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Quasinormal modes of Bardeen black holes with a cloud of strings”
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Abstract: We investigate the quasinormal mode and greybody factor of Bardeen black holes with a cloud of strings

via the WKB approximation and verify them using the Prony algorithm. We find that the imaginary part of the quas-

inormal mode spectra is always negative, and the perturbation does not increase with time, indicating that the sys-

tem is stable under scalar field perturbation. Moreover, the string parameter a has a dramatic impact on the fre-

quency and decay rate of the waveforms. In addition, the greybody factor increases when a and 4 increase and when

q and [ decrease. The parameters 4 and / have a significant effect on the tails. In particular, when /=0, a de Sitter

phase appears at the tail.
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I. INTRODUCTION

String theory is one of the most promising grand uni-
fied theories. In string theory, the smallest units of nature
are not point particles but one dimensional extended
strings. Owing to inflation in the early universe, these
fundamental strings could have been stretched to cosmo-
logical sizes [1]. A cloud of strings is the one-dimension-
al analog of a cloud of dust. Gurses and Gursey [2] first
derived the equations of string motion in general relativ-
ity. Later, the solution of Einstein's equation with a string
cloud was derived by Letelier [3] and used to establish a
star model. Many related papers subsequently considered
the string cloud as a fluid in the spacetime background
and constructed relevant solutions. The physical proper-
ties of these black hole solutions have been investigated
[4-9]. For example, for a Schwarzschild black hole with a
cloud of strings, the event horizon radius receives a cor-
rection of r, =2M/(1-a), where a is the string cloud
parameter [3]. The modification factor 1/(1 —a) may have
certain potential astrophysical applications [10, 11].

In general, there is always a singularity in the black
hole solution, which is enveloped by the event horizon. In
contrast, Bardeen proposed a black hole solution without
a curvature singularity [12]. Beato and Garcia [13] pro-
posed a magnetic solution of the Einstein equations
coupled with nonlinear electrodynamics. Then, several
papers studied this type of black hole solution [14—18].
For example, in Ref. [19], the shadow of the Bardeen
black hole was calculated and a set of tests was per-
formed on fundamental physics from the shadow of Sgr

A*. A Bardeen black hole solution with a cloud of strings
was obtained very recently in [17]. Although this black
hole solution has the same event horizon characteristic as
the regular Bardeen solution, the string parameter a
makes the solution singular at the origin. Owing to the
significant changes in the properties of black holes, in-
vestigating the various intrinsic characteristics of this
black hole becomes an interesting topic.

It is well known that one effective way to extract
black hole characteristics is to perturb it and observe its
response. When considering a perturbation that can be ig-
nored in the spacetime background and choosing an ap-
propriate gauge, the evolution of this perturbation can be
described by a series of simple wave equations [20, 21].
Through these perturbation wave equations, we can see
that the evolution of perturbation mainly consists of three
stages: the initial outburst, quasinormal ringing, and the
power law (asymptotically flat spacetime) or exponential
(asymptotic de Sitter spacetime) tail [22]. The quasinor-
mal ringing stage, where quasinormal modes (QNMs) are
mainly determined by the parameters of the black hole
and are independent of the initial perturbation [23, 24], is
an important component of current gravitational wave de-
tection [25]. Finally, the third stage is mainly caused by
the scattering of perturbations at infinity [26]. This stage
is of great significance for studying the stability of black
holes. To date, a large number of papers have studied
QNMs and power law tails in different spacetime back-
grounds using various methods [6, 27—32]. For example,
a recent paper [29] studied the QNMs of a Schwarz-
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schild-like black hole with the cosmological constant in
conformal Weyl gravity and found that the evolution of
the scalar field is divided into three stages: the Schwarz-
schild ringing stage, effective dark matter ringing stage,
and an exponential tail of de Sitter stage. Moreover, [15]
analyzed the QNMs of a Bardeen black hole caused by
scalar perturbations and compared them with results in
the Reissner-Nordstrom black hole.

Given the above motivations, as the first step toward
understanding the properties of the Bardeen black hole
with a cloud of strings (SBBH), we consider the probe of
a massless scalar field over this background and study the
properties of its QNM spectra in this paper.

The structure of this paper is as follows. In Sec. II, the
metric of the SBBH and scalar perturbation in this back-
ground are introduced, and the corresponding effective
potential is given. In Sec. III, the methods used to ana-
lyze QNMs and greybody factors are introduced, includ-
ing the finite element method (FEM), WKB approxima-
tion, and Prony algorithm. The effects of various para-
meters on QNMs and greybody factors are calculated for
the SBBH in Sec. IV, and the accuracy of the calcula-
tions is verified using the Prony method in Sec. V. Fi-
nally, some conclusions and corresponding discussions
are given in Sec. VI.

II. SPACETIME AND WAVE EQUATION

A. Spacetime

For the SBBH, the action can be described as general
relativity minimally coupled to nonlinear electrodynam-
ics (NED) and string clouds as follows [17]:

S =/d4x\/—_g[R+2/1+£(F)]+Scs. (1)

Here, R is the Riemann scalar, A is the cosmological con-
stant, and S¢s is the Nambu-Goto action [3] used to de-
scribe string-like objects,

1
Ssc= / M (—Ez*”z,,v) dA%dA!, )

where AY is a timelike parameter, whereas A! is a space-
like parameter, and the string cloud parameter M is a di-
mensionless constant. 2*¥ is given by

A OX OX

= — ——
OAA ONB

3)

The Levi-Civita symbol e*® meets €’! = -0 =1.
Analogously, L(F) is the Lagrangian corresponding
to Bardeen's solution [15]:

L(F) =

5 5/2
\/2q°F ) ’ @

3
8rsq® (2+ V24°F
where the scalar F = F*'F,, /4, q is the magnetic charge,
M is the mass of the magnetic monopole, and s=|q|/

(2M). The static spherically symmetric solution to this
theory is given as follows [17]:

1
ds? = fAF = 2 oodr =P = Psin 0447, (5)

where

2M 2Mr? Ar?
fH=1-a-"- rg/z——r.
r (+12) 3

(6)

Here, a is an integration constant related to the string,
with a constraint range of 0 <a < 1. M; is an integration
constant generated during the solution of the differential
equation and is usually set to zero. When a =0 and 1=0,
this spherically symmetric spacetime can be returned to
the Bardeen black hole solution. Although solution (5)
has a similar event horizon characteristic to that of the
Bardeen solution, the existence of the string parameter a
makes the solution singular at the origin, in contrast with
the regular Bardeen solution [17]. Moreover, in this pa-
per, we restrict ourselves to a positive 4 (de Sitter case)
[33].

B. Wave equation

The motion of the massless scalar field y in the
SBBH can be described by the Klein-Gordon (KG) equa-
tion:

1
—0, (V—g8"0y) =0. 7)
Through the separation of variables via spherical har-
monic functions, ¢ =¥(s,r)Y,(0,¢)/r, Eq. (7) can be re-
duced to

7 S
Further separating the time variable, assuming
¥ = e '@, Eq. (8) simplifies to
2
()
e, (W= V() D =0. 9)

or?

*

Here, the effective potential reads as
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l(l+1)+ldf(r)) (10)

V(r)= f(r) ( 2 dr
where / is the angular quantum number, and r. is the tor-
toise coordinate, defined as dr, = dr/f(r). In the Bardeen
solution, owing to the complexity of the function f(r), we
usually cannot obtain an explicit solution r.(r). There-
fore, in our calculation, we use the method of numerical
integration and interpolation to obtain a solution (see Ap-
pendix A).

III. QNMS ANALYSIS: THROUGH THE WKB
APPROXIMATION AND FINITE ELEMENT
METHOD

Calculating QNMs is essentially obtaining the intrins-
ic frequencies of Eq. (9). To solve this equation, some
boundary conditions are required. For cases with the cos-
mological constant, the constraint conditions near the
event and cosmological horizons require that the waves
propagate toward these horizons, whereas for cases
without the cosmological constant, the boundary condi-
tion requires that the wave solutions propagate outward at
infinite spatial distance.

However, even with these constraints, the wave equa-
tion for black hole perturbations is usually not analytic-
ally solvable. Therefore, many numerical methods have
been developed to calculate QNMs for different systems
[27].

In this section, we first introduce the WKB approxim-
ation method for calculating QNMs. Then, we describe
the FEM for solving the wave equation of the SBBH with
a given initial perturbation and obtain the evolution in the
time domain. In addition, we describe the Prony method
for extracting QNMs with n =0 from the scalar evolu-
tion data. Finally, we briefly introduce the greybody
factor in the WKB approximation.

A. WKB approximation

The method of using the WKB approximation to
solve QNMs was first proposed by Schutz and Will [34].
This method is suitable for calculating effective poten-
tials with potential barriers and constant values near the
boundaries. Later, Iyer and Will [35] obtained the 3rd-or-
der WKB approximation, which was further improved by
Konoplya [36] to the 6th-order WKB approximation, and
this method was used to calculate QNMs of D-dimen-
sional Schwarzschild black holes. Recently, Matyjasek
and Opala [37] combined the Pade approximation to im-
prove the accuracy up to the 13th order. For the WKB ap-
proximation method, QNMs can be described uniformly
[38] as follows:

w? =Vo+ Az (K?) +As (K?) + 46 (K?) +...
—iK \/=2Vy (1443 (K?) +As5 (K*) +...), (11

where K = £(n+1/2), Ay (K?), k= 2,3... are the modific-
ations for the k-th order, and Vi, k=0,2,3... are the val-
ues of V(x) and higher order derivatives at the maximum
value. Note that it is necessary to estimate errors by com-
paring the differences between different orders. The error
estimation Ay for the k-th order WKB approximation can
be expressed as:

|kt — g

Ay 5 ,

(12)

where wy represents the QNMs obtained from the £-th or-
der WKB approximation. It should be noted that a higher
order of WKB approximation does not necessarily lead to
higher accuracy [39]. Therefore, the Pade approximation
is usually used to improve the accuracy of high-order
WKB approximations. In this paper, we use the 6th-order
WKB approximation with the Pade approximation to per-
form calculation analysis.

B. Finite element method

Given the initial perturbation, we can obtain the dy-
namic evolution of the initial perturbation through the
wave equation. To obtain the dynamic evolution, we use
the FEM. It replaces continuous differentials with a series
of discrete differences. The differential equation (8) can
be replaced by

whot = _pht (2 0B ppy )
F A2 i) T
AR
tAn (Vi1 + i) (13)
where Iy = 1o+ kAt, Fej =Tx0+ JAr., ‘PI; =Y({t=1,

r.=r.), and V; =V (r. =r.;). The initial conditions are
chosen as

P (r,10) = Caexp (—Cq (r. — Cp)?) (14)

0

t=t,

To satisfy the von Neumann stability condition [40], we
choose At/Ar.=2/3 and ensure that Ar is sufficiently
small.

C. Prony method
The Prony method is an analysis technique for ex-
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tracting signal phase, frequency, amplitude, and damping
coefficients from the time domain. In this method, fre-
quency and damping coefficients correspond to the real
and imaginary parts of the QNMs. We assume that the
signal is composed of a series of damped sinusoidal sig-
nals, which can be simply described as [41]

Y1) ~ X Cre . (16)

By combining appropriate data and conducting numeric-
al analysis, we can obtain the required QNM frequencies
wg. Generally, the fundamental mode signal, i.e., the
overtone index n=0, has the longest lifetime in QNM
signals. Other signals (n>0) disappear owing to rapid

Table 1. QNMs for different values of a in the SBBH.

a n Quasinormal frequency Error estimation
0 0 0.9935109586-0.1888357704 i 1.273609 x 1076
1 0.9589280861-0.5756241876 i 2.679108 x 1073

0.2 0 0.6980498152-0.1216230302 i 3.549236 % 1077
1 0.6770331167-0.3698417504 i 9.113942x 1076

0.4 0 0.4446334188-0.0683830206 i 5.856024 x 1078
1 0.4340341896-0.2072901971 i 6.711971x 1077

0.6 0 0.2331775703-0.0297377604 i 5.458729 x 1072

1 0.2294816421-0.0897878689 i 4.080292x 1078

Table 2. QNMs for different values of ¢ in the SBBH.

Quasinormal frequency Error estimation

Table 4. QNMs for different values of / in the SBBH.

Quasinormal frequency

Error estimation

0.14440104-0.13157036 1
0.11650529-0.44025206 i
0.41910739-0.12260593 i
0.38788734-0.38077137 i
0.69804982-0.12162303 i
0.67703312-0.36984175 i
0.97715823-0.12134890 i
0.96168430-0.36662325 i

6.7648323 x 107>
3.5981065 x 1074
3.7594813 x 107°
4.5168872x 1073
3.5492360x 1077
9.1139415x107°
5.0536923 x 1078
1.3181977x 1076

0.68542516-0.12323891 i
0.66268336-0.37512830 i

3.089469 x 1077
6.171675x 1077

0.2 0.69804982-0.12162303 i 3.549236 x 1077
0.67703312-0.36984175 i 9.113941x 107
0.4 0.74594502-0.11285594 i 5.491912x 1077
0.72949588-0.34154418 i 8.846580 % 1070

Table 3. QNMs for different values of / in the SBBH.
A Quasinormal frequency Error estimation
0 0.70122581-0.12208316 i 4.601346x 1077
0.67987976-0.37136248 i 9.182041x 107
0.0002 0.70090873-0.12203731 i 4.464850%x 1077
0.67959576-0.37121074 i 9.178675%x 107°
0.002 0.69804982-0.12162303 i 3.549236x 1077
0.67703312-0.36984175 i 9.113941x107°
0.02 0.66892071-0.11731892 i 3.007880x 1077

0.65073136-0.35581359 1

7.112285%x 107°

decay. For example, from Tables 1 to 4, we can see that
the decay rate at n=1 is generally faster than that at
n = 0. Therefore, we mainly use the Prony analysis meth-
od to extract the fundamental frequency of the QNMs.
Note that when using the Prony method to extract funda-
mental frequency information, we usually choose a time
period after the QNM signals arrive and before the onset
of the tail.

D. Greybody factor

In this section, we introduce the scheme of using the
WKB method to analyze the greybody factor, which can
be used to further describe the intrinsic characteristics of
the effective potential of background spacetime.

For the wave equation (9), we consider the scattering
boundary conditions

O = Te_i“’r*, Fe — —00, 17)

®=e " 4R, 1, > o0, (18)

where T is the transmission coefficient, and R is the re-
flection coefficient. Now let us consider the situation in
which the scalar wave propagates from infinity toward
the black hole. When the scalar wave is a QNM, where
K =(n+1/2), the reflection coefficient is zero and the
transmission coefficient is 1. This indicates that reson-
ance transmission occurs.

When we do not consider the case of QNM incident
waves and K becomes an imaginary number, we can see
that the transmission coefficient is no longer 1 and is re-
lated to the frequency of the incident scalar wave. In par-
ticular, when (w?-V(r)) is real, in Eq. (11), K is a
purely imaginary constant (the ingoing scalar waves are
not QNMs), and its relationships with the reflection and
transmission coefficients are as follows [35]:
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IRP = > O<IRF <1, (19)
1
2 _ _ 2
TP = e = 1 - IR, (20)

It is worth noting that the eikonal formula gives an ap-
proximate solution for K,
Vh-—cuz

% = - :
V21,

21)

and other terms in Eq. (11) can be considered higher-or-
der corrections.

IV. CALCULATION OF TIME-DOMAIN
SOLUTION AND QNMS

Before analyzing the influence of various parameters
on QNMs, we first analyze the evolution characteristics
of initial scalar perturbations in the (z,r,) spacetime dia-
gram, as shown in the figure below.

In this spacetime diagram of the perturbed scalar field
Y, the chosen parameters are

| 1 1 1
Mo~ a—=q— -1 — — 2).
{ Tyt e 5’1_’500}”_’ }

The initial perturbations are selected as

Cy=10; C,=1/8; Cp=ri(Vimax)+530.
We use this initial perturbation for all subsequent calcula-
tions.

As shown in Fig. 1, on the left side of the effective
potential maximum Vy,.x, the evolution of the scalar field
has only two stages: the QNM stage transmitted from the
barrier, and the tail stage after some time. On the right
side of the effective potential maximum Vi, as men-
tioned in the introduction, the evolution of the scalar field

0,

60

* =100
120

-

180

2401

P

-463 -2A7 —éO 156 463
r.
Fig. 1. (color online) Evolution of the perturbed scalar field
Y over time.

is divided into three stages (i.e., the initial burst, quas-
inormal ringing, and tail). For example, at Wy, because
the wave speed of the perturbation is 1 and
7e(Pmax) — 7+(Vmax) = 50, we can infer that the arrival time
of quasinormal ringing is 7= 100. Hence, at W, the
time intervals corresponding to the three stages of scalar
field evolution are shown in the figure: initial burst
(0 <t < 100) and quasinormal ringing and tail (¢ > 100).

A. Influence of parameter a

In this section, we analyze the influence of parameter
a on QNMs. First, we fix all parameters except for a,
which are set to

1 1 2
{M—) 54 g,/l—> m}{l—>2},

while a takes four different values, a= 0, 0.2, 0.4, and
0.6.

Figure 2 shows the effective potential V" outside the
event horizon for different values of a.

The curvature of the effective potential curve can be
defined as X=V,/+/(1+V()? in mathematics. At the
peak of the effective potential, where V; =0, Xj=
[V,|. In general, we can directly observe the bend of the
curve to compare the magnitude of Xj.

We can directly see that both the peak of the effect-
ive potential and X decrease as a increases.

Generally, the larger the peak of the effective poten-
tial, the larger the peak of the scalar field scattered by the
effective potential. In the previous analysis, it is estim-
ated that the reflected scalar field perturbation reaches its
peak at r=100. Figure 3 shows that at =100, as a in-
creases and the peak of the effective potential gradually
decreases, the peak of |¥| indeed decreases correspond-
ingly.

Similarly, the smaller the Xy, the lower the funda-
mental frequency of the QNMs of the scalar field
scattered by the effective potential. Figure 3 shows that as
a increases and Xy at the peak of the effective potential
decreases, the oscillation frequency of |¥| at 7> 100 also

Vet
1.2¢

1.0

a=0

——-a=02
a=0.4
a=0.6

0.81

0.61

041

0.2r

0.0

r
15 20

Fig. 2.
ues of a.

(color online) Effective potential V for different val-
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Fig. 3. (color online) Evolution diagram of the scalar field
perturbation ¥ for different values of a.

decreases significantly.

Figure 3 shows that the string parameter a has a dra-
matic impact on the frequency and decay rate of the
waveforms. The decay rate becomes slower as a in-
creases.

To further verify our findings, the QNMs obtained us-
ing the WKB approximation are given in Table 1. We can
see that as a increases, the real part of the fundamental
frequency of the QNMs decreases, and the absolute value
of the imaginary part also decreases.

This means that as a increases, the oscillation fre-
quency in the quasinormal ringing decreases and the de-
cay rate decreases. This is consistent with the results
shown in Fig. 3. Finally, we present the corresponding
greybody factors in Fig. 4. As a increases, the transmit-
tance of the black hole horizon gradually increases, which
is consistent with the decrease in the peak of the effect-
ive potential.

B. Influence of the magnetic charge q

In this section, we analyze the influence of ¢ on
QNMs. Similar to the analysis of the parameter a, we first
fix all other parameters except for g as follows:

1 1 2
M= —a— - 1> —— 2},
{ _’2"1_’5”1_’1000}”_’ }

Figure 5 shows the variation in the effective potential
V for g =0, 0.2, and 0.4 outside the event horizon. Simil-
arly, between the event and cosmological horizons, the
effective potential is always greater than zero. The figure
shows that the maximum value of the effective potential
V increases with increasing magnetic charge q. However,
this change is very small. The effect of ¢ is only signific-
ant near the event horizon. When r is sufficiently large, ¢
has a very weak effect on the effective potential V. There-
fore, near the cosmological horizon, the effective poten-
tials are almost identical in Fig. 5.

The insignificant change, especially near the cosmo-
logical horizon, in the effective potential leads to an unre-
markable change in the evolution of the scalar field. As
shown in Fig. 6, the evolutions of the scalar field almost

1T
1.0+
0.8
a=0
0.6+ ——=a=0.2
a=0.4
0.4r a=0.6
0.2f
0.0 ‘ ‘ ‘ ‘ ‘ ‘ o
02 04 06 08 10 12 14 16

Fig. 4. (color online) Greybody factor |T|* for various a.

Vet

0.67
05F |n
0.4 — g=0
0.3f ——-¢=02
\ q=0.4
0.2f \
N
0.1f 5
0.0 5 10 5 20
Fig. 5. (color online) Effective potential ¥ for different val-
ues of .
1#1
\"
0.01} ( ! " "WT
My —
1078} ‘WWA-‘, e g=02
\ g 04
10—10,
10-14 1 1 1 1 1 1
0 50 100 150 200 250 300
Fig. 6. (color online) Evolution diagram of the scalar field

perturbation ¥ for different values of g.

overlap.

Similarly, we can analyze the QNMs in more detail
using the WKB approximation. Table 2 shows the vari-
ation in QNMs with g. A larger g causes a higher value of
the fundamental frequency Re(w) of QNMs, whereas the
opposite trend can be observed for the value of [Im(w)|.
This means that in quasinormal ringing, as ¢ increases,
the oscillation frequency increases, and the decay rate de-
creases correspondingly in Fig. 6.

Finally, in Fig. 7, we give the corresponding grey-
body factor, which reveals that when the frequency w is
fixed, as the parameter ¢ increases, the greybody factor
IT|? decreases synchronously.

C. Influence of the cosmological constant 4

The influence of the cosmological constant /4 on
QNMs is analyzed in this section. Similarly, we first de-
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17
1.0}
08t
- g=0
06f 4
——-g=0.2
04l =04
0.2f
=
0.0 ‘ : ‘ ‘ )
0.4 0.6 08 1.0 1.2
Fig. 7. (color online) Greybody factor |7 for various g.

termine the values of the parameters (M, a, g, ) as fol-
lows:

1 1 1
o fam gam s

In Fig. 8, we show how the effective potential V" out-
side the event horizon changes as the parameter 4 varies.
We can see that as the cosmological constant 4 increases,
the peak value of the effective potential decreases corres-
pondingly.

In addition, unlike g, which primarily affects the be-
havior of V' near the event horizon, 4 mainly affects V
near the cosmological horizon (while at infinity for
A =0). Meanwhile, the tail part of ¥ is mainly determ-
ined by the behavior of the effective potential near the
cosmological horizon [26].

As shown in Fig. 9, with the increase in the paramet-
er A, the tail of |¥| undergoes significant changes. Com-
pared to the almost unchanged tail caused by the paramet-
er g, this proves the argument in [26].

Table 3 shows the QNMs obtained using the WKB
approximation for different values of 4. In Table 3, the
absolute values of the real and imaginary parts of the fun-
damental frequency of the QNMs decrease as A increases.

Finally, in Fig. 10, the greybody factor |T|*> decreases
as the cosmological parameter increases for a fixed fre-
quency w. This corresponds to the change in the peak of
V with A.

Vetr
0.6¢
05F
é
04f | —— 120
f ——- 2=0.0002
03p | 2=0.002
|
02k 1=0.02
|
01f |
0.0 ‘ : ‘ r
5 10 15 20
Fig. 8. (color online) Effective potential V for different val-
ues of 4.

171

'K waﬁ]"]yl""'ﬁﬁﬁ?mm
My — o

1=0.02
10-10}

10714 1 1 1 ! L L
0 50 100 150 200 250 300
Fig. 9.

(color online) Evolution diagram of the scalar field
perturbation W for different values of 4.

4P
1.0 —
0.8f

—1=0
06l ——— 1=0.0002
1=0.002
041 2=0.02
0.2f
0.0 = ‘ ‘ ‘ ‘
05 06 07 08 0.9 1.0
Fig. 10. (color online) Greybody factor |T|?> for various A.

D. Influence of 1

In this section, we analyze the influence of the para-
meter / on the QNMs. We first fix the parameters that are
not under consideration as follows:

{Mﬁl ! Hlﬂﬁi}
247597 57 T000)

In Fig. 11, we demonstrate the variation in the effect-
ive potential V" outside the event horizon with respect to /.
As [ increases, the peak value of the effective potential in-
creases accordingly, and X also increases. This behavi-
or is similar to that of a. Correspondingly, during the
quasinormal ringing phase 100 <7 <t (where ¢, denotes
the start of the tail phase) shown in Fig. 12, we observe
that the oscillation frequency of W increases with /, and
the amplitude of ¥ slightly increases around ¢ = 100 with
increasing /.

Interestingly,on the black solid line in Fig. 12, when
[ =0, a nearly flat tail appears around ¢ ~ 320, which cor-
responds to the de Sitter phase, as described in Refs. [29,
42, 43].

It is worth noting that when [ > 0, the effective poten-
tial remains greater than zero between the event horizon
and the cosmological horizon. However, when [ =0, the
effective potential no longer represents a mere potential
barrier but rather a potential well. For example, V.s(20) =
—0.000584. This implies that the physical system may
harbor bound states.
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Fig. 12. (color online) Evolution diagram of the scalar field
perturbation ¥ for /=0,1,2,3.

Next, we present detailed results on the QNMs ob-
tained using the WKB approximation in Table 4 for
1=0,1,2,3. From Table 4, we observe that as / increases,
the real part of the fundamental frequency of QNMs
gradually increases, whereas the absolute value of the
imaginary part decreases. Thus, during the quasinormal
ringing phase, the oscillation frequency increases and the
decay rate decreases with increasing /, as shown in Fig.
12.

In Fig. 13, we plot the greybody factor |T|* for vari-
ous /. The decrease in the greybody factor with increas-
ing / correlates with the increase in the peak value of the
effective potential.

V. TEST USING THE PRONY METHOD

Finally, we use the Prony method [41] to further con-
firm the connection between our numerical calculations
and the WKB approximation. In this section, the paramet-
ers are chosen as

1 1 1 2
M= —a——g— - A— —— 2).
{ _>2’“_>5’q_>5’d_>1000}”_> }

We extract the data at V. in the interval 100 < <
150, as shown in Fig. 14, and obtain the real and imagin-
ary parts of the corresponding QNMs through the Prony
method: wpyony = 0.698097 —0.121650i. Correspondingly,
the result obtained through the WKB approximation is

1T
1.0+

0.8F

0.61

0.4

0.2f

L L = L 1 1 )
02 04 06 08 10 12 14
Fig. 13. (color online) Greybody factor |T|? for various /.

0.0

A | ‘ ‘ ‘
50 U" 100 150 200 250 300

Fig. 14.
at Viax -

(color online) Time domain solution of ¥ over time

wwks = 0.6980498152 —0.1216230302i.
Combined with Eq. (16), the fitting function can be
written as

Wprony = Cq exp(=0.1216507)sin(0.698097t + C,.),  (22)

where C, =2344.25 and C, =-2.16557. In Fig. 15, the
red dashed line is the fitted curve of Eq. (22), and the
black solid line is the data obtained using the numerical
method.

Finally, we can use the following error estimate meth-
od:

_ |wWKB - wProny| (23)
lwwksl '

We obtain the corresponding error as § = 7.67 x 107>, This
result, in turn, ensures the accuracy of our numerical cal-
culations.

VI. CONCLUSION

In this paper, we investigate scalar perturbations in
the SBBH using the FEM and WKB approximation, un-
like in [15], We directly use the integral method to deal
with the problem of the turtle coordinates having no ana-

125103-8



Quasinormal modes of Bardeen black holes with a cloud of strings

Chin. Phys. C 47, 125103 (2023)

I'4
0.04};
Diaia Siari Data End —¢
0.02+ ¢ Dala Start — Data
0.00 | A N . . I Lt .
\/106\/110 120 130 140 150 160 Fit
-0.02r
-0.04
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lytic solution in Bardeen space-time. Then, using the nu-
merical method, we obtain the slices of time evolution
corresponding to QNMs of the scalar perturbation. We
also calculate the corresponding QNMs and greybody
factors using the WKB approximation. The results of the
WKB scheme, the time domain diagram of the perturba-
tion evolution, and the effective potential are all related.
Finally, we further verify the accuracy of our calcula-
tions through the Prony method.
The conclusions can be summarized as follows:

1. In the time domain, the evolution of a scalar field
does not increase with time. Correspondingly, in the
WKB approximation, the imaginary part of the QNM fre-
quency is always negative. This implies that the space-
time under scalar perturbations is stable.

2. As the parameter a increases, the QNM frequency
and decay rate decrease. This is because a larger paramet-
er a results in a smoother effective potential with lower
peaks owing to the presence of string clouds weakening
the effect of the original Bardeen background spacetime,
which makes it flatter.

3. Simultaneously, with an increase in the parameter
a, the greybody factor also increases proportionally. The
presence of string clouds weakens the relative change in
the effective potential, resulting in lower peak values and
facilitating scalar field penetration through the potential
barrier, thereby increasing the greybody factor.

4. Conversely, an increase in the parameter ¢ leads to
an increase in QNM frequency, a slight reduction in de-
cay rate, and a smaller greybody factor. It has almost no
effect on the tail because g only affects the effective po-
tential near the event horizon and can be ignored near the
cosmological horizon.

5. Increasing the cosmological constant A from zero
results in a slight decrease in both the QNM frequency
and decay rate. However, there is a significant modifica-
tion in the tail behavior, which is consistent with the not-
able impact of the cosmological constant 4 at large r, val-

uces.

6. With an increase in angular quantum number /, the
QNM frequency increases, whereas the decay rate
slightly decreases. Additionally, the greybody factor de-
creases correspondingly.

It is worth noting that when /=0, a de Sitter phase
occurs at t~320 [29]. We posit that this occurrence
relates to the negative potential well that appears at / = 0.
At this point, bound states may exist, which produce a re-
sidual scalar field ¥, in the tail. A simple analysis is
available in Appendix B.

This study only investigated scalar perturbations in
SBBH spacetime. It will be interesting and straightfor-
ward to extend this work to vector and gravitational per-
turbations, especially for QNMs under gravitational per-
turbations, which reflect the fundamental characteristics
of gravitational waves during the ringdown stage. These
topics merit further exploration in the future.

APPENDIX A NUMERICAL COMPUTATION OF
TURTLE COORDINATES

First, before numerical computation of turtle coordin-
ates, we can divide the background spacetime into two
categories and discuss them separately.

The first category is when the cosmological constant
A=0. In this case, only the event horizon r, exists in the
background spacetime, and there is no cosmological hori-
zon. This means that when r — r;, r, — —co and when
r— 400, 1, — +00.

The second category is when the cosmological con-
stant A # 0. In this case, both the event horizon r, and
cosmological horizon r, existin the background space-
time. This means that when r — ry,, r. = —co and when
r — Fe, Fy = +00.

From the definition of turtle coordinates, we can ob-
tain the integral function of r.(r):

r 1 _
r*(r):/ro %dr, (A1)

where ry is an artificial selected integration parameter. In
our calculation, when A1=0, we choose ry=2r,. When
A+ 0, we choose rg = (r, +r.)/2. Note that the different
choices of ry only cause a change in the integration con-
stant Cy and do not change the definition of the turtle co-
ordinates.

In the integration, we encounter two problems. First,
the integral Eq. (A1) is a singular integral, and when r.(r)
is close to the event and cosmological horizons, it can
usually be approximated by a logarithmic relationship:
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r« = CyLog(r—rp) + Cpo when r — rp;
re = —C.Log(r.—r)+Cq when r — r.

For example, if we need to compute the integral to
r.(r) = =800, let r = r;, + €, and we can obtain

=800 =C,In(ry, + € = Cpo) + C},

—(800+C))/C,

=CiIn(e)+Cpp & e=¢ (A2)

When the spacetime background parameters are se-
lected as a=1/5M;=0,M =1/2,q=2/5,A=1/50, we
obtain the fitting parameters C;, = 2.202 and Cjp = —3.710.
At this point, the working accuracy requirement reaches
e~ (800-3.710)/2.202 — ¢=361.621 _ 10~158 The numerical integ-
ration precision requirement for Eq. (Al) is very high.
Therefore, we must pay attention to ensuring the work-
ing precision is sufficiently large. At the same time, if the
working precision is too high, it will lead to a sharp in-
crease in computing resources. Therefore, we must
choose an appropriate working precision for numerical
integration according to the calculation demand.

In addition, we only use the relationship between r.
and 7 in the time evolution equation. Furthermore, we
usually require r, to be selected as a series of equidistant
points. Obtaining the corresponding r values for this
series of equidistant turtle coordinates is not easy. Gener-
ally, we know the analytical relationship between r, and r
and then obtain the r values corresponding to a series of
equidistant turtle coordinates.

In this paper, because the analytical solution is un-
known, and the working accuracy requirement is very
high, the computational cost is substantial. Therefore, we
adopt an interpolation method to obtain the » values cor-
responding to a series of equidistant turtle coordinate
points. The steps are as follows:

1. Select a series of appropriate » values and integrate
to obtain the corresponding r. values. For example, when
the cosmological constant is non-zero, we divide the r
series values into two segments: (ry+e,,r) and
(ro,rc —€.). In the segment (r; + €,,7r0), we choose the r
series values as r, + e, +(ro—rn,—€,)/ e,(lm_k)/ " In the seg-

ment (rg,r.—¢€:), we choose the r series values as
re—€+(re—ro—¢€.)/em*kD/im Here, n is the number of
points, and k = 1,2,...,m is the series value.

2. Perform integration for each r value to obtain the
corresponding r..

3. Select a series of equidistant r, values within the
range of the integrated r. values and use interpolation to
obtain the corresponding r values.

When m is sufficiently large, the error caused by in-
terpolation becomes small enough to be negligible. Here,
for different background spacetime parameters, we
choose the appropriate parameters +e, and €. such that
rn+e, and r.—e. correspond to riminm ~—800 and
Femax ~ 800 and set m = 40000.

APPENDIX B WELLS OF THE EFFECTIVE
POTENTIAL AND DE SITTER TAILS

We assume that after a substantial period of time, the
evolution of the scalar field reaches a steady state, where
Y is fixed at constant values. This implies that ¥ no
longer varies with time, i.e., ¥%*' = W% =¥;. Under this
assumption, the difference Eq. (13) simplifies to

AP,
\sz—\yj+ 2—2F—Al VJ “PJ

*

AP
+A7r%(\1’j_1+\yj+1). (Bl)
Further simplification yields the expression
\PjZ ;(\I’j_l-i-lyﬁ_l). (B2)
(2 + A}"% V/)

When Ve is always greater than zero, ¥; < (‘P -1+
¥;.1) /2 forms a concave function. As j— co, ¥; — o,
leading to instability. Therefore, if there is a constant
non-zero residual ¥y [42, 43], the effective potential must
have negative values (i.e., a potential well).
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