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Abstract: Despite its success with mass spectra, the reputation of the bag model has been marred by embarrass-
ment of the center of mass motion. It leads to severe theoretical inconsistencies. For instance, the masses and the de-

cay constants would no longer be independent of the momentum. In this work, we provide a systematic approach to

resolving this problem. Our framework can consistently compute the meson decay constants and baryon transition
form factors. Notably, the form factors in the neutron  decays do not depend on any free parameters and are determ-
ined to beF}/ =1 and F’l“ =131 or Ff/FY = 1.31, which is close to the experimental value of Ff/FY =1.27. In ad-
dition, we find that B(A, — Ay) = (6.8 +3.3) x 107, which agrees to the experimental value of (7.1+1.7)x 107,
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I. INTRODUCTION

The Massachusetts Institute of Technology (MIT) bag
model describes a hadron as a bag that contains various
quarks, antiquarks, and perhaps gluons [1]. It was pro-
posed to reconcile two different ideas behind quantum
chromodynamics (QCD) with a single parameter, the bag
radius (R), as follows:

e Because of their asymptotic freedom, quarks move
freely inside the bag.

e Quarks are not allowed to penetrate the bag be-
cause of the QCD confinement.

Expressing the ideas mathematically, we start with the
free Dirac equations given by

(iP-Mpyy,(x)=0, inr<R, )
along with the boundary condition,
(X P)Yg(x) =¢y(x), atr=R, 2

where , stands for the quark wave function, M, repres-
ents the quark mass with ¢ being the quark flavor, r = |4],

¥ = (y1,72,73), and R is the bag radius. The description is
similar to the infinite square well in quantum physics. In
practice, "bag" can be understood as the abbreviation for
"infinite spherical well." The higher-order mass correc-
tions can be done by taking i, as an unperturbed state.

Owing to its simplicity, the bag model can easily co-
operate with various QCD systems. The applications
range from atoms to burning stars. In nuclear physics, the
bag model offers an intuitively understandable ground for
studying the mass spectra [2—5] and the hypothetical ob-
jects, such as B, glue balls, and pentaquarks [6—9]. See
Ref. [10] for a historical review. In astrophysics, under
the framework of the bag model, the strange stars, neut-
ron stars, and quark cores are viewed as large bags con-
taining countless quarks [11-15]. Despite these advances,
the bag model has little application in the particle decay
system, mainly because of the center of mass motion
(CMM) [16—-18]. This study is devoted to introducing the
homogeneous bag model to provide a consistent frame-
work to deal with the CMM.

The paper is organized as follows. We provide a brief
review of the MIT bag model in Sec. II, where we con-
centrate on the CMM problem rather than computational
IV; we present a systematic framework for dealing with
the CMM problem and show the numerical results of the
neutron £ decay and A, — Ay. We conclude the paper in
Sec. V.
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II. THE MIT BAG MODEL

Since we only consider low-lying hadrons, the quark
wave function of i, can be safely considered isotropic.
Consequently, Eq. (1) with J, =1/2 can be easily solved
as

wq+j0(qu)XT

_ —iEt _
lqu('x) - ¢qT(3?)e - N( iwq—jl (pqr);;_ . 5)-)(1’

)e—ieq , (3)

where ¢,(X) corresponds to the spatial part of the quark
A /E’; £M,,
andp, and E, are the magnitudes of the quark 3-mo-
mentum and energy, respectively. N is the normalization
constant, y; and y; stand for (1,0)7 and (0,1)7, respect-
ively, and jojare the zeroth and first spherical Bessel
functions, which are the cosine and sine functions in the
spherical coordinate. In the absence of energy correc-
tions, we haveE, = Ef.

In analogy to the case of the infinite square well, im-
posing the boundary condition would quantize p,. Com-
bining Eqs. (2) and (3), we find that p, must satisfy the
relation [3]:

wave function with Ej = \/p7+Mj, w4 =

PgR

tan(qu) = m .

“
At the massless and heavy quark limits, we obtain
MlqurEOqu =2.043,5.396---, Mql}ergwqu =n2n-, (5

respectively, which is valid for all hadrons. These results
are handy for quick estimations, as M,, canbe con-
sidered massless, whereas M., can be considered infin-
ite in practice. It states that the magnitude of the 3-mo-
mentum grows along with the quark mass, approaching
7/R.

At this stage, one can readily estimate the hadron
masses by adding quark energies. We take the proton as
an example, and the formalism can be easily generalized
to other hadrons. The proton wave function is given by
superposing the quark states.

P(xp,x2,x3) =(0la(x1)i(x2)d(x3)|pp(0))
:l//u ()Cl )wu(-XZ)wd(-x:%) s (6)

where i and d are the quark field operators, without ex-
plicitly writing down the spin-flavor and color indices,
and |pp(0)) represents the proton state from the bag mod-
el, centered in the coordinate. The experimental proton
charge radius of 0.840 fm [19] corresponds to R =5.85
GeV~! in the bag model, leading to the proton and A

masses as

2.043
M. r=2""%3=1.04 vV
p.A 585 x3 047 GeV, (7)

which are close to the experimental values,

(M, +My),,, = 1.085GeV. (8)

N =

However, the neutron charge radius is essentially zero in
the bag model, which is inconsistent with the experi-
ments.

There are several mass corrections, which can be
summarized as follows [3]:

e The energy of the bag is proportional to its volume,
given by Ey =4xBR%/3, with B being the bag energy
density.

® The zero-point energy is considered negative em-
pirically, given by Eg = —Zy/R.

e The quark-gluon interaction introduces the strong
coupling constant of «.

Here, B, Zj, and «, are considered free parameters in the
model. In contrast, the bag radii are determined by min-
imizing the hadron masses, given as [3]:

oMy
R lpor, " 0, ()]
where My and Ry are the mass and bag radius of H, re-
spectively, resulting in different hadron bag radii. Typic-
ally, the baryon and meson radii are approximately 5 and
3 GeV~!, respectively. Except for u and d, the quark
masses are considered free parameters in the model, fit-
ted to be [9]

M;=0.279GeV, M.=1.641GeV, M, =5.093GeV, (10)

which can be viewed as effective masses when the quarks
swim inside the bags.

Although the mass corrections from the bag and zero-
point energies are intuitively satisfactory, they are prob-
lematic under spacetime symmetry. For instance,
particles at rest are invariant under space translations.
How can their masses be related to a finite volume? How
do the zero-point energies transform under the Lorentz
boost? These problems partly stem from the fact that the
description of the bag model is a semi-classical one.
Quarks are quantum objects as they satisfy the Dirac
equation, whereas the bag, having a definite position and
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a concrete boundary, is a classical object. These are the
essential problems that have haunted the bag model ever
since it was proposed and are closely related to the CMM.
As a pioneer of quark models, it provides an excellent
framework for understanding the hadrons in relativistic
systems. However, it is difficult to apply to particle de-
cay processes.

Another issue after considering the mass corrections
is that we lost the ability to track the #-dependencies of
the individual quarks. The best we can obtain is the #-de-
pendency of the proton wave function, read as

V1, %1, %, %3) = e Ml (R)pu(B)da(F3). (1)

Here, we can no longer consider ¢, ;3 different as done in
Eq. (6) for 2E%+E" # M, after including the bag and
zero-point energies. Due to this reason, we cannot apply a
Lorentz boost to Eq. (11), which would mix up the space-
time coordinates. The problem can be traced back to the
fact that the =0 plane is not invariant under a Lorentz
boost, which we will discuss in more detail in Sec. IV, in
which the wave functions are spelled out in terms of the
creation operators.

III. THE WAVE PACKET AND ELLIPSOIDAL
BAG APPROACHES

We are interested in the applications of the bag mod-
el in the decay system, in which momentum eigenstates
are required. In the literature, there are two methods con-
cerning decay with the bag model. These methods have
advantages but fail to achieve a consistent framework
with the Poincaré symmetry. Nonetheless, they shed light
on the CMM problem, which we discuss briefly.

A bag as a wave packet
The most naive solution to explain the CMM is the
wave packet approach, which treats the bag wave func-

tion as a localized wave packet. We extract the mome-
ntum states based on the Fourier analysis, which reads as

P = NB) f x e p (), (12)

where the left-hand side is a proton state with 7 as the 3-
momentum, leading to the quark state decomposition as

(1, 71, %, %3) =N(P) f dPxe 7M7) - )

X $u(%y = ¥)pa(X¥3 - X). (13)

1) See the discussion following Eq. (11).

One of the advantages of this method is that the -depend-
encies of the quark states are not required. Thus, it can
easily cooperate with the bag and zero-point energiesl).

The ellipsoidal bag approach

The contradiction that occurred in the wave packet
approach is attributed to the fact that we cannot have a
wave packet with definite energy. To solve the problem, a
Lorentz boost for the bag state is needed [20-23]. Boost-
ing Eq. (6), the wave function is read as

WY, x2,%3) = Y, (X ), (e )Y (x3) (14)

where v is the velocity, and
W) = Sy (A x), (15)

where S, and A, are the Lorentz boost matrices toward
the Z direction for Dirac spinors and spacetime coordin-
ates, respectively. In this work, ¥ is always chosen in the
% direction, leading to S, = a, +a_y"y® with a, = \/y+1
and y~! = V1-12. In contrast to Eq. (6), the spherical bag
deforms to an ellipsoid due to the Lorentz contraction,
and the bag itself is moving.

The t-dependencies (E,;) of the quark states are
needed by Eq. (15). A reasonable range for the up and
down quark energies is given as

1 1
3Mp < Eua < Ef,+ 3 Eo+Ev),  (16)

or numerically
0313 GeV < E, 4 <0.368 GeV, (17)

where we allocate Ey and Eyevenly among the quarks.
Notice that Eq. (14) admits implicitly that the energies of
the quarks are independent, which is false if there are in-
teractions among them. Thus, we haveE, ;> M,/3, and
Eq. (17) serves as a major uncertainty in the evaluation.
Nonetheless, for processes wherein the initial and final
baryons have the same velocity, the Lorentz boost is not
required. Therefore, the calculation does not suffer from
uncertainty.

If we take Eq. (14) as a momentum eigenstate, there
are a couple of requirements to be added by hand before
the calculations:

e To have the same bag volume, the initial and final
hadrons must be opposite in velocities.
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e As the bag is moving, a specific timing for the com-
putation has to be chosen.

The studies of the ellipsoidal bag approach are carried out
in the decays with the b — ¢ transition [24], where the
overlapping between the heavy quarks is treated by the
heavy quark symmetry. In contrast, the overlapping of the
light quarks would lead to the v-dependency of the Isgur-
Wise function, shown below:

Ay = f &5 (0,09;°(0,%) = D)),  (18)
with

1 1 1 4
e B e A

where / is the spectator quark in the heavy hadron trans-
ition, and Dj(¥a) is a function of both velocity and posi-
tion, and where the dependence on %, is defined for the
latter convenience. In Ref. [24], it was found that
B(B" - D I*v;)=2.12 %, which is close to (2.31+
0.10)$% given by the experiments [25]. Remarkably, Eq.
(18) can be understood intuitively, in which y~! comes
from the Lorentz contraction of the bag volume, while the
exponential in the integral causes the damping, which is a
punishment for not being at the same velocity.

However, it is unarguable that both the Lorentz and
translational symmetries are broken in the ellipsoidal bag
approach as a specific initial frame and timing are deman-
ded in the computation. Furthermore, Eq. (18) shows that
the inner products between|l.,) are nonzero, violating the
principle of energy-momentum conservation.

IV. THE HOMOGENEOUS BAG MODEL

The homogeneous bag model, first proposed in Ref.
[26], has been widely applied in various decay systems
[27-30]. It is meant to reconcile the Poincaré symmetry
and the bag model without necessarily introducing a new
parameter. However, in Ref. [26], only the scalar operat-
ors were considered. In this work, we would like to gen-
eralize the formalism to the vector and tensor operators.

In the following discussion, we will construct hadron
states by combining the features of the wave packet and
ellipsoidal bag approaches. Note that the wave packet ap-
proach violates the Lorentz symmetry as masses depend
on velocities, whereas the ellipsoidal bag approach breaks
the translational symmetry as the wave functions are loc-
alized. We will show that the inconsistencies with the
Poincaré symmetry are resolved in our framework. We
also take the neutron f decay as an instance of the com-
putation, as it is independent of free parameters.

Hadron wave functions

We start with a hadron state at rest. As a zero-mo-
mentum state has to distribute itself homogeneously over
the space, we linearly superpose infinite bags at different
locations. A proton state at rest is constructed as

P(F=0) =N, f s, (20)

where Ny is the normalization constant for the hadron H.
Notice that the formula is identical to Eq. (12) when
P =0, but the idea is different. Eq. (12) is meant to ex-
tract the specific momentum component from the wave
packet, whereas we are trying to build up a momentum
eigenstate from infinite static bags here.

For completeness, we would write down the baryon
wave functions with color and spinor indices. It can be
accomplished by adopting the quark creation operators
given by

(5 =0),7) = f @3] %Eaﬂy”Za(fl)dZB(fz)”Iy(fS)

X W g (1, %, 33)10), Q1)

along with

c e NH N N o
\Pfé(‘hfhlh)(xl’xz’x?’) :E fl:(l);T(fl _XA)¢ZZJ,(XZ —Xp)

—% | (%1 = T (% — T |
X ¢ (%5 = 2)d T,
(22)

where [d’%] = d’% d3%d3%;, the Greek (Latin) letters
stand for the color (spinor) indices, the arrows represent
the spin directions of the quarks, and the Fermi statistic is
guaranteed by the anti-commutation relation:

{Qaa(f)a q;,;(f,)} = 5qq’6ab6(1/363 (f_ )?’) . (23)

For the sake of compactness, the quark operators are
evaluated at 7 = 0 if not stated otherwise.

To obtain a nonzero momentum, we have to apply the
Lorentz boost U, on Eq. (21). Recall that the transforma-
tion rule for the quark operators is given as

U qua(®DUy = (Sv)ap Goa (X7) = (S ) ap Goa (t = —yv2,%,,¥2) -
(24)

It states that even if we start with the operators simultan-
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eously, we inevitably have to deal with the quark operat-
ors with timelike distances, as the quarks have different
positions in the baryon at rest. The problem can be traced
back to the fact that the planes = 0Ois not invariant under
the Lorentz boost, which leads to unequal time among the
operators. The unequal time commutators require know-
ledge of the dynamical details, which cannot be perturbat-
ively calculated. To overcome the problem, we utilize

Qaot T)P(F = 0)) = qua(0,De El|p(F=0)),  (25)

which stems from the fact that the quarks are energy ei-
genstates in the bag model, at least for the first-order ap-
proximation.

The wave functions after the Lorentz boost can be ob-
tained by the following trick. Without loss of generality,
we write the wave functions after boosting as

1
5 _ 3 afy T > T oo
lep(P—O),T>—f[d A= 5 Haa )y ()
Xl (B) (P36 (K1, 22, B3)I0), (26)

where ¥V is a function to be determined. Note that as J,
commutes with U,, the proton remains an eigenstate of
J.. Applying the annihilation operators, we arrive at

(0]ttaa (F1)dpp (@)t (F3) U, | p(F = 0))
=(0|UsU;  taa(R1)dip(R)ucy (%3) Uy | p(7 = 0))
=(0|U;  aa (FDULU;  dyp(@) Uy Uy e (R5)U, | p(7 = 0))
=(0|(S vt () (S s (33) (S Decrter (63 P = O
=e"EATERYES) (S )10 (S )it (S e

(Ot (%) o () ey ()| 7 = O,

27)

with ¥ = (x,y,yz). In the third line of Eq. (27), we have
shown that the vacuum is invariant under Lorentz boosts,
and the fourth and fifth ones can be obtained by Egs. (24)
and (25), respectively. By comparing the first and fifth
lines of Eq. (27), we deduce that

\ab
(\Iﬂ )/(Z\T(Cudu)(fl ’ )?2, )?3)

—e(E +E:IZZ+EUZS)( S Vaa

X (S )b (S v eer P4 i (B> K5, 23 (28)

To obtain N,, we calculate the overlapping

=/ A2 i(yv—y V' )E,z;+E,;2,+E,z3)
PNy =N [ G Hbtts
$u (B = 2)S Lpu(¥) - %)
BTy = X)S 2pu(Ty — Dpl(Xy — F)

S2¢,(% - Dd* A2 [d* 7], (29)

which can be derived from Egs. (23), (26), and (28). The
spin indices have not been written down explicitly be-
cause they are irrelevant as long as the initial and final
quarks are facing the same direction. We have
takenS 1 =S, by anticipating that v=1', or the integral,
vanishes. To simplify the integral, we adopt the follow-
ing variables:

1 S
Xr=X-%, )?A:E()?Jrf’)’ )?[:)?}—z(x+x). (30)
Now, the integral is given as follows:
N? . 1
P 32 132 3or 1 | 21 -
— | d°Xad’ Xy d’x/ ¢ (xi +—xA)
= 1] awa s
1 . N ,
Sda, (fzr - E)?A) elba (V)7 1Ly vz

Nyen's@-) [ ¢ [] pha. 6D
i=1,2,3

where (¢1,¢2,¢3) = (u,d,u), 1/y> comes from the Jacobian
in Eq. (30), and D)(%,) is defined in Eq. (19) with v=0.
To obtain the correct ¢ function, we have to demand that

M), = Z Eqy, (32)

i=1,2,3

for the integral of ¥4, which is the main source of errors
in our model. However, the range in Eq. (16) shall cover
the reasonable values. The ¢ function can be interpreted
as that the overlapping of DS()E’A) for the bags with a dis-
tance ¥, occurs infinite times in the integral, which is es-
sentially a result of the translational symmetry.

By taking the normalization of a momentum state as

(BAIF A = whu!, 2m)* 8 (F - 7)., (33)

where u, and A, are the Dirac spinor and spin of the pro-
ton, we find that

1 1 f 35 0/ >
— = = d XA D ()CA). (34)
Ny lapity Y
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N, must be independent of the velocity because the
Lorentz boosts are unitary for physical states. Here, our
result shows that this is indeed the case in contrast to Eq.
(12). The wave functions and normalization constants of
other baryons can be obtained straightforwardly with
trivial modifications. In Appendix A, we give the baryon
wave functions at rest that are used in this work, and the
evaluation of N, can be found in Appendix B.

Here, we summarize a few steps to construct the had-
ron wave functions:

e We start with the hadrons at rest, where the transla-
tional symmetry is respected. At this stage, hadrons are
not moving yet. Thus, we do not need to worry about the
Lorentz symmetry.

e The nonzero momentum states are acquired by
Lorentz boosts on the physical states, which respect both
the translational and Lorentz symmetries.

Since the Poincaré symmetry is preserved in all the
steps, we conclude that our approach is consistent. In the
next section, we will show explicitly that the form factors
do not depend on the Lorentz frame, in contrast to the
wave packet and ellipsoidal approaches.

Transition matrix elements

After the hadron wave functions are constructed, the
calculations of the transition matrix elements are straight-
forward. Here, we choose the neutron-proton transition as
an example with d — u at the quark level. For the calcula-
tion, we adopt the Briet frame, where » and p have oppos-
ite velocities, and without loss of generality, we take V|| 2.
By sandwiching the quark transition operators with the
hadron states, we arrive at

(p(), Aplu TA(O) (=), A,)

NN, [@nran [ . 69

q=u,d

along with

VW A,4, 3
Fud (XA) = Z N/L,/L: fd X¢Z/1H (XH—)
A
X S TS _ppan, () P EAEITE (36)

where I' is an arbitrary Dirac matrix and x* = ¥+ ¥5/2.
Here, 1,4 €(1,]) are the spins of the annihilated up and

down quarks, and Nj’j, represents the overlapping with

specific 4,4, which can be computed by matching the
LHS and RHS of Eq. (35). As the value of Nj’j/ is inde-
pendent of the velocity, it can be obtained by taking v =0
for convenience. From the angular momentum conserva-

tion, we have that

Nyy =0, for dy—A,# da—Au. (37)

It states that if the baryon spin is (un)flipped by the oper-
ator, then the quark spin shall also be (un)flipped. On the
other hand, by the Wiger-Eckart theorem, we have

™ Al
N/L/b_N

M_ NI = N =yt
Saeae N TN =N =Ny G8)

Consequently, there are only two independent numbers in

A,4,
N/l

L, given as
us’td

Nrontlip = NTTTT +NLT s

Npip = NjTT . (39)
In the n— p beta decays, we have (Nyonfiip, Niip) =
(1,5/3).

Each term in Eq (35) has a concrete physical mean-
ing, which can be summarized as follows:

® Dy (¥,) are the overlapping coefficients of the spec-
tator quarks (u and d) in the initial and final states, as
found in the ellipsoidal bag approach. Note that the cen-
ters of the quark wave functions are separated by a dis-
tance of X ;

° Fﬁ:f”(fA) is the overlapping coefficient of d — u at
quark level. Again, the centers of the bags are separated
at a distance of Xx.

Here, we have found that the overlapping integrals of
the spectator quarks with different velocities (D) do not
vanish, a feature inherited from the ellipsoidal bag ap-
proach. However, we have energy-momentum conserva-
tion when we consider the whole wave function [26]. It
can be viewed as the spectator quarks being kicked by the
bag, which in turn are kicked by the quark transition op-
erators.

The main ambiguity of the homogeneous bag model
comes from E, in the exponential, as shown in Eq. (16).
However, the deviations are insensitive at low velocities,
as E, is always followed by v, which does not affect the
calculation for the neutron-proton transition.

For the neutron S decay, the dimensionless form
factors F Y’A are defined by [31]
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"
(P AO)In(T,)) =Tiy(7) (FY(qW - FY(@ic" -+ FY (42)1‘54_) un(7h),

(PE NNy Y d(0)n(%,))) =iay(¥,) (Ff‘(qz)yﬁ — F (@Yo~ + FA(qg%)

where ¢ corresponds to the 4-momentum difference of
the neutron and proton, and ¥, and ¥, are the velocities of
the neutron and proton, respectively. F} and F# can be
extracted straightforwardly after computing the transition
matrix elements with I'=1 and T =9%y'ys, respectively.
In the model, u and d are taken as massless, and thus
there is only one free parameter, R, having the length di-
mension. The twist is that F Y‘A does not rely on the bag
radius since the length dimension cannot be canceled. At
the v — 0 limit, we find that

F/=1, F}=131, (41)

which are close to the experimental wvalue of
Ff /F }’ =1.27. The details of the numerical evaluation
can be found in Appendix B. Compared to the result of
F#/F) =1.09, given previously in the bag model [3], the
ratio improves significantly after considering the correc-

n
v

ql‘l
M,

1 (40)

7 )75 Un(%,),

[
tion from the CMM.

Notice that to compute the matrix elements, we have
taken the Briet frame, where the initial and final hadrons
have opposite velocities. However, in principle, it can be
calculated in other Lorentz frames. For an illustration,
with T = y%9#, we have

(P(), Apluy"d(O)[n(=V), An)
=(p(0), 2p|U_,uy*d(0)U_,|n(0), A,)
=(p(0), ,|U2, Uity d(0)U-,In(0), 1,)
=(p(""), Ap[uS S -, d(0)In(0), 2,,)
=(p(), Aplu(A-, ) ,y"d(0)|n(0), 4,)

=(A- ) (P, Apliy"d(0)|n(0), ), (42)

where U? = U,,, the use of Eq. (24) has been made in the
second line and S_,*S, = (A,)¥,y" in the third line.
Plugging in the last equation in Eq. (40), we find that

) ; ’ s
Py d(0)n(0)) =(A; 'Y i, (V) (FY (@0 - Fy(gHic* 1@— +FY (q%qﬁ) 14, (0)

- - /2 ! 3 'y ql H
=AY U, (S _V(FY (@0 - Fy(gHic* a Fy (cﬁ)qﬁ)svun(—vﬁ

n
=ii, (V) (FY(qW ~FY <q2>iawﬁ"4—: +FY <q2>fl—n)un<—v7,

with ¢’* = (A,)*,q”, which are identical to

(p(fay* d(O)ln(=) =it,((FY (g0 — F;/(qz)io—/“’%

M
+FY (@) Jun (=),
’ (44)

Thus, the results are independent of the Lorentz frame we
choose, in contrast to the ellipsoidal bag approach. We
conclude that the Poincaré symmetry is recovered by
combing the feature of the wave functions to be invariant
under spacetime translations.

For the heavy quark transitions, we use the decay of
Ap — Ayas an example, which is governed by the tensor
operator of b — s. The bag radii of A and A, are approx-
imately 5 and 4.6 GeV~!, respectively [3, 9]. We take
both of them as 4.8 GeV~! to simplify the numerical cal-
culations. In addition, we find that the results depend
little on the quark masses as long as the values are reas-

(43)

onable. For simplicity, we use [25]

(M, M) = (0.1,4.78) GeV, (45)

where M, and M, are taken as the current and pole masses,
respectively. The tensor form factors are defined as

(NI5ic* gyysbIAy) =tin| 14 () (V'@ — 407" IMa,

- 7(4)ic* qv|ysiaa, - (46)

of which only fZT 4 is relevant to the weak radiative decay.
It can be calculated by taking I'=y°c"g, in Eq. (35)
with a slight modification, as

(A[), A7l THO)AL(=7), Ap, )

@ [ | pyEw,

g=u,d

Aady,

=NAN,, f FRr, (47)
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with

Ardy, Ay, 3ot
D=yl el @)
A,

XSS _yppa, () HEFENTT (48)

For E, in the range of Eq. (17), the form factor is found
to be

7V (4> =0)=0.134£0.034, (49)
leading to
B(Ap — Ay) = (6.8+33)x107°, (50)

where the numerical evaluations of the form factors are
given in Appendix B. The formalism of the branching
fraction can be found in Ref. [32], given as

TpUem
324

M2y
(-] e 6D

BNy = Ay) =

GIMEMS, ViVl (cST)’

where 7, is the lifetime of A,, Gg is the Fermi constant,
Qom = 1/137, Cgfyf =0.303, and M, =4.8 GeV. Our result
of the branching ratio is consistent with that given by the
experiment, i.e., (7.1+1.7)x 107 [25]. In contrast to Eq.
(41), the form factors of A, — A suffer large uncertain-
ties from the quark energies since the Lorentz boost with
high velocity " is needed. Alternatively, one can fit the
quark energies from the experiments, resulting in

Euq=(033+0.01)GeV, (52)

which is consistent with Eq. (17) and useful for future
work.

V. SUMMARY

We have reviewed the attempts at tackling the CMM
of the bag model in the literature. We have discussed the
advantages of the wave packet and the ellipsoidal bag ap-
proaches and their inconsistencies with Poincaré sym-
metry. By combing their merits, we have proposed the
framework of the homogeneous bags, which is consistent
with the Poincaré symmetry. Notably, we have shown
that in our framework, the dominated form factors of the
neutron S decay do not depend on any free parameters

1) To be specific, the velocity is found to be 0.669.

and are given as Ff/F}’ =1.31, which is close to the ex-
perimental value of 1.27. For the heavy quark transition,
we have taken the decay of A, — Ay as an example and
obtained B(A;, — Ay) = (6.8+3.3)x 107, which is con-
sistent with the experimental measurement of
(7.1+£1.7)x107°. In conclusion, we have found that the
homogeneous bag model is useful in both light and heavy
quark systems. The homogeneous bag model can provide
a reliable framework for the computations concerning the
hadron transitions, including the form factors and the de-
cay constants.

APPENDIX A: BARYON WAVE FUNCTIONS
AT REST

We collect the baryon wave functions at rest that are
used in this work:

01 = [ 10— e ) ol )

b
X \PZTfudu)(fl5-fZaf3)|O> >

In,1) = f [d%z’]%e“ﬁm;ﬂ()a)dgﬁ(fz)djy(@)

be

1 .
an= [ @0, (O ()51, )

b
X \PZT(CM,,}X)()?I ’ )?29 )?3)|0> >

1
ApT) = f 01l () ()81, (5

XWLC ) (1, %2, £3)]0). (AD)

APPENDIX B: DETAILS OF EVALUATING THE
FORM FACTORS

The calculations of the form factors are tedious. In
principle, one can evaluate Eqgs. (35) and (36) numeric-
ally and match them with the form factors defined in Eq.
(40). However, in practice, there are many integrals, and
we have to carry out some of the angular ones to evalu-
ate the matrix elements numerically at a reasonable time
by a computer program.

One important observation is that Dy(¥,), as defined
in Eq.(19), is independent of quark spin. Only two direc-
tions (¥ and X,) are specified in the integral. Therefore,
Dy(xp) can only depend on their magnitudes and
products,
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D)\(2)) = D}(ra,cos6), (B1)

where rp = |%A| and 6 is the angle between ¥, and V. Ac-
cordingly, we can rotate both ¥ and ¥» simultaneously
without affecting the numerical results. We adopt the cyl-
indrical coordinate system (p,¢,z’) and use the freedom to
choose ¥, ||Z” with # lying on the p®% plane at ¢ = 0.
To be specific, we take

X=pp+72, Zn=ra?,

V=v (sin 6 cos @p — sinfsin g + cos 6’2’) , (B2)
where ¥ is the integration variable in Eq. (19), and the

definitions of the angles are collected in Fig. 1. Plugging
Eq. (B2) into Eq. (19), we arrive at

VD;(fA) — fd37?¢2; ()?+) ¢q (f—)e—ZiE,,V‘)? — fd3)?¢(; ()?+) ¢q (i»—)e—ZiEqv(siHHpcos ¢+cosbz’)

= f pdpdgdz’ [j&,jaq + g (f# &

1 .
+ +—i)('()?A><)'c')~5"/\/)}e
rtr

—2iE,v(sinfp cos p+cosbz’)

— fpdpdtzﬁdz' (](J;qfaq + j]+qj]7qfc+ . 557>efziEqv(sianc0s¢+cosez’)

=21 f pdpdz (j5, o, + Jtgirg* - X ) Jo(Egvsinbp) cos (2E,vcos '), (B3)

where Jj is the zeroth Bessel function,

J0.1)g = WatrJon(Pgr™)s (B4)

with r* = |¥*|. Here, we have absorbed N into the overall
normalization constant N, , for convenience. Due to the
finite bag radius, the integrals are bounded as

pdpd?z’ = f dop f dZ. (B3
f 0 ~ R [4tr,/2

For the sake of compactness, the regions of the integra-
tions for p and 7’ are not explicitly written down as long
as there is no confusion. We have dropped y'[(¥ X ¥)-

#ly, since after integrating d#%, it is proportional to
x'[(@axP)-¢ly as ¥ is the only specified direction. It
vanishes since we always choose the spin directions at
+9. In the last line of Eq. (B3), we have used

Ju(a) = 21_7r fﬂ exp(ing —iasing)de, (B6)

with the integrand being an even function of z’. Notice
that Eq. (B3) is consistent with Eq. (B1) due to the fact
that Jo(a) = Jo(—a), which implies that Jo(2E,vsinfp) =
Jo(2E4v V1 —cos?p). To conclude, the number of integ-
rals in Eq. (19) is reduced to two, which significantly
shortens the evaluating time.

To compute the normalization constant, we take v=0

“) A 2/ — J‘EA A
?A P
e |_ 7
|
D R
A 3’ singp +cos ¢
cosgp —singd /4T pp

Fig. 1. The definitions of the angles 6,¢ and ¢, where the right figure is the adopted cylindrical coordinate in evaluating Dy (%a).
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in Eq. (B3) and arrive at

D) =2 [ pdpde (i + g ¥

L __ 1 f drrsdry (DY) (B7)

) =
Nn,p Un,pUn,p

where we employ the isospin symmetry Dy, = D).

Now we turn our attention to Figf”(fA). From Eq.
(B3), we find that D;()?A) is an even function of %,. Thus,
we can drop the odd terms regarding % in Fﬁff” (Xp). In
this work, we use I'=1 and T =y%ylys as examples. To
evaluate I' = 1, we take A, = 4, =7 in Eqgs. (35) and (36),
resulting in

ENE A EENCOTRIES Tt
35 >\ 2IE VX
e N]] [ @R, )0 () B
Nty [ 8}y () () 257

=2r f pdpdz’ ( Joudog, + s, j;qd){+ -f—) Jo(8,)c0s (5;)

8y =2Egvsinfp, 6, =2Egvcos6z

(B8)

where Eg4i = E, + E; is the energy of the spectator quarks.
Finally, we obtain

(p(),1 ' dO)n(-%), 1)

2R 1
:Nan2ﬂf ridrAf dcosHI“ll,(rA,cos@)(D;(rA,cosa))2
0 -1
(B9)

In the neutron f decay, we can safely set v — 0 and neg-
lect the contributions from F ;? Comparing the right-
hand sides of Egs. (40) and (B9), we find F }’ =1.

Now we turn our attention to I = y%y'ys. The trick of
Eq. (B1) cannot be applied, as I" provides an extra direc-
tion. In the cylindrical coordinate described in Eq. (B2),
we have

Y@ 0
F=7°7175=( 0 xd’)

o

&= (— sin¢sin¢ — cos ¢ cos Hcosqb)ﬁ
+ (cosacosesim& - sinEcosqS) +sinfcosgs’, (B10)

where ¢ is the azimuthal angle between the ¥®% and
V® X planes. In addition, we have

/ /

Fh-F=-iy -, ¥-ov-F=ik-&
¥ =(cos$sin¢— sin@cos@cosqﬁ)ﬁ
+ (sin@cos@simf) +Cospcos ¢) +sinfsing?’ .
(B11)

Here, &’ and §" point toward the x and y directions, re-
spectively, when we choose V|| % with the cartesian co-
ordinate system (see Fig. 1). We define

_ 0.1 2 )%/5)' O Y —’}/\70_)'
g—’y’yf)/SS—v_( 0 - )( _,}/‘—}»_6»_ y )

To calculate Eq. (36), we choose (4,,4,) = (T,]), which
results in

N AR
Mowy.¢ z-

Q W)

(B12)

L) =Naip f BRI(Ry)AEAENTT
T (%) E¢L (X)) Gpar (¥7)
JoaX1 )
(B13)

=(Joxl iAo )g(

where we have used Egs. (37) and (39) along with
S¥"y'ys =9%y'ysS_,. The integrand 7 can be further
simplified by noting

XIXT =0, x 0xr=%+iy,

O'io'jo'k=ifijk+6jk0'i_0'j5ik+6ij0'k, (B14)
leading to
1 =2 -
E(I(XA)"'I(_XA)):7(Il+VI2+I3),
I =90, Tr=-i[Jnd- 2 +Jd-£7],
I3—j11(2X+-)AC/A_ )AC/+1)’5+ )A/)AC_ b
iR YRR 2R, (B15)

where y; and y; stand for the quark spins pointing to-
ward the 9 and —¥ directions, respectively, and the first
line of Eq. (B15) is because we only consider the even
part of the integrand with regard to ¥,. For the sake of
compactness, we have defined

Tom = = (tudma+ mudva) for mme{0,1).  (B16)

N —
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Jum depends only on p, 7/, and rain the cylindrical co-
ordinates described in Eq. (B2), with the following prop-
erty:

jnm(ﬂ,—Z’,rA)=jmn(,0»Z’,”A)~ (B17)

Accordingly, we find that Jo0 and 9, are even func-
tions of 7/, whereas Jo1/rt + J10/r~ are even and odd, re-
spectively.

With Eq. (B2), the integrals of 7| and 7, can be com-
puted straightforwardly, similar to Eq. (B3), given as

f &*R1,e75 =2 f pdpdz’ JooJo(8p)cos (6) ,

fd3fI262iEd.v-f =2 fpdpdz/[(*% _ ‘%) %A cos 8Jo(0p) sin(6;)

+ (‘% + ‘%) (cos82J0(6,) sin (6;) + sinp.Jy ((5p)cos(6z))} . (B18)
However, from Eq. (1315), we see that 75 depends also on
the azimuthal angle ¢. To compute _ o
fd¢fd3)f’f3e21E“'V'x 1_[ D;(rA,cose)
g=u,d
dradcos8dg f B35 | | DY (rpcos6), (B19 I
f A ¢ 3 LL o(ra,cos6),  (BI9) = [_[ D, (r.cos6) f &’z f dpT5eB v (B20)

we interchange the order of the integrals of f d¢ and
f d3%. In addition, we make use of the fact that Dy, are in-
dependent of ¢, leading to

f dg f dg23" - /5 - & eHETT =

q=u.d

Therefore, we can first calculate the integrals of the azi-

muthal angles. By explicit calculations, we find

472 1 .
g [pz cos?8Jo(3,) cos(6,) + Ep2 sin® 6(Jo(5,)

2
+J2(6,))cos(8;) + sin? H(ZZ - %) Jo(6,) cos(6;) +sin(20)pzJ1(6,) sin(6;) |,

fdgsfda()e*-fc’f-y’+x*-y’fc<x’)e

rtr-

_ . 4n? r
f do f dgat -yttt o T (pz +22 - —A)Jo(ép)COS(5z)-

We define

/ 1 -
Iy= - | 13dd. (B22)

UE V% =0

2
o r

fdsﬂ—gezlEd,m =27Tfpdpdz' Ju {[(_A_Z
r_ry 4

s

2

; (B21)

of which 7

substitute 77} for 73 without affecting the numerical res-

is independent of ¢. Effectively, one can

ults. Collecting Eqgs. (15) and (21), we arrive at

1
2) - Epz sin? 9]

1
X Jo(6,) cos(8;) + 5p2 sin? 6J2(8,) cos(8;) + pzsin(26).J1(6,) sin(dz)} ,

(B23)

where we have utilized the fact that ,,, is independent of ¢. Finally, taking all into account, we have
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_ 5 oo
(p(@), | Iuylysd(O)ln(—V),T)=§Nf f d*3y f ERIPETI(DY (7))

5 .
=y§N,§ f d*7 f &R (T + I+ 14) e ETN(D)(Rp) = 1.3 1T,

where the last equation is numerically evaluated by col-

lecting Eqgs. (B18) and (B23), and taking v — 0. Compar-

ing it to Eq. (40), we find that F{' = 1.31, which is the de-

sired result.

On the other hand, the tensor form factors can be ob-
tained directly through the substitutions

—qo¥' ¢ gy -7

(d,u) —> (b,s), G— ( _gpi§ ¢ o -3 ),

(B24)

I - _QOII +q3I’2 +LI0I/3 (B25)

with

!’

A o a am e a4
2= 7 [(ngllb = Jisdon)® - X = Glgdos _JosJTb)V'er]
(B26)

in Eq. (B13). Note that Ny, = 1 for Ay — A.
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