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Momentum dependence of p — w mixing in the pion vector form factor and its

effect on (g-2),"
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Abstract: The inclusion of the p — w mixing effect is essential for a precise description of the pion electromagnetic
form factor in the eTe™ — xt 7~ process, which quantifies the two-pion contribution to the anomalous magnetic mo-
ment of muon a,,. In this study, we analyze the momentum dependence of p —w mixing by considering loop contri-
butions at the next-to-leading order in 1/N¢ expansion within the framework of resonance chiral theory. We revisit a
previous study [Y. H. Chen, D. L. Yao, and H. Q. Zheng, Commun. Theor. Phys. 69, 1 (2018)] and consider the con-
tribution arising from the kaon mass splitting in the kaon loops and latest experimental data. We perform two types
of fits (with momentum-independent or momentum-dependent p —w mixing amplitude) to describe e*e™ — nn~
and 7 — v;2n data within the energy region of 600—900 MeV and decay width of w — x*n~. Furthermore, we com-
pare their results. Our findings indicate that the momentum-independent and momentum-dependent p —w mixing
schemes provide appropriate descriptions of the data. However, the momentum-dependent scheme exhibits greater
self-consistency, considering the reasonable imaginary part of the mixing matrix element II,, obtained. Regarding
the contribution to the anomalous magnetic moment of the muon, aﬁ” 110.6,0.91Gev » the results obtained from the fits
considering the momentum-dependent p —w mixing amplitude are in good agreement with those obtained without
incorporating the momentum dependence of p —w mixing, within the margin of errors. Furthermore, based on the
fitted values of the relevant parameters, we observe that the decay width of w — "7~ is predominantly influenced

by the p — w mixing effect.
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I. INTRODUCTION

The anomalous magnetic moment of a muon, de-
noted as a, = (g, —2)/2, plays a crucial role in the preci-
sion tests of the Standard Model (SM) [1, 2]. The long-
standing discrepancy between the SM prediction of a,
and its experimental measurement has recently been up-
dated to 4.2 standard deviations [3, 4], and it has sparked
numerous theoretical investigations. The SM uncertainty
on a, is dominated by hadronic vacuum polarization
(HVP), with the largest contribution originating from the
nr intermediate states, accounting for over 70% of the
HVP contribution. Theoretically, the two-pion low-en-
ergy contribution to a, is expressed as an integral over
the modulus squared of the pion electromagnetic form
factor, which can be extracted from e*e™ -annihilation ex-
periments. In principle, the two-pion contribution to «,
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can be evaluated accurately as long as the experimental
data of e*e™ — n*xare available everywhere at the re-
quired level of precision. Although it is known that a ten-
sion exists between the two most precise measurements
by BaBar and KLOE Collaborations, the BaBar data lie
systematically above the KLOE results in the dominant p
region. Consequently, considerable efforts have been
dedicated to finely describing the pion electromagnetic
form factor [5—11]. In the dominant p region of the e*e™ —
x*n~ process, the isospin-breaking effect due to p—w
mixing, which becomes enhanced by the small mass dif-
ference between p and w mesons, plays a significant role
and should be considered appropriately.

Usually, the momentum dependence of p—w mixing
amplitude is neglected, and a constant mixing amplitude
is used to describe e*e” — n*x~data due to the narrow-

* Supported in part by the Fundamental Research Funds for the Central Universities (FRF-BR-19-001A), and the National Natural Science Foundation of China

(11975028, 11974043)
" B-mail: yhchen@ustb.edu.cn

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must main-

tain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP’ and published under licence by Chinese Physical Society
and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Pub-

lishing Ltd

103101-1


http://orcid.org/0000-0001-8366-2170

Yun-Hua Chen, Meng-Ge Qin

Chin. Phys. C 47, 103101 (2023)

ness of the w resonance. The first study on the mo-
mentum dependence of p —w mixing amplitude was con-
ducted by Ref. [12]. Based on a quark loop mechanism of
p—w mixing, it was determined that the mixing amp-
litude significantly depends on momentum. Subsequently,
the investigation of various loop mechanisms for p—w
mixing was initiated in different models, such as the
global color model [13], extended Nambu-Jona-Lasinio
(NJL) model [14, 15], chiral constituent quark model [16,
17], and hidden local symmetry model [18—20]. In our
pervious study [21], we examined p—w mixing using a
model independent approach through Resonance Chiral
Theory (RyT) [22]. Guided by chiral symmetry and large
Nc expansion, RyT provides us a reliable theoretical
framework to study the dynamics with light flavor reson-
ances and pseudo-Goldstone mesons in the intermediate
energy region [23—28], and it has been successfully ap-
plied in the calculation of a, in the SM [9, 29-36]. In
Ref. [21], we calculated the one-loop contributions to
p—w mixing, which are at the next-to-leading order
(NLO) in the 1/N¢ expansion [28, 37—40]. In this study,
we update the previous study [21] by incorporating the
contribution arising from the kaon mass splitting in the
kaon loops.

Moreover, we focus on analysing the impact of the
momentum dependence of p — w mixing on describing the
pion vector form factor data and its contribution to a,,.
Specifically, we perform two types of fits (with mo-
mentum-independent or momentum-dependent p—w
mixing amplitude) describing e*e™ — x*n~ and and
T — v;2n data in the energy region of 600-900 MeV, de-
cay width of w — n*n~, and compare their results. The fit
results demonstrate that the momentum-independent and
momentum-dependent p —w mixing schemes can effect-
ively describe the data, while the momentum-dependent
scheme exhibits higher self-consistency due to the reas-
onable imaginary part of the extracted mixing matrix ele-
ment I1,,. Regarding the contribution to the anomalous
magnetic moment of a muon, aEVP’LO[ﬁn’], which is
evaluated between 0.6 GeV and 0.9 GeV, the results ob-
tained from fits considering the momentum-dependent
p —w mixing amplitude are in good agreement with those
from fits that do not include the momentum dependence
of p — w mixing, within the margin of errors.

This paper is organized as follows. In Sec. I, we in-
troduce the description of p—«w mixing and elaborate on
the calculation of p—w mixing amplitude up to the next-
to-leading order in the 1/N¢ expansion. In Sec. III, the fit
results are shown and related phenomenologies are dis-
cussed. A summary is provided in Sec. IV.

II. CALCULATIONS IN RESONANCE CHIRAL
THEORY

In the isospin basis |I,13), we define the pure isospin

states |o;)=|1,0) and |w;)=0,0). The mixing between
the isospin states of |p;) and |w;) can be implemented by
considering the self-energy matrix

pr(s) Hpa)(s) ) )

Hr = T‘”( Myo(s) Towls)

P
2

onal matrix element II,,,(s) contains information on p —w

mixing. The mixing between the physical states of p° and

w, is obtainable by introducing the following relation

0 _
0 R I TR DA S
w wy e 1

where € and e denote the mixing parameters. The mat-
rix of dressed propagators corresponding to physical
states is diagonal [41],

(1/sp 0 ):c( 1/s, Hpw/ SpSw Jc_l’ 3)
0 1/s, o/ SpS0 1/s,

where abbreviations s, and s,, are defined by the follow-
ing:

with T, = gy — and s = p*. The none-zero off-diag-

_ 2
sp=85—1IL,,(s)— n,

S = s—wa(s)—mf,. 4)

The information of p — w mixing is encoded in the off-di-
agonal element of the self-energy matrix, decomposed as
follows:

[pw(8) = Aua S pw($) +4ma Epy(s) (5)

where A,; = m, —my denotes the mass difference between
u and d quarks, and a denotes the fine-structure constant.
Sow(s) and E,,(s) denote the structure functions of the
strong and electromagnetic interactions, respectively. In
this study, the diagrams in Fig. 1 are calculated in RyT up
to NLO in 1/N¢ expansion.

In RyT, the vector resonances can be described in
terms of antisymmetric tensor fields with normalization:

OIVulV, py = iMy {pue,(p) — preu(p)}, (6)

where €, denotes the polarization vector. Here, the vec-
tor mesons are collected in a 3 x 3 matrix as follows:
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The effective Lagrangian for the leading order strong
isospin-breaking effect, corresponding to the tree-level
contribution diagram (a) in Fig. 1, is as follows [42, 43]:

L5 = 4 (Vi V), ®)
with y, =u"yu™ +uy*u and y =2By(s+ip). The pseudo-
Goldstone bosons originating from the spontaneous

breaking of chiral symmetry can be filled nonlinearly in-
to:

Uy, =i(1f8ﬂu - uaﬂuT) ,

&)
u=exp|——|,
2F

©

with the Goldstone fields

Feynman diagrams contributing to p — w mixing.

1, 1 .
—n+—n n K*
V2. Ve | X
ol I AU
_ 2
K~ 0 -—n
V6

where F' denotes the pion decay constant. Considering the
mass relations of the vector mesons at O(p?) in terms of
the quark counting rule, the value of the coupling con-
stant is determined as follows: 4;" =1/8 [42, 43]. Thus,
the tree-level strong contribution can be expressed as fol-
lows:

S =2My. (11)

The Lagrangian describing the interactions between
Vv and electromagnetic fields or Goldstone bosons are as
follows:

Fy iGy

V)= Vi f2
Ly(V) 2\/§<ﬂf>+\/E

(Viptt'u") ,

(12)

with the relevant building blocks defined as follows:
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uy =i[u* (0, —iru—u(d,—il)u'*],

it —uF’lvuJr +u+F;Vu. (13)

Here, F}”; denote field strength tensors composed of the
left and rlght external sources I, and r,, and Fy and Gy
denote real resonance couphngs constants. The tree-level
electromagnetic contribution from diagram (b) in Fig. 1
can be calculated using the Lagrangian in Eq. (12):

F,F,

EY) =
3

(14)

The physical decay constants F,, and F,, have been em-
ployed in the amplitude, and are differentiated by means
of isospin breaking.

The loop contributions of diagrams (d)—(i) in Fig. 1
have been extensively discussed in our previous study
[21]. However, a noteworthy distinction in our current
study is the inclusion of the contribution from diagram
(c), which arises from the kaon mass splitting within the
kaon loops. To ensure comprehensiveness, we present the
expressions for the loop contributions in the Appendix A.
Furthermore, it should be noted that the ultimate expres-
sion for the renormalized mixing amplitude pr(pz) is
presented in Eq. (A23).

III. PHENOMENOLOGICAL DISCUSSION

The mass and width of the p meson are convention-
ally determined by fitting to the experimental data of
e*e” - ntn” and T — v.2r [44], where various mechan-
isms are used to describe p —w mixing effect. To prevent
interference due to their p—w mixing mechanisms, we
treat mass M, and relevant couplings G, and F, as free
parameters in our fit. Regarding its width, the energy-de-
pendent form is constructed in a similar manner as intro-
duced in [45]:

Fp(s) =

sM, 1
96”1’;2 [af,e(s —dm2) + Eaie(s —4m2)|,  (15)

where op = /1 - 4m§, /s and 6(s) is the step function.

With respect to the w mass, it has been indicated in
Refs. [5, 7] that the result determined from e*e™ — ntn™
is inconsistent with that from particle data group (PDG)
[44], primarily determined by experiments involving
ete” = 31 and e*e” — 7'y, Therefore, we treated the w
mass and width as free parameters and estimated them by
fitting in our programme. The physical coupling F,, can
be determined from the decay width of w — e*e™. Using
the Lagrangian formula in Eq. (12), the decay width can
be derived as follows:

e 422 2m2 + M2)\ M2 — 4m?
I, = IV ; (16)

Hence, the expression for F,, can be obtained. Based on
the decay widths provided above, s, and s, in Eq. (4) can
be rewritten as

Sp 25— M2 +iM,Ty(s)
Sw =5 — M2 +iM,T,, . (17)
The pion form-factor in T — v;2r decay, irrelevant to

p—w mixing effect, were thoroughly examined in Refs.
[36, 46—48]:

FX(s) :(1 - %l)
i F? s,
-s 1
XeXp{967r2F2 (Re [A[m,,, , 8]+ 2A[mK,Mp,s]])}

(18)

Furthemorme, function

8m%: 5 op+1
P P
A(mp,,u,s)zln(m‘%/,uz)+—s —§+0'?31n(0_ 1). (19)

To incorporate isospin-breaking effects, one approach in-
volves multiplying |FZ(s)]> by factor SgwGgm(s), where
Sew = 1.0233 corresponds to the short distance correc-
tion [49]. Additionally, Ggm(s) accounts for the long-dis-
tance radiative correction, as described in [50]. Specific-
ally, in our fit of v — v,2n decay data, we perform the
following substitution.

IFL(s)* = SewGEM(S)IFL(s). (20)

The pion form-factor in e*e” annihilationis as fol-

lows:

Gprs 1 G oF s 1 1
> > oo
F- s, 3F* s, Sp

4 V2aByF o (my—mg)s 1 ]

Fee(s) =[1 _

3F? Sw
X exp{96 oy (Re[A[m,T, 5 5]

Almg, M S]])} (21)

As defined in Appendix A.2, parameter a is associ-
ated with the combined coupling constant of the direct
wrr interaction. In the first bracket of Eq. (21), the
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second term corresponds to the contribution from par
coupling, third term represents the contribution of p—w
mixing, and fourth term corresponds to contribution from
the direct isospin-breaking coupling of w to the pion pair.

The leading order contribution of zn(y) intermediate
state to the anomalous magnetic moment of the muon is
as follows [51]:

amy \2 K
azn(w,LO:(_ﬂ) f ds—2 () R (), (22)
3n 4m?

where

¥ (e*e” > mn(y)) (23)

Rmr(y)(s) = 4

and the kernel function is defined as follows:

35 [(1+22)(1+x)? 2
Ripp=S|—2 77 (1n(1 -+ _)
mﬂ X 2
s (2-2)+ Y oy (24)
2 1- ’
with
3(1+02(s))
n(s) =W - 410g0'n-(S) + 610g

(1= 0a()(3+30(s) - To2(s) +502(s)) |

_ 1 _ﬁu(s)
1+Bu(s)’

2
Buls) = \/1—4%. (25)

It should be noted that in the formula for " O in
Eq. (22), the integration is performed from 4m? to co. In
this study, we focus on the momentum dependence of
p—w mixing. Therefore, we only describe the pion vec-
tor form factor up to 900 MeV. To extend the study by
considering higher energies, we must consider the effects
of excited resonances, including p’(1450) and p”’(1700).
However, these effects are beyond the scope of this study.
It is interesting to note that the 1/s*> enhancement factor
in Eq. (22) provides higher weight to the lowest lying res-
onance p(770) that couples strongly to ntz~.

The bare cross section, including final-state radiation,

takes the following form [5, 52—547:

acOete” >y > ntn(y)
rlas >I .3

2s+2m

403(s)

1 1
F(x) = — 4Lis(x) + 4Lip(~x) + 2log xlog li‘ + 3L
—X

L= [ al22=0

The experimental data considered in this study are the
pion form factor F&°(s) of the e*e™ — n*n™ process meas-
ured by the OLYA [55], CMD [56], BaBar [57], BESIII
[58], KLOE [59], CLEO [60], and SND [61] Collabora-
tions, the form factor FZ(s) of T — v;2n decay measured
by the ALEPH [62] and CLEO [63] Collaborations, and
the decay width of w — 7"~ [44]. It should be noted that
in the experimentally published form factor data F:(s),
the vacuum polarization effects have been excluded
through the subtraction of the hadronic running of a(s).
Thus, in our fitting of the form factor data F¢°(s), the
one-photon-reducible Fig. 1(b) should not be considered.
Given that we focus on the analysis of the p—w mixing
effect, we only take into account the form factors F2(s)
and FZ(s) data in the energy region of 600900 MeV. It
should be noted that for the pion form factor F¢¢(s), a ten-
sion is observed between the two most precise measure-

=[1 —n( )] AOF e oo @
where
1+0(s) 1+02(s)
3 o(5) F(o(s))
1+ 0,(5)
BT oa(s)’
+x S l=-xy 2
)= 3Liaf 5 )+7,

27

ments from BaBar and KLOE in the p peak region.
However, other measurements align with theirs within the
stated uncertainties. This highlights the impact of mo-
mentum dependence of p—w mixing, and to avoid the
tension between BaBar and KLOE data, we conduct four
separate fits. Specifically, in Fits Ia and Ib, we fit all data
sets excluding BaBar with momentum-independent I1,,
and momentum-dependent II,,,, respectively. In Fits Ila
and IIb, we fit all data sets excluding KLOE with mo-
mentum-independent IL,, and momentum-dependent
I, respectively. Fits Ia and Ila involve eight free para-
meters: M,, G,, F,, M, [',, a, and the real and imagin-
ary part of constant II,,. There are nine free parameters
in Fits Ib and IIb: M,, G,, F,, M,,, Iy, a, X},, X/,, and
Xg. As defined in the Appendix A, Xj,, X/, and X}, are
the corresponding parameters for the counterterms.

In Fig. 2, the fitted results of the fits using mo-
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(color online) Fit results of the pion form factor in the e*e™ — n*n~ process (left panel) and r — v.27 process (right panel) in

the energy region of 600-900 MeV. The data of ¢*e~ annihilation are considered from OLYA (Gray) [55], CMD (Yellow) [56], BaBar
(Blue) [57], BESIII (Green) [58], KLOE (Cyan) [59], CLEO (Magenta) [60], and SND (Orange) [61] Collaborations. The 7 decay data
are taken from the ALEPH (Orange) [62], and CLEO (Green) [63] collaborations. Fits Ia and Ib fit all data sets excluding BaBar (top),
and Fits Ila and IIb fit all data sets excluding KLOE (bottom). Fits Ia and IIa use momentum-independent I,, and are denoted by the
red dashed lines. Fits Ib and IIb use momentum-dependent I1,, and are denoted by the black solid lines. The vertical lines lie at M,,,

M., and 2M,, — M,, (from left to right).

mentum-independent II,, (Fitsla and Ila) and mo-
mentum-dependent II,, (Fits Ib and IIb) are shown as red
dotted lines and black solid lines, respectively. The fitted
parameters as well as y?/d.o.f. are listed in Table 1. It is
intriguing to compare the results obtained from fits util-
ising momentum-independent II,, and momentum-de-
pendent I1,, for the same datasets. Specifically, we com-
pare Fit Ia and Ib and Fit Ila and IIb. When examining pi-
on form factors |F¢(s)[> and |FZ(s)|?, we observe that the
differences between the theoretical predictions of the fits
using momentum-independent II,, and the correspond-
ing ones using momentum-dependent II,, are low. Fur-
thermore, it should be noted that for the pion form factor
|[Fé(s)|* in Fits Ia and Ib, the theoretical predictions are
much higher than the KLOE data at p peak, and these de-
viations contribute significantly to their value of y2.
Thus, we conclude that the momentum-independent II,,
and momentum-dependent II,, can describe the data
well, and the discordances among different collabora-
tions contribute significantly to y? values in the fits.

In the last line of Table 1, we provide the results of

a;WP’LO [#*7], evaluated between 0.6 GeV and 0.9 GeV.

The differences between the results using the momentum-
independent I1,, and the results using the momentum-de-
pendent IL,, forthe same datasets, namely the differ-
ences between Fits la and Ib and Fits Ila and IIb, respect-
ively, are negligible.

In Fig. 3, we plot the real and imaginary parts of the
mixing amplitudes II,,(s) in Fits Ib and IIb. It is determ-
ined that the real part is dominant within p — w mixing re-
gion. The real part in Fit IIb demonstrates a significant
momentum dependence, whereas the real part in Fit Ib
displays a smooth momentum dependence. Additionally,
it should be noted that the real parts of the two fits nearly
reach the same point at s'/2 = M,,. In comparison to the
real part, the imaginary part is rather small. At s = M2, in
Fit Ib the mixing amplitude I1,,(M2) = (-3405.0 + 62.1i)
MeV2, and in Fit IIb I1,,(M2)=(-3316.3+113.7i)
MeV?. The minimal magnitude of the imaginary part
aligns with the findings presented in Refs. [64, 65].
However, therein the effect of direct w; — #*7~ was not
considered. It is worth mentioning that larger imaginary
part is obtained in [13, 17] by using global color model
and a chiral constituent quark model, respectively. By
utilising our fitted parameter results, we proceed to calcu-
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Table 1. Fit results of the parameters. Fits la and Ib fit all data sets excluding BaBar, and Fits Ila and IIb fit all data sets excluding
KLOE. Fits Ia and Ila use momentum-independent I1,,,, while Fits Ib and IIb use momentum-dependent I1,,.

Fit Ia Fit Ib Fit la Fit b
M,/MeV 775.35£0.10 775.68 £0.12 775.45+0.10 775.55+0.11
G,/MeV 55.25+0.09 55.74+0.08 54.21+0.09 55.03+0.07
F,/MeV 152.65+0.29 151.40+0.21 155.65+0.23 153.38 +0.31
M,/MeV 782.59+0.13 782.68£0.12 782.39+0.11 782.45+0.11
I, /MeV 8.97+0.27 9.03+0.26 8.04+0.16 8.16+0.17
a/GeV~! ~0.0020+0.0150 ~0.0054 +0.0010 ~0.1066+0.0152 ~0.0067 +0.0009
Re(I1,,)/MeV? -3372+112 - ~3799 + 85 -
Im(I,,)/MeV? 296 + 669 - ~4544 +704 -
X}, /GeV~o - -0.141+0.013 - -0.177£0.008
X5 /Gev™ - 0.195+0.016 - 0.303 +0.007
Xr/GeV™? - -0.081+0.006 - -0.133+0.003
x?/dof. %:179 %:1.77 %:1.18 %:1‘19
a™10.6,0.91Gev [x10'°] 367.72+1.07 367.80+2.92 375.41+1.03 375.29+2.21
]

‘? g in y?/d.o.f. between the momentum-dependent fits and
O or———-———-——- “‘:_‘;-""— — momentum-independent fits for the same data sets are
. e minimal. The y? of Fit Ila is slightly lower than the y? of

N> —5¢ /_,-/'/ Fit ITIb. However, Fit Ila contains one less fitting paramet-

O T er than Fit IIb. It can be observed that the magnitude of
O -10¢ ’_/_,./" the imaginary part of I1,, in Fit Ila is significantly great-
\3 - er than those in other three fits. In our framework, the

<L 15} ] imaginary part of I, arises from n’y and nr real inter-
= ' : : ' ; mediate states. By considering the decay widths of
0.60 0.65 0.70 0.75 0.80 0.85 0.90

s'? [GeV]
Fig. 3. (color online) Momentum dependence of the mixing
amplitudes Il,,(s). The black solid and red dot-dashed lines
correspond to the real part of I1,,(s) in Fits Ib and IIb, respect-
ively. The blue dashed and magenta dash-dot-dotted lines cor-
respond to the imaginary part of Il,,(s) in Fits Ib and IIb, re-
spectively. The vertical line lies at M,,,.

late the ratio of the two-pion couplings associated with
the isospin-pure w and p.

G-= 8w,nn _ 4\/§aB0(mu_md)

(28)
gp,ﬂﬂ Gp

The results are G=(2.1+1.1)x1073 in Fit Ib, and
G =(2.6+1.2)x 1073 in Fit IIb. It should be noted that the
value of G is expected to be of the order a=1/137 in
Ref. [65]. The central values of our results of G are in
good agreement with the expectation in Ref. [65], while
they are lower than other two estimations, namely
G = (5.0 1. 7model = 1.04aa) X 1072 in [66] and G = (3.47+
0.64)x 1072 in [67]. As listed in Table 1, the differences

w — ny and p — 7'y, the imaginary part of I1,,,, contrib-
uted from 7%y intermediate state, can be estimated to be
approximately —150 MeV’ [7, 65]. If the estimated ratio
of the two-pion couplings of the isospin-pure w and p are
used: G ~a =1/137 [65], then the nx intermediate state
contribution to the imaginary part of IL,, canbe ob-
tained in the order of several hundred MeV”. In our mo-
mentum-dependent scheme, the imaginary part of Il,,
due to 7% and i intermediate states are explicitly com-
puted, and the numerical results of ImIl,, in Fits Ib and
IIb are of the order of one hundred MeV’, as expected.
However, in the momentum-independent Fits Ia and Ila,
the imaginary part of II,, is a free fitting parameter. As
listed in Table 1, the fitted results of ImII,, and paramet-
er "a" in Fit Ila are unreasonably high. The fitted results
of ImII,, and parameter "a¢" in Fit la exhibit large error
bars. Consequently, we conclude that both momentum-in-
dependent and momentum-dependent p-w mixing
schemes can describe e*e” — ntn~ data well. However,
the momentum-dependent p —w mixing scheme is more
self-consistent, especially given the reasonable imagin-
ary part of Il,,,, , which is extracted.

We wish to emphasize that the direct w; — 7t~
coupling is generally an unknown quantity, and it im-
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pacts F2(s) in two ways, both through the third term in
the first bracket of Eq. (21), appearing as real intermedi-
ate state in the contributions to II,, and through the
fourth term in that bracket. Conventionally, the direct
w; — ntn~ is assumed to be neutralized in e*e” — atn™
due to the fact that w and p are quasidegenerate and that
27 channel dominates the p decay [65]. Theoretical mod-
els that do not neglect direct w; — n*n~ coupling may be
more comprehensive, especially given the availability of
high-precision data available currently. It should be noted
that in Refs. [5, 7], the pion form factor has been ex-
amined in a model-independent way using dispersion the-
ory. Specifically, p — w mixing is subsumed in one para-
meter ¢,, which should contain a small imaginary part
originating from the radiative intermediate states (with an
estimated phase of approximately 4 degrees). Fur-
themrore, given that direct w; — n*n~ coupling is not
considered in Refs. [5, 7], €, term is actually a combina-
tion of p—w mixing and direct w; — n*n~. Therefore, it
cannot be directly compared to II,,, discussed in this con-

1
1927 F*

wonta =

5 -~ M?
2 )
(Mw—4mﬂ)2 X(CXP[W

text. (At s = M2, our II,,(M?2) in Fits Ib and IIb contains
negative phase.) Nevertheless, the ratio between the on-
w-mass-shell y* — w — 7 transition amplitude and
v* — p -z transition amplitude (without zzr final state
interaction) should be model independent. With s = M2,
the ratio between the second term and first term in Eq.
(2.5) of [7] yields R.,=Amplitude (y* = w — nm)/
Amplitude (y* — p — 7r) = (0.178 + 0.003) x l*60=1.13"
using Ree, = (1.97+0.03)x 1073 and 6. = (4.5+1.2)° ob-
tained therein. It can be observed that the difference
between the phase of R,,(M?) and & is minimal. In this
study, the ratio between the sum of the third term and
fourth terms and the sum of the first and second terms in
the first bracket of Eq. (21) predicts R,, =(0.155+
0.002) x e/G30£L7D" and R, =(0.150 £0.002) x 367171
in Fit Ib and IIb, respectively. It can be observed that our
results of R, approximately agree with that in [7].

Using the central values of the fitted parameters of
our best fit (Fit IIb) in Table 1, we calculate the decay
width of w — 72~

2
(Re [A[m,r, My, M2 ]+ %A[mK,Mp,Mf)]m)

X |8 \/zBo(mu —mg)a+

=0.013](0.29) + (=0.22 +3.35i) [* .

Based on Eq. (29), we can determine that the first term
due to direct w; — n*n~ 1s smaller than the second term
due to p — w mixing by an order of magnitude. Within 1o
uncertainties, our theoretical value of the branching frac-
tion is B(w — nn”) = (1.48 +£0.10) x 1072, which is con-
sistent with the values provided in PDG [44] and with
those reported in the recent dispersive analysis [68].
Regarding the mass of the @ meson, previous studies
[5, 7, 57] indicated that the result extracted from
ete” — n*n~ is substantially lower than the current PDG
average [44], which primarily relies on e*e” — 37 and
e*e” — n¥y experiments. The discrepancy amounts to ap-
proximately 1 MeV, corresponding to around 5 ¢ consid-
ering the current precision. It has been observed that the
fitted value for M, and phase of ¢, are strongly correl-
ated [5, 7, 57]. It should be noted that direct w; —» 77~
coupling has not been considered in [5, 7, 57]. As indic-
ated in Table 1 above, our fitted results for the mass of w
are in good agreement with the value in PDG:
M, =782.66+0.13 MeV, and this agreement remains un-
affected by the inclusion or exclusion of the momentum
dependence of II,,. Furthermore, we can observe that a
strong correlation (80%) exists between parameter "a,"
which quantifies the direct w; —» n*n~ coupling, and the

2G,I1,,(M2) |2
M2 — M} —i(M,T,—M,T,)

29

[
mass of w. As mentioned earlier, the direct w; - n*n~
coupling influences the imaginary part and real part of the
amplitude, and thereby, affects the phase of R, (M2). It
should be noted that the phase of R, (M2) approximately
agrees with the phase of ¢,. Thus, our observations align
with with those in Refs. [5, 7, 57]. Hence, a strong correl-
ation exists between the mass of the omega meson and
phase of ¢,. Our findings suggest that the inclusion of
direct w; — 7*n~ coupling is likely crucial in the analys-
is aimed at extracting the w mass from the e*e™ — n*n~
process.

IV. CONCLUSIONS

We utilized the resonance chiral theory to examine
p—w mixing. Specifically, we analyzed the impact of the
momentum dependence of p — w mixing on describing the
pion vector form factor in the e*e™ — n*nx~ process and
its contribution to the anomalous magnetic moment of
muon a,. The incorporation of momentum dependence
arises from the calculation of loop contributions, which
corresponds to the next-to-leading orders in 1/N¢ expan-
sion. Based on fitting to the data of e*e” —» n*n~ and
T — v.21 processes within the energy range of 600—900
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MeV and decay width of w — n"n~, we determine that
thep —w mixing amplitude is dominated by its real part,
and its imaginary part is relatively small. Although mo-
mentum-independent and momentum-dependent p—w
mixing schemes yield satisfactory data descriptions, the
latter proves to be more self-consistent due to the reason-
able imaginary part of the mixing matrix element IT,,.
Regarding the contribution to anomalous magnetic mo-
ment of muon a;"|j0.609)Gev, the results obtained from fits
considering the momentum-dependent p — w mixing amp-
litude align well with those from corresponding fits that
exclude the momentum dependence of p—w mixing,
within the margin of error. Additionally, we provide the
ratio of the isospin-pure w and p two-pion couplings, de-
noted as G = gu,xn/&pnr» and observe that p—w mixing
plays a crucial role in the decay width of w — n*zx~. Fur-
thermore, we ascertain that including direct w;—
n*n~coupling is essential in analyzing the extraction of
the mass of the w meson from the e*e™ — n*x~ process.
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APPENDIX A: LOOP CONTRIBUTIONS

1. Diagram (c): kaon loops
Using pKK and wKK vertexes obtained via the
Lagrangian in Eq. (12): iGy/ \/E(Vm,u/‘u") =iGy/
F2p0 (KT 0" K™ — K0 K®) +iGy | FPw,uy (" KT 0K+
"K°3”"K®) + ..., we can calculate the charged and neutral
kaon loops contribution to amplitude

6m%(+ m%{
S fa

2 4
Hkaon,charged _ GVp {(

he T 192F472 p u
5 8mz. ok +1
+3- sz —a;m((r;_l)}, (A1)
and
Hkaon,neutral _ G%/p4 {(1 6m%<0 )(/l 1 m%@ ]
pw - 4.2 ) o — I —>
192F*r p u
5 szo ogo+1
+3- pf —ai(.)ln(g 0_1)}, (A2)

1 .
where op = /1 -4m3/p? and A, = — e+ 1 +In4x with

d .
€ =2 — = and g is the Euler constant.

The persistence of a non-zero structure function arises
from the mass difference between the charged and neut-

ral kaons as described:

1 (Hkaon,charged + 1—[kaon,ncutral) . ( A3)

S(C) —
w w w
o my —mg o o

2. Diagram (d): nxr loop

For the isospin-violating vertex of w; — n*n~, we
construct the Lagrangian:

Losrr =iV fye, ' ")) + aoi( Vit you”)

1 8 V2Byi
= (a1 - —az) %Aud a)(,ﬁnmﬂ_ﬁ.

: (A4)

. . 1
For convenience, we define the combination a = a; — 542

The nr-loop contribution to the structure function can be
calculated as follows:

5 «/EGvBoap4{(1 _ 6m,2,)(/100 T nﬁ,)

12F2 2 12
5 8m? ot 1

SR P DN ekt (A5)
3 p? T Nog—1

3. Diagram (e): z-tadpole loop
According to the Lorentz, P and C invariances, the
Lagrangian corresponding to the interaction of w;po;nn
can be constructed as follows:

Lop,rp =1 (Vi V" U uo )y + + x 1))
+bo (Vi VR Uy ua) + b3V x + VA " ug)
+ba (V" VI (g + o ) 1))
+ b5V V" U uy x o + V" Vi x s uy ')
+be(Viua V" Uy c1ty) + b7 (Vo + V"8 )
+bg(Vua V" uytt x o + V' Vi x ' uy,)
+bo (Vo V" uyy s tt") + b1oVya  + V" u i)
+ bn(VWu”V”ﬁuﬁ)(Jr + V"ﬁu”VWXJ,uﬁ)
+b12(Vyout® VBy . ug + VHB ViaUgX +)
+ b13(unﬁV“'Bu"X+ + V"ﬁuﬁvﬂw\qu")
+ b14(VWu5V“ﬁ)(+u“ + V”ﬁuﬁvﬂau"/h)
+ &1V VI Vo x - + Vox-u®))
+ (Vi u" V'V o x -
+ 3 Vg VFUPV o - + VROV, 5V -t
+ gai( Vg VROV -t + VROV, 1PV oy )
+gsi(V, gt VRV oy + VFUPV, 5V oy )
+ A0 (Vi Vx4 (A6)
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For simplicity, we define the combinations,

hy =6by —by +3b3 + by —2g| — g2,
hy =4bs — bg +3b7 +4bg — by + 3b1o +2b11 +2b12

+2b13+2b14 —283— 284 — 285 (A7)

The mass difference between the charged and neutral
pions in the internal lines of loops can be disregarded due
to its higher-order magnitude beyond our scope of con-
sideration. Consequently, the expanded expression of
Lagrangian (A6) can be simplified as follows:

4By
:Fhl(mu - md)plﬂv"jlvﬂaﬂﬂ
2By
- F/lgv(mu - md)plyv(’jlvﬂz

'[”wlplﬂ'ﬂ

+ —Ohg(mu —MPruew’ 1" . (AB)

With the aforementioned Lagrangian, the z-tadpole con-
tribution to p — w mixing can be derived as follows:

m,ero
8n2F?

st = {(—16/1Z Vi dhym? + hom?)

(A9)

2
nmy hy
X (Ao —In #—2) + Emﬂ}

4. Diagrams (f)-(i): 7% loops
In the loop diagrams (f)-(i), the resonance chiral ef-
fective Lagrangian describing vector-photon-pseudoscal-
ar (VJP) and vector-vector-pseudoscalar (VVP) vertices
are provided in Ref. [69]:

C1

Lypp = M_Vf/.tvp0'<{ [ fa}vauo—>

2
+ _euvpa'<{vﬂa’ffa}vauv>
My
iC3
* M_Véﬂvp(T({V/”, v

-)

iC4 v
+ M_fyvp(T(VH [ffo—v\/Jr])
\4

Cs5 v
+ M_G,uvp0'<{varvﬂ ,ffa}uo—>
|4

+ Acl—ée,,ypA{vav““,ff”}uw
\%4

c7
+ M_E,uvpfr<{v(rvﬂv’ fa}ua> >
\%4

(A10)
and

Lyvp =d; Eyvpa<{vﬂvv VPV qu”)
+ id26,uvp0'<{ VI VPl )

+ d3 Eyvpa’<{va Vﬂy, vee }uo'>

+ d4 €y (VT VI V) (A1)

The couplings involved, or their combinations, can be
estimated by matching the leading operator product ex-
pansion of (VVP)Green function to the same quantity
evaluated within RyT. This procedure leads to high en-
ergy constraints on the resonance couplings [69]:

4C3+C1 =0,
c1—cy+cs5 =0,
N, My
C5—Co = B
6472 \2Fy,
N, M} F?
dy+8dy=— —=—L+ —
64n> F2  4F2
N, M} F?
dy=——2 YV (A12)

- —_—t —.
2 2
64r Fy, 8FV

Using the the effective vertices stated in Eqgs. (A10)
and (A11), therryloop contribution, i.e., the summation of
the loops diagrams (f)-(i), can be expressed as

1 d'k —i i
p*J Qo k (p-k?-m;
X [(k- p)zegewﬂ - k2p26g6w,, + k- e,k €,

o €ou€ly =

—32¢2
X{W[Cl(l’_k)'k_cz(l’_k)'P

—4C3m,2r—C5p'k+C6p2]2

16 V2Fye?| 1 1

 3MyF? [Mg—k2+Mg—k2

X [di(p—k)* +8dym> +2d3p - k]|

X [c1(p—k)-k—ca(p—k)- p—4cam;
16F%e?

3F2(M2 - k2)(M2, - k2)

—csp-k+esp’] -

X [di(p—k)* +8dym? +2dsp - k]z}.
(A13)

The subsequent calculation is straightforward. However,
the result of the extracted electromagnetic structure func-
tion E,), = E;,{,) + Ef;i), +Eff2 + Ef,’z,is too extensive to
present here. It should be noted that in our numerical
computation we employ the high energy constraints in
Eq. (A12) along with the fitted parameters provided in
Ref. [25]. Therefore, all the parameters involved in Ej/,
are known.

5. Counterterms and renormalized amplitude
Given that the @ meson predominantly decays into
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the three-pion state, its two-loop self energy diagram con-
tributes beyond NLO in 1/N¢ and is not relevant for our
current consideration. The self-energy diagrams for p
meson are depicted in Fig. Al. The Lagrangian required
to renormalize p meson one-loop self-energy has been
provided in Ref. [38],

Xy, v
Ly =—<v2v” {V,,V7} Vi)

X Y,
4

X
+ % <{VO—7 Va} Vﬂv {VV’V(Y} V/ur> .

AVy, Vo VAV, VI V)

(Al14)

Specifically, only the combination of couplings Xy = Xy, +
Xy, + Xy, = X}, +6Xy 1is relevant for this purpose. Using
Lagrangians in Eqgs. (12) and (A14), p self-energy takes
the form:

G? 6m? m2
2\ \4 4 n U
5 == ggpizr'{ 155 -0

_8_’1172‘_0-2111(0—”4'1)

p? or—1
+( _%)(ﬁ _ nm_i)_%
2 o 2 2
p H p
O'K+1 10
—O'iln(a_K_l)+?}—Xyp4. (A15)
The renormalized p mass fulfills:
M} = M3, +3,(M3). (A16)

Given that physical M, is finite, the following holds:

2 2 2
my
oXy=-—"——|1-6—2-6—% Al7
' 48F4M3n2[ M2 MZ] (A1)

The wave-function renormalization constant of p meson
is obtained from:

2
=1+ az(;;f ) - (AI3)
m(K)
s N Xy
—o/ — O
P N f([‘/) S p p

(@) (b)

Fig. A1. Feynman diagrams contributing to p self-energy.

In our calculation of p-w mixing, the tree amp-
litudes can only absorb the ultraviolet divergence that is
proportional to p°. To neutralize O(p?), O(p*), and O(p®)
ultraviolet divergence originating from loop contribution
S ffa),, S };{3, Sl(,i),, and E}),, we construct the counterterms as
follows:

1
Lot =YV Vx4 ) = —YB<V*VA,1V VX
L PV 9, VWV
2 +» Vs llen
Yc, v o o
+ AV Val VP s (V7 VW )

YC? a (2 v
+ (VLY W% AV, Vol Ve D

ZAFV v ZpFy 2
——(Vu i)+ ViV
2\/— H 2\/— M
ZCFV 4 ZpFy 6
(Vi VA 1y 4 VoA™Y, (A19)
2\/— H 2\/— H (

We adopt MS — 1 subtraction scheme and absorb the
divergent pieces proportional to A.by the bare couplings
in the counterterms. Consequently, the remanent finite
pieces of counterterms can be expressed as

e, = Xy, Pe+ X, pt+ X5 Pt (A20)

with

8naF,F,

3
. _dnakF,F, . -2
7 T(2ZC+ZB)
+16Mp(my —ma)(Ye +Ye +Y0)
naF,Fy, .

3

Xw (Zp+ZyZr)

Xg

—4M,(m, —maq)Yg . (A21)

In summary, at the NLO in 1/N¢, the UV-renormalized
mixing amplitude is as follows:

(pZ) S(a) \/_+S(C)+S(d)+s(e)+E (pZ)
+ X0, p% + X5 p* + Xpp?, (A22)
where a bar denotes that the divergences are subtracted.
As discussed in Ref. [41], the mixing amplitude
should vanish as p? — 0. Thus, the final expression of the
renormalized mixing amplitude is obtained as follows:
M, (p*) = 11, (p") ~117,,(0) , (A23)

where an additional finite shift is imposed to guarantee
that constraint IT,,(0) = 0 is satisfied. It should be noted
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that due to the finite shift performed in Eq. (A23), our nu-
merical calculation is actually independent of the coup-
ling X},. In our numerical computation, scale u will be set

to M, , and we use (m, —my) =—2.49 MeV provided by
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