei, and the
result remains zero, the same as in the massless case.

Table 2. Mass correction of axial current when M = 150 MeV,
w/T = 1.0, n=2000.

n
TMev  FO 0 O [Tzw ZA,-MZ’] 1730
r=2
100 0737754 0741961 420713x 1073
150 0.883446  0.884285 8.38337x 10
200 0934439 0934704 2.65816x 107
250 0.958041 0.95815 108964 x 10~

B. Mass correction of axial vector
current on the boundary

An analytical result can also be obtained for the lead-
ing order mass correction on the spherical boundary un-
der the same approximation of Sec. IV.B, i.e., T > 1/R.
For massive fermions, it follows from Eq. (46) that Eq.
(81) is replaced by

n 0 m(6)

u, .. 23U j jx1/2m = —,
k,j,jx1/2,m 5 J2] g 117
2R3b(bi i) (17)

kR

with b = Ei/ \JE{ — M?, where we have substituted Eq.
(43) for the trigonometric functions in the normalization
constant Eq. (46) and made the approximation
2j+2~2jin the last term inside the parentheses for a
large j. The conversion from the sum of the radial mo-
mentum into an integral proceeds in the same way as for
the massless case in Sec. IV.B, and we obtain the follow-
ing form of the axial vector current to the orderO(w)

w °0 AE; —uy\ 1
JF=— 20 [ ar? (—)—
AT 421 O fo A;f T )b

foldum( L)

b-u b+u

(118)
The integration over u can be carried out readily

lfo‘dMM( L)

b b—u b+u

=2-2+b2-1tan"!

2
™ oM.
Ey E}

2 —

—_—

(119)

Consequently, the leading order mass correction is
O(M), stronger than O(M?) for the mass correction far
from the boundary. Substituting Eq. (119) into Eq. (118)
and setting Ey = k, we find

where the first term, Jg(o), is the axial-vector current of
massless fermions given by Eq. (95), and the leading or-

der mass correction reads
y k —M v k tu
_— + —_—
() ()

= _% [,u+2T1n(1 +e’%)]00829,

Mow 0
(1) _ 2
Jy = T O GL dkk

(121)
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which is an even function of u. Adding Egs. (95) and
(121), we have the longitudinal axial vector current on
the boundary up to the leading order mass correction.

J;(B) = {T—2 + ’u—22 - % [p+2Tln(1 +e‘;)]}wCOS29,

6 2r
(122)

where Jf‘(B)is the axial vector current with only leading
order mass correction on the boundary. We can clearly
observe that the mass correction is stronger on the bound-
ary than that far from the boundary. The coefficient of w
of Eq. (116) gives rise to the axial vortical conductivity
on the boundary, Eq. (5), presented in the introduction.
AsT — 0,

() S sk,

; (123)

With the aid of the integral Eq. (119), together with the
definition of b, we obtain a closed-end formula of the axi-
al vortical conductivivity to all orders of mass on the
boundary

0 (u < M)
Lz“ /qu_MZ[l_L
2 [2 — M2

M

g =

tan cos2 @

(u>M)
(124)

in parallel to Eq. (115) in the bulk.

It is straightforward to extend the above analysis to
the transverse component. Starting with Eq. (62) and go-
ing through the gymnastics from Eq. (118) to Eq. (116)
with cos?6 replaced by lsin26’, we find the transverse

axial vector current on the boundary up to the leading or-
der of mass correction, i.e.,

J;r(B) — {Tz + ,u_2 _%[y+2Tln<l +e_$)] wsin?26.

48 ' 1602
(125)
At zero temperature, we have
0 (u<M)
1 M
— u~ur-M2l1- —
I = 16m2! VK ( 2~ M>
112 — M2
tan~! #T)wsinw (wu>M)
(126)

This is valid up to all orders of the mass M.

VI. CONCLUDING REMARKS

Our study can be summarized as follows. We started
with a general discussion of the axial vortical effect from
symmetry perspectives and investigated the axial vortical
effect of a free Dirac field in a finite sphere rotating with
a given angular velocity w. For massless fermions far
from the boundary, we were able to reproduce the closed-
end formula derived within a cylinder in literature. On the
boundary, the axial vector current displays both longitud-
inal and transverse components with respect to the rota-
tion axis, and the magnitude of each component depends
on the colatitude angle of the spherical coordinates. For
massive fermions, we obtained the mass correction of the
chiral conductivity far from and on the boundary. In the
former case, we expanded the chiral conductivity to all
orders of mass with the leading order correction in agree-
ment with what was reported in literature. In the latter
case, we found that the leading order mass correction was
stronger than that of the former, O(M) versus O(M?). To
the best of our knowledge, the axial vortical effect on the
boundary, especially the emergence of the transverse
component, has not been explored in literature.

While the values of the above results are mainly the-
oretical and cannot describe quantitatively the ACVE of a
strongly interacting and expanding fireball of QGP, some
qualitative speculations on the finite size effect in heavy
ion collisions remain instructive. The quadrupole factor
cos?# in Eq. (5) would suppress the global polarization
(z-component of Eq. (4)) and the perpendicular compon-
ent in Eq. (4) would contribute to the polarization in the
reaction plane shown in Fig. 3, e.g., the longitudinal po-
larization (the polarization along the beam).

To observe the latter effect clearly, we assume that
the beam is along § and rotate the coordinate system by
90° around the x-axis, ie., y=-7 =-rcost, z=y =
rsin@ sing’, and x = x’ = rsin@ cos¢’, with r being the ra-
dial coordinate. In terms of the polar angle, ¢, and azi-
muthal angle ¢’ associated with the primed coordinates,
the longitudinal component in Eqgs. (4) and (5) takes the

] v
o

beam X

Fig. 3. x and the beamline define the reaction plane.
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form

Ja-2 = —bsin26' sing’ (127)

with b={%+%ﬂ—%[y+2ﬂn(l+e 7)]}w As

the fragmenthadrons, e.g., A hyperons originating from
the boundary layer, are more likely flying in the radial
direction, Eq. (127) maps out the longitudinal polariza-
tion profile of these hadrons, with¢’being the angle of the
transverse momentum with respect to the reaction plan
and @'being related to the pseudorapidity via

= —Intan —.
n ntan -

More investigations are required for the finite size ef-
fect discovered in this work to be practical with respect to
the phenomenology of heavy ion collisions. These in-
clude exploring the ACVE with the solution of the Dirac
equation in an expanding sphere and/or incorporating the
anisotropic ACVE conductivity in Eq. (4) in hydro-
dynamic models. We hope to report the progress along
this line in the near future.
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APPENDIX A: AXIAL VECTOR CURRENT
ALONG THE EQUATOR

To prove Eq. (68), we substitute the explicit form of
zj Lm(6,9) into Eq. (67), i.e.,

O =[GVt 0.0 =G|V s 00

2
o |(—m+1)|Y1,,_1(0,
sl DY 0.0)
2
~Gm+ D[V 00 |

(A1)
As 0,,(0) is odd in m, we only need to consider the case
with m > 0. Setting j=1/+1/2 and m=pu+1/2 and using
the expression of spherical harmonics in terms of the as-
sociated Legendre function, we have

1 (-
dn(l+p+ 1) ([+p)!

0n(6) = [(I+u+ 1) P (cos)*

- P’“’l(cosé?)2 +(l-p+ 1)2P’;H(cos9)2

— Pl (cos0)’], (A2)

with ¢ > 0. It follows from the generating function of Le-
gendre polynomials

Z Py(2), (A3)

2
Vi-2z+22 =0

and the definition

: d Pi(z)

o (A4)

Pl(2) = (-)(1-2*

that

(—)@u— DU =it (1 =2zt +2) 717 = 3 1P (2).
=
s

Setting z = 0 and comparing the coefficients of # on both
sides, we obtain that [34]

24\
R ETEEE
2 2
It is straightforward to verify that
P 1(0) = (I +p+ 1P 0), (A7)
and
PP (0) = (I=p+ DPY,,(0). (A8)

Equation (68) is thereby proved.

APPENDIX B: AXTAL VECTOR CURRENT IN
CYLINDRICAL COORDINATE SYSTEM

In this appendix, we first solve the free Dirac equa-
tion in a cylindrical coordinate system and then calculate
the axial vector current of the system of massive Dirac
fermions, which uniformly rotates with angular velocity
w = we, along the z-axis. We consider only the axial vec-
tor current far from the boundary and thereby ignore the
finite size effect.

1. Solution of the free Dirac equation in
cylindrical coordinate system

We work in the chiral representation of gamma
matrices as adopted in Ref. [35],
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o [0 1

y _(1 0 )
i_ 0 T
Y= —oi 0 )
s (-1 0

with o(i=x, y, z) being the three Pauli matrices. The
equation of motion for the free Dirac field W(z, r) can be
written as

i%‘l’(z‘, r)= BY@,r), (B2)

with the Hamiltonian H = —iy%y-V+9°M and the Dirac
fermion mass M. Suppose that ‘¥(z,r) is an energy eigen-
state with eigenvalue E, i.e., ¥(t,r) = e £y (r); then, Eq.
(B2) becomes

Hy(r) = Ey(r), (B3)
which is the energy eigenvalue equation of the Hamilto-

nian. It can be proved that these four Hermitian operators,
H,p, J.,X-p, are commutative with each other, where

X 1 o
Y =diag(o,0), p=—iV, J=rxp+ EZ’ and p,,J, are the

z-components of p and J , respectively. In the following,
we will calculate the common eigenstates of these four
operators in a cylindrical coordinate system. We set
W= (1,¥)", where 1,4, are both two-component
spinors; then, Eq. (B3) can be replaced by the following
two equations,

(V2+E> =M%y, =0, (B4)

1
Yo =5 (E—io- V)i (B3)

In a cylindrical coordinate system, the form of V? is

, PR 1o 18R P

_ﬁ*_;a—r-'-ﬁ@-’-@. (B6)

Now, we solve ¢ from Eq. (B4). y; can be chosen as

freme A o,
. :( o(re+he | (B7)

S . . 1
which is the common eigenstate of p, and —16¢+§o'z

with eigenvalues p, and j. Plugging Eq. (B7) into Eq.
(B4) gives

2 1d s
e N A
(B8)
j+=
2 1d 2
T I SC Y N S S —
dr? rdr+ z r2 §(r)
(B9)
. . 1
which are the Bessel equations of order ]+— The

boundary conditions of ¢ at r =0 and r = o requlre that
E?> M?+ p?. We can introduce a transverse momentum

E2 - M? - p?; then, the eigen-energy becomes E =

o =
AM? +p?+a2, with 1= +1 corresponding to the posit-

ive and negative modes. Now, one can obtain ¢ as

L i(j-5)e
e AT

J
lﬁ1=( AJ

Jje1(ar)e*?

where A4 is a constant to be determined. As y is also an ei-
genstate of —iX -V, then

—iX-Vy = sey (B11)
where €= /a?+p? isthe magnitude of the total mo-
mentum and s = +1 correspond to the two opposite heli-
cities. From Eq. (B11), one can obtain —io - Vi = sey,

which leads to A = l(se - p;) and
a

1
Yo = M(E+ seEW1. (B12)

Finally, we obtain the eigenfunctions and corresponding
eigen-energy as follows,

p (t,r,d,2) = - il VX+izp.

Ep _[Y ﬂ‘\/_
V(X = Ase)(e+ sp)J ;- (ozr)e‘(/ 2

is /(X —Ase)(e— sz)fﬁg(ar)e‘(“ Do

N i(j—1 ) B13
(X + Ase)(e+ spZ)JJ;% (ar)elli=¢ ( )
ils /(X + As€e)(e — sz)JjH(a/r)e"(j*%W
E(/l) —/l‘/M2+62, (B14)

€p. ]S
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where X = VM2 +¢€2, and A = +1 correspond to the posit-
ive and negative modes. All eigenfunctions are orthonor-
mal,

f AVPDT g

’
eps Yep.js = 020 j0s s0(€

—€)3(p.— p2).
(B15)

2. Axial vector current of a uniformly rotating system
of massive Dirac fermions

The Dirac equation in a uniformly rotating system
with angular velocity w = we, can be written as [28, 31]

12%, r=

o (=iy%7 - V+9°M - w].) W(t.7).

(B16)

Compared with the free case in Sec. B.1, it can be ob-
served that the eigenfunctions of Eq. (B16) are the same
as the free case but with an energy shift AE = —jw. Now,
we consider a uniformly rotating system of massive Dir-
ac fermions with angular velocity w = we,, where the in-
teraction among fermions is ignored. This system is in
equilibrium with a reservoir, which keeps a constant tem-
perature 7" and constant chemical potential . In the fol-
lowing, we will calculate the axial vector current J; of
this system. According to the rotational symmetry along
the z-axis of the system, we can obtain J% = J, =0. Due
to the absence of axial chemical potential ys in our form-
alism, J9 vanishes [24]. The unique non-zero component
is J§. From the approach of statistical mechanics used in
Refs. [20, 22], one can obtain

A
d d ‘*P(/UT T, \P(/l) ,
Zf Ef pe [W—A(jwm)]_’_l €p:jsTC " ep.js

A,),8
(B17)

where the Fermi-Dirac distribution has been inserted, and
B=1/T. Making use of the following series for Bessel
function J,(x) with n € N,

s Chieer2)
[J/,(0)] = ; i![(n+i)!]2(21’l+i)!22"+2ix i

(B18)

Equation (B17) becomes

2 an+1 d2n+1
i I B19
ZZN+1Z N0 s D)1 damet V(@) (BI9)

where we have defined four dimensionless quantities,

p=1rT,Q=w/T,a=pu/T,and c = M/T. Cn,, In(a,c) are
defined as

ZN] (~1)N
N—=DIN+ N1 +60)
1 2n+1 1 2n+1

47

In(a,c) = d 2N+2( - )
N ) j()‘ Yy eWtd-a 41 e VPHta 4]
(B21)

(B20)

The coefficient Cy,, can also be expressed as follows:

1 d 2n+1 Nat
CNn=—7= (xa) [x

(2N)!
22N—2n—1 d2n+1 N4
- g 22

where we have used the variable transformation x =€’ in
the second line. According to the Taylor expansion of
sinhf, one can readily show that Cy, =0 for n<N. In
principle, one can calculate Cy, for any n> N from Eq.
(B22). For example, for n = N,N + 1, one can obtain

1
CN,N = 5(2N+ 1),

1
Chnet == 57N + DA(N + 1)(2N +3). (B23)

According to the calculation method in the appendixes of
the recent articles by some of us [6, 36], the integral
Iy(a,c) in Eq. (B21) can be expanded at ¢ = 0 as follows,

(e8]

(21=2N—5)!! "
I - D B24
w(e,c) Zi 2N +3)(-2N 51D wi@).  (B29)
with Dy (@) expanded at @ =0 as
DN’I(Q) - Z(_ 1 )l+k+N (2 _ 22+2N*21*2k)
k=0
QU+2k-2N-2)! [QI+2k-2N-1) 5,
QI—2N—4)12k+ 1) pl2kaN—2 ¢
(B25)

Plugging Egs. (B24) and (B25) into Eq. (B19), one can
obtain the series expansion of J5 at p=0, Q=0, =0,
c=0o0rr=0,w=0, M=0, u=0 as follows:
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R 2N

7z _73 1Y
Ta=T ;)(—ZN—S)!!(ZN+1)(2N+3)

QZVHI 0

;VCN’"(an)! l
% i(_l)lﬂwN (2

k=n
(2 +2k=2N =21 {2+ 2k 2N 1) 55,
(2k —2n)! r2l+2k=2N

@I-2N-5
~4 20121 -2N —4)!

242N-21-2k
-2

(B26)

If we only keep the linear term of Q and set @ =0 in Eq.
(B26), then

: N § Q1-3)1 ¥
VA :Tzw;(—l)’(2—22 M (1-1¢@i-1) G
(B27)

For the massless fermion case, we can obtain an analytic
expression for J%,

w3 (1+3r20?)
2472(1 - r2w?)3’

T? ,uz w
Jo=—+— B28
A ( 6 +27r2)(1—r2w2)2+ (B28)

which is divergent as the speed-of-light surface is ap-
proached [28].

APPENDIX C: KUBO FORMULA VIA
DIMENSIONAL REGULARIZATION

The Kubo formula relates the axial vortical conduct-
ivity to the static Fourier component of the correlation
between the axial vector current J, and the stress tensor
T% via

JL T = 2ie;jukyo, (CI)
in the limit £ — 0. Ignoring the interactions, the LHS is

represented by the one-loop thermal diagram in Fig. 4 [9,
14, 23, 37]. Calculating the thermal diagram with the

qg+k

q

Fig. 4. One-loop correction to the vortical conductivity [23].

Matsubara formulation, we have

Gy +M)yiysl(gtk) y,+M] {70 (q+ ) +fy,qo]

JiTO El_lf D (
Vn

9> - Mz)2 [(g+k)?—M2]

_ 2

416, J,, ~Vn
Z f (27T)

2+v; +M2)

1

. P2

_216ijnkn d 212 3 n

o 1 B 2.2 2%’
v, (q +v,,+M)

(€2)

where the Matsubara frequency v, = (2n+ 1)aT —iu. The
summation and integral in Eq. (C2) appear UV-divergent,
and we apply the dimensional regularization by extend-
ing the spatial components of the loop momentum from
3-dimensional to D-dimensional, i.e.,

d’q L [

. C3
(2m)} 2mP )
It is straightforward to obtain that
wp 1 D 5 2\ 2
-5 > [53(1 +.1- —)(vn +M?)
D 2(2 4 g2): 2
_3(3’2_ —)vn(vn +M ) ]
nwpT p-2|(, M2\
T aD Li'n 2
(2m)P sin — n=0 "
2
M2 2-2
—(2—D)(1 + —2) ]
Vn
=0’|M:() + AO’, (C4)

. . . D
where the D-dimensional solid angle wp =27P/T'(=),

and B(x,y) is the beta function. The last line of Eq. (C4)
separates ¢ into two terms, where o|y— 1s the vortical
conductivity of massless fermions, and Ao is the mass
correction of the vortical conductivity. Here,

nwpT

Tlm=0 = - vP2(D -1,

C5
(2m)P sin e n=0 (©3)

and
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Ao =— 90NV oy M

7T(1)DT ) Do {( MZ)IZ)_I
D 2
(2m)P sin % n=0

Vi

2\5-2
—(2—D)(1+M—2) -D+1]. (Co)
v,

n

With the dimensionality D =3—-¢ and taking the limit
e — 0, we find

D-1)TP-! 1
Oly=o =— %Re((Z -D.5 —i%)
(27T)D‘lsin7 T
T2 2
_>?+%(e—>0). (C7)

Upon expanding Ao in the power of M?, the leading
term, the M? term, is of the form 0x co at D =3, and the
limit has to be taken carefully. Let c¢p be the coefficient
of M?; we have

T D ¢
cp=— L(— - 1)(D—3)Re > o
. tD\2
(2m)P sin R n=0

-~ (-1)30-acemna-2

1 . u 1
Re§(1+e,§ _IQJT_T) e —4—71_2. (C8)

For a higher power of M?, however, the naive limit
works. Taken together, we obtain the limit

(C9)

Adding Eq. (C7) and Eq. (C9), we replicate Eq. (112).
We have also verified that the same result emerges with
the Pauli-Villars regularization.
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