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3Abstract: In  this  paper,  we  show  using  several  examples  that  the  bulk  geometry  of  asymptotically  AdS space-
times can be effectively reconstructed using an intuitive and visual method called the surface growth scheme. This
new approach for bulk reconstruction was originally proposed in a recent paper, along with its explicit realization us-
ing the one-shot entanglement distillation tensor network and the surface/state correspondence. In this paper, we dir-
ectly analyze the growth of the bulk minimal surfaces to implement this scheme. Our study provides further support
for the surface growth approach in entanglement wedge reconstruction.
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I.  INTRODUCTION

γA

The  anti-de  Sitter/conformal  field  theory  (AdS/CFT)
correspondence  has  established  a  bridge  between  the
boundary  CFT  and  gravity  in  the  bulk  asymptotically
AdS spacetime [1−3]. The correspondence also indicates
an emergent picture of gravity, namely, the geometry and
gravitational dynamics of bulk spacetime should in prin-
ciple be  constructed  from the  information  of  the  bound-
ary CFT, which is called the bulk reconstruction [4−10].
In the reconstruction of bulk gravitational theory, the no-
tion of holographic entanglement entropy plays a key role
[11−13], which states that the entanglement entropy of a
boundary subregion A is a quarter of the area of a co-di-
mensional-2  minimal  surface  growing  into  the  bulk
from the  boundary  of A (to leading  order  in  the  gravita-
tional coupling constant G), i.e., 

S A =
Area(γA)

4G
. (1)

Studies have  shown  that  field  theory  information  con-
tained  in  the  subregion A can  determine  the  information
in the spatial region bounded by A and the bulk extremal
surface,  which  is  called  the  entanglement  wedge  [4, 14,

γA

γA

15].  Subsequently,  significant  progress  has  been  made
along  this  direction,  such  as  the  reconstruction  of  bulk
operators from  the  boundary  CFT  operators  in  subre-
gions [4−10], generation of the bulk AdS geometry from
the  entanglement  renormalization  of  the  tensor  networks
[16−21], and  investigation  of  the  emergence  of  gravita-
tional  dynamics  from  the  geometry  generated  from  the
tensor networks [22]. According to the RT formula (1), a
boundary subregion A can at least detect the nonlocal in-
formation about  the global  configuration of  the extremal
surface  by  reading  out  its  classical  area.  However,
how the information in A detects (or reconstructs) the in-
formation in the region inside the RT surface  (i.e., the
entanglement wedge of A) is not apparent and direct.

In  a  recent  paper,  three  of  the  present  authors  (Lin,
Sun, and  Sun)  proposed  a  concrete  and  very  natural  ap-
proach to reconstructing the bulk geometry in the entan-
glement wedge from a surface growth procedure, similar
to  the  Hygens'  principle  of  wave  propagation.  The  basic
concepts of the approach can be briefly described as fol-
lows  [23].  First,  many  minimal  surfaces  are  "growing"
out from a set of small boundary subregions side by side.
Second,  these  minimal  surface  are  considered  to  be  the
new boundaries,  and the points  on them are further  con-
sidered to be the anchor points for the new minimal sur-
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faces to grow into the deeper bulk regions. Subsequently,
the procedure is repeated layer by layer such that the new
minimal surfaces can probe arbitrary regions in the entan-
glement  wedge.  Consequently,  the  information  of  these
bulk  regions  can  be  detected  and  reconstructed  from the
initial boundary regions in this manner (Fig. 1). A closely
related  case  is  the  horizon  entropy  of  the  brane  world
black  hole,  in  which  its  horizon  extends  into  the  bulk
spacetime  and  it  is  exactly  a  minimal  surface  when  the
black hole  is  stationary,  and  then  the  black  hole  Beken-
stein-Hawking entropy can be naturally interpreted as the
holographic entanglement entropy between regions in and
outside  the  black  hole  horzion  [24].  The  above  picture
can be explicitly realized by generalizing the one-shot en-
tanglement  distillation  (OSED)  method  and  the
surface/state  correspondence  [25, 18],  and  the  well-
known MERA-like tensor network in [19−21] can be ex-
actly identified  with  specific  surface  growth  configura-
tions  [23], thus  providing  a  concrete  and  intuitive  meth-
od for the entanglement wedge reconstruction [4, 14, 15].

3

Since the surface growth picture is a general geomet-
ric description that is independent of the tensor network,
in this  paper,  we  further  analyze  the  surface  growth  ap-
proach in asymptotically AdS  spacetime by directly cal-
culating the  minimal  surfaces.  We study  both  homogen-
eous and  inhomogeneous  subsystem  cases  and  demon-
strate  that  the  spatial  region  inside  the  entanglement
wedge can be efficiently reconstructed, similar to bubble
growing,  which  presents  a  clear  process  of  boundary  to
bulk propagation. 

II.  TENSOR NETWORK VIEWPOINT OF THE
SURFACE GROWTH SCHEME

In  this  section,  we  briefly  review our  previous  study
[23],  which  provided  an  interesting  perspective  on  the

surface  growth  scheme  based  on  the  tensor  network
(more explicitly, the so-called OSED tensor network).

The tensor network was originally used as a numeric-
al simulation tool to effectively represent quantum many-
body states  in  condensed  matter  physics.  It  is  character-
ized  by  relating  a  bulk  graph  of  a  geometric  structure
with  an  entanglement  structure  of  a  quantum  system.
Later, specific types of tensor network models were tent-
atively used to describe the mechanism of the holograph-
ic duality [16−18, 26−29, 23].

|Ψε⟩ ρεA
|Ψ⟩

ρA
ρεA

∆ = eS A−O(
√

S A)

|Ψ⟩

The OSED tensor network is a tensor network model
constructed  based  on  the  OSED  procedure  proposed  in
[18].  Let  us  first  briefly  describe  the  concept  of  OSED.
Studies have shown that because of the holographic lim-
its,  we  can  always  construct  the  so-called  "smoothed
states"  and  to approximate the given holographic
CFT  full,  pure  state  and  the  reduced  density  matrix

 for a certain subregion A of the CFT. Subsequently, by
rearranging  the  eigenvalues  of  the  smoothed  state  in
descending  order  and  dividing  them  into  blocks  of  size

,  we can further  approximate the boundary
state  as  the  following  tensor  network  representation
(see more details in [18, 23]): 

ΨAĀ =W1
A
β̄ᾱ

W2
Ā
βαϕ
αᾱσββ̄ = (W1⊗W2)(|ϕ⟩⊗ |σ⟩), (2)

|ϕ⟩⊗ |σ⟩where a maximally entangled state  has been dis-
tilled out, which is defined by 

|ϕ⟩ =
eS−O(

√
S )∑

m=0

|mm̄⟩αᾱ,

|σ⟩ =
eO(

√
S )∑

n=0

√
p̃avg

n∆ |nn̄⟩ββ̄, (3)

p̃avg
n∆

|ϕ⟩
|σ⟩

W1 W2

ϕαᾱσββ̄

Ā

where S is the entanglement entropy of A, and  is the
average eigenvalue of each block. Clearly,  the logarithm
of the Hilbert space dimension of  matches the entan-
glement entropy of A, and  acts as the quantum fluctu-
ation. The tensors  and  are isometries, which map
the  auxiliary  states  represented  by  the  bonds  of 
into the eigenstates of the reduced density matrices for A
and , respectively. Eq. (2) is the OSED for a holograph-
ic state (Fig. 2(a)).

Subsequently, utilizing a series of nonintersecting RT
surfaces starting from the boundary to discretize the bulk
spacetime into cells according to appropriate order1), Ref.
[18]  showed  that  by  iterating  the  OSED  procedure  on  a
holographic boundary state, an isometry tensor can be as-
signed  for  each  cell  to  implement  the  map  between  the
states associated with its minimal surface boundaries, and

 

Fig.  1.    (color  online)  Illustration  of  the  surface  growth
scheme with three layers.
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1) The appropriate order here means the order of adding new RT surfaces such that the corresponding tensor network will describe the AdS spacetime.
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finally, an entire  OSED tensor  network can be construc-
ted, which can reproduce the correct boundary state with
high  fidelity  and  have  a  bulk  geometry  that  perfectly
matches  the  bulk  AdS  spacetime.  Interestingly,  in  [23],
we  constructed  a  special  OSED  tensor  network  with
spherical  symmetry  and  fractal  feature  in  this  manner
(Fig. 2(b)), and we demonstrated that it can be identified
with the well-known MERA-like tensor network.

{(|m̄⟩ , pm = 1/eS )}

Moreover, in [23], we further investigated the physic-
al meaning of  the  OSED tensor  network.  More  specific-
ally, a mixed state  with equal probabil-
ities  to  each  extremal  surface  in  the  bulk  is  assigned,
since  in  the  framework  of  surface/state  correspondence
the density matrix corresponding to an extremal surface is
a direct product of density matrices at each point. There-
fore,  the  isometry  tensor  in  the  OSED  tensor  network
plays the role of implementing the entanglement distilla-
tion  procedure  on  the  state  of  the  union  of  the  minimal
surfaces  in  the  previous  layer  and  then  maps  it  into  the
state  on  the  next  minimal  surfaces.  This  understanding
results in the generalization of the OSED tensor network
into cases involving more general bulk minimal surfaces
whose  anchor  points  are  located  on  the  previous  bulk
minimal surface. Therefore, the generalized OSED tensor
network  provides  a  natural  interpretation  for  our  surface
growth scheme,  namely,  the  emergence  of  bulk  space-
time  geometry  can  be  interpreted  as  layers  of  minimal
surfaces  continue  to  grow  into  the  deeper  bulk  regions
from the initial boundary regions. 

3

III.  GROWTH OF MINIMAL SURFACE
IN PURE ADS

Now, let us discuss the direct growth of bulk minimal

3surface in pure AdS  spacetime in the global coordinate 

ds2 = dρ2+L2
(
−cosh2 ρ

L
dt2+ sinh2 ρ

L
dϕ2

)
, (4)

3 ρ = ρ(ϕ)

where L is the curvature radius of the AdS spacetime. The
bulk static co-dimensional-2 surface (which is a curve for
AdS )  can  be  expressed  as .  Subsequently,  the
length of the curve is 

γ =

∫ √(
ρ′2+L2 sinh2 ρ

L

)
dϕ ≡

∫
Ldϕ, (5)

ρ′ = dρ/dϕwhere . The bulk minimal surface satisfies the
Euler-Lagrange equation 

∂L
∂ρ
− d

dϕ
∂L
∂ρ′
= 0, (6)

which gives 

ρ̃′′ sinh ρ̃−2ρ̃′2 cosh ρ̃− sinh2 ρ̃cosh ρ̃ = 0, (7)

ρ̃ ≡ ρ/Lwhere . Eq. (7) can be solved as 

ϕ =± arctan

 sinh2 ρ̃

sinh ρ̃∗
+ cosh ρ̃

√
sinh2 ρ̃

sinh2 ρ̃∗
−1


∓ arctan(sinh ρ̃∗)+ϕ0, (8)

ρ∗
ϕ0 = ϕ(ρ∗) ρ∗

in which  is the turning point of the bulk geodesic and
. Note that the value of  will change for dif-

ferent  bulk  geodesics.  Substituting  Eq.  (8)  into  Eq.  (5),
the length of the geodesic becomes 

Fig.  2.    (color  online)  (a)  Simplest  OSED  tensor  network  for  a  bipartite  holographic  state.  (b)  Another  example:  a  special  OSED
tensor network  with  spherical  symmetry  and fractal  characteristics.  It  can  be  identified  with  the  well-known MERA-like  tensor  net-
work.

 

Note on surface growth approach for bulk reconstruction Chin. Phys. C 46, 085104 (2022)

085104-3



γ = L ln

(
cosh ρ̃1+

√
sinh2 ρ̃1− sinh2 ρ̃∗

)(
cosh ρ̃2+

√
sinh2 ρ̃2− sinh2 ρ̃∗

)
cosh2 ρ̃∗

, (9)

ρ̃∗ < ρ̃1 < ρ̃2where we require that .
2(ϕ−ϕ0)

ρ̃ = ρ̃c

ρ̃∗

ρ̃∗
ρ̃c

ϕ = π/25

Note that for a given angular size  of the sub-
system A,  Eq.  (8)  fixes  the  bulk  geodesic  grown from A
by relating  the  initial  radial  (cutoff)  position  of A
to  the  turning  point  position .  We  can  then  draw  the
bulk  growing  minimal  curves  by  iterating  this  process
during which different  positions are obtained from dif-
ferent starting positions  of the previous step. Now, we
can draw the  surface  growth  picture  as  shown in Fig.  3.
At the  conformal  boundary,  we  first  select  ten  subsys-
tems with equal spatial size, each of which expands at an
angle . After the growth of the first layers of the
geodesics,  we select  the  boundaries  of  the  second layers
of geodesics to be at the centers of the first ones; then, the
bulk  space  within  the  entanglement  wedge  can  be  filled
after  finite  steps.  An  interesting  point  is  that,  the  outer
bulk geodesic that corresponds to all ten subregions (i.e.,
subsystem A) also should be treated as the spatial bound-
ary when considering the surface growth. Otherwise,  the
region  growing  from  the  ten  subregions  will  be  smaller
than the outer entanglement wedge.

We can also consider the surface growth for ten sub-
regions with arbitrary sizes on the boundary (Fig. 4). Be-
cause the subregions have different sizes, from the second
layer  on,  some  minimal  surfaces  become  asymmetric;
thus, when considering the new geodesics connecting two
adjacent  geodesics,  we  select  the  one  with  the  maximal
value.  Similar  to  the  symmetric  case  in Fig.  3,  the  outer
boundary (the  minimal  surface  corresponding  all  subre-
gions)  is  necessary  for  the  growing  minimal  surfaces  to

fill the entanglement wedge.
Another  interesting  case  is  to  construct  the  full  AdS

space  from  the  surface  growth.  To  achieve  this,  we  can
divide the entire boundary into many subregions. Without
loss  of  generality,  we  select  twenty  subregions  with
identical sizes as in Fig. 5 and select the boundaries of the
next  layers  of  minimal  surfaces  to  be  the  centers  of  the
previous  layers.  After  finite  steps  of  minimal  surface
growing, the full AdS space is filled or constructed.
 

 

ϕ = π/25 ρ0 = 2

L = 0.5

Fig.  3.    (color online) Surface  growth  for  initial  ten  subsys-
tems  with  equal  spatial  size,  where  each  subsystem  expands
an angle , the conformal boundary is selected as 
and , and the growing steps are 300.

 

ρ0 = 2 L = 0.5

Fig. 4.    (color online) Surface growth for the initial ten sub-
systems with different spatial sizes, and the conformal bound-
ary is selected as  and ; the growing steps are 300.

 

ϕ = π/10 ρ0 = 2

L = 0.5

Fig. 5.    (color online) Surface growth from the entire bound-
ary when they are divided into twenty subsystems with equal
spatial  size,  where  each  subsystem  expands  at  an  angle

, and the conformal boundary is selected as  and
; the growing steps are also 300.
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IV.  GROWTH OF MINIMAL SURFACE IN NON-
ROTATING BTZ BLACK HOLE

In this section, we study the bulk reconstruction from
surface growth in a nonrotating BTZ black hole. The met-
ric of the nonrotating BTZ black hole is [30, 31] 

ds2 = − r2

L2 f (r)dt2+
L2

r2 f (r)
dr2+ r2dϕ2, (10)

f (r) = 1− M
r2 rh =

√
M

r = r(ϕ)
where  and its horizon is located at .
The bulk static curve is , which has a length of 

γ =

∫
dϕ

√
g(r)ṙ2+ r2, (11)

g(r) =
L2

r2 f (r)
ṙ =

dr
dϕ

where  and . The bulk geodesic is de-
termined using the Euler-Lagrange equation, which yields 

2r2+4gu2− rg′u2−2gruu′ = 0, (12)

u = u(ϕ) ≡ ṙ g′ =
dg
dr

with  and . Eq. (12) can be solved as
 

u(ϕ) ≡ dr
dϕ
= ±

√
r4− r2r2

∗
r2
∗g(r)

, (13)

r∗where  indicates the turning point of the bulk geodesic.
Subsequently, we can obtain the solution 

±(ϕ−ϕ0) =− L
rh

ln


√

1−
r2

h

r2 −

√
r2

h

r2
∗
−

r2
h

r2


+

L
rh

ln

√
1−

r2
h

r2
∗
, (14)

ϕ0 = ϕ(r∗)where  denotes the center of the bulk geodesic.
Consequently, the length for the bulk geodesic is 

γ = Lcosh−1
2r2

1 − (r2
h + r2

∗)

r2
∗ − r2

h

+Lcosh−1
2r2

2 − (r2
h + r2

∗)

r2
∗ − r2

h

 ,
(15)

r∗ < r1 < r2 ϕ(r1) < ϕ0 < ϕ(r2)in which we require that  and .

2(ϕ−ϕ0)

Note  that  Eq.  (14)  determines  the  configurations  of
bulk geodesics in the BTZ black hole. Similar to the AdS
case, for a given angular size  of the subsystem A

r = rc

r∗

r∗
rc

π/25

located at the radial cutoff position , Eq. (14) fixes a
corresponding  turning  point  position .  Subsequently,
the bulk growing minimal curves can be drawn by iterat-
ing  this  process  during  which  different  positions  are
obtained from different starting positions  of the previ-
ous  step.  Let  us  consider  the  surface  growth  from  ten
boundary subregions with equal sizes, where each subre-
gion  expands  at  an  angle  of ,  and  also  select  the
boundaries  of  the  next  layers  of  minimal  surfaces  to  be
the  centers  of  the  previous  layers.  As  shown  in Fig.  6,
owing to  the  existence  of  black  hole  horizon,  the  grow-
ing minimal curves (together with the outer bulk minimal
curve of the subsystem A) can surround the horizon after
finite growing steps [32]1).

r→∞

r = rc

r0 = rc = 20

rc = 5

Note that the asymptotic boundary of the AdS space-
time is located at . However, this will not affect the
bulk reconstruction from the surface growth. Because the
surface  growth  process  corresponds  to  the  holographic
renormalization group flow, or the MERA of the corres-
ponding  tensor  network  [23],  the  bulk  minimal  surfaces
can  grow  from  any  finite  cutoff  surfaces . For  ex-
ample,  we  can  select  the  cutoff  surface  to  be  located  at

 and also  consider  ten  homogeneous  subre-
gions  (Fig.  7).  By comparing Fig.  7 with Fig.  6, we ob-
serve  that  after  very  few  steps  of  surface  growing,  the
minimal surfaces in Fig. 7 will reach the region .

rc = 5

As  a  final  example,  we  consider  the  surface  growth
from  ten  inhomogeneous  subsystems  at  a  cutoff  surface

 (Fig.  8).  Again,  from  the  second  layer  on,  the
boundary  points  of  some  of  the  geodesics  cannot  end  at

 

ϕ = π/25
r0 = 5 L = 1

rh = 0.5

Fig.  6.    (color  online)  Surface  growth  from  ten  boundary
subregions with equal size, where each subsystem expands at
an  angle ,  and the  conformal  boundary is  selected  as

,  the  AdS  curvature  radius  is ,  and  the  black  hole
horizon radius is ; the growing steps are 360.
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γA = γĀ +2πrh Ā

γA

1) There also exists a critical condition: , (where  is the complement of A), beyond which the growing minimal curves will no longer surround the
black hole horizon. In such a case, the bulk geodesic of A becomes two disconnected parts, one of which just shrinks onto the horizon. This is called the entanglement
plateaux phenomenon. Besides, the same criterion is valid for both homogeneous and inhomogeneous subregions when considering the surface growth, since the cri-
terion is determined only by the length of the outer bulk minimal curve, i.e. .
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the center of the previous layers; instead, we must select
the  maximal  one  connecting  the  adjacent  two  geodesics
in the previous layer. In addition, Fig. 8 shows that as the
geodesics grow deeper into the BTZ black hole,  the sur-
face growth configuration becomes more homogeneous. 

V.  CONCLUSIONS AND DISCUSSIONS

3

TT̄

In  this  study,  we  further  investigate  the  surface
growth approach for bulk reconstruction by directly ana-
lyzing the growth of bulk minimal surfaces (geodesics) in
asymptotically  AdS  spacetime1). We  show  using  vari-
ous cases  that  the  spatial  region  in  the  outer  entangle-
ment  wedge  can  be  constructed  from  the  growth  of  the
bulk minimal surfaces layer by layer, which provides fur-
ther support for the surface growth approach and presents
a  clear  picture  of  the  boundary  to  bulk  propagation  and
subregion to subregion duality in the gauge/gravity dual-
ity. In addition, in the surface growth scheme, each previ-
ous  layer  of  growing  minimal  surfaces  acts  as  the  new
boundary for the next layer. This corresponds to the holo-
graphic  Wilsonian  renormalization  group  flow,  in  which
the  effective  field  theory  can  be  located  at  any  radial
cutoff surface from UV to IR regions [33, 34]. Moreover,
the  surface  growth  process  corresponds  to  the  extended
OSED tensor network, and it is also shown to be closely
related to the entanglement of purification and bit threads
description  for  bulk  reconstruction  [35, 36].  The  surface
growth approach provides a concrete and intuitive realiz-
ation of the subregion duality and an efficient method for
reconstructing bulk geometry and matter fields. Many in-
teresting  problems  can  be  explored  with  the  surface
growth approach such as studying its relation with the 
deformation  in  the  dual  CFT [37, 38] and  the  perturbat-
ive corrections during the surface growth [39]. 
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1) The surface growth approach should also be valid for higher dimensional AdS spacetimes. For example, when the boundary subsystems are strip-shaped, the sur-
face growth picture can be easily generalized into higher dimensional AdS spacetime. Due to the translational invariant property of the strip-shaped region, the shape of
its bulk minimal surface is determined by its cross section, which is similar to the AdS  case. But for higher dimensional spherical subsystems, the details of the surface
growth become more complicated. Besides, the construction of the corresponding higher dimensional tensor network is less obvious than in the AdS  case. We will fur-
ther investigate the surface growth scheme in higher dimensional AdS spacetime in future works.
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