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Abstract: The kernel ridge regression (KRR) method with a Gaussian kernel is used to improve the description of
the nuclear charge radius by several phenomenological formulae. The widely used A/3, N'/3 and Z!/3 formulae,
and their improved versions including isospin dependence, are adopted as examples. The parameters in these six for-
mulae are refitted using the Levenberg—Marquardt method, which give better results than the previous versions. The
radius for each nucleus is predicted with the KRR network, which is trained with the deviations between experiment-
al and calculated nuclear charge radii. For each formula, the resultant root-mean-square deviations of 884 nuclei with
proton number Z > 8 and neutron number N > 8 can be reduced to about 0.017 fm after considering the modifica-
tion by the KRR method. The extrapolation ability of the KRR method for the neutron-rich region is examined care-
fully and compared with the radial basis function method. It is found that the improved nuclear charge radius formu-
lae using the KRR method can avoid the risk of overfitting, and have a good extrapolation ability. The influence of
the ridge penalty term on the extrapolation ability of the KRR method is also discussed. Finally, the nuclear charge

radii of several recently observed K and Ca isotopes are analyzed.
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I. INTRODUCTION

The nuclear charge radius, which can reflect the nuc-
lear charge density distribution and the Coulomb poten-
tial, is one of the most fundamental properties of the
atomic nucleus. It depends sensitively on the properties of
nuclear force and plays a key role in investigating nucle-
ar structure such as shape coexistence and shape trans-
ition [1, 2], shell evolution [3—5], and the nuclear volume
properties connected with exotic phenomena such as skin
and halo [6-8], etc. Accurate nuclear charge radii are also
needed in many theoretical studies, such as understand-
ing the origin of elements in the universe [9, 10].

Experimentally, considerable efforts have been de-
voted to the measurement of nuclear charge radii. By us-
ing several techniques [11, 12], e.g., muonic atom x-ray
spectra, electron elastic scattering experiments, and iso-
tope shifts, more than 900 nuclear charge radii have been
provided by experiments [13]. Very recently, the observa-
tion of the charge radii of several very exotic nuclei has
aroused people's attention [14—17], providing a stringent
test for various nuclear models.

From theoretical aspects, various methods have been

developed to calculate the nuclear charge radii, e.g., phe-
nomenological formulae [18—25], macroscopic — micro-
scopic models [26—29], relativistic [30—37] and non-re-
lativistic [38—40] mean-field models, local-relation-based
models [41-46], and ab initio no-core shell model [47].
All of these models can provide global quantitative de-
scriptions for the nuclear charge radii in a wide region of
the nuclear chart. However, except for local-relation-
based models, the root-mean-square (rms) deviations are
larger than 0.02 fm for all of these methods, which need
further improvement.

In recent years, machine learning (ML) has been em-
ployed to further improve the accuracy of nuclear models,
due to its powerful and convenient inference abilities.
Various ML approaches have been adopted to improve
the description of the nuclear charge radii, e.g., the feed-
forward neural network [48, 49], the Bayesian neural net-
work approach [50-53], etc. By training the ML network
with the deviations between experimental and calculated
charge radii, ML approaches can reduce the correspond-
ing rms deviations significantly to about 0.02 fm.

In this paper, the kernel ridge regression (KRR) meth-
od with a Gaussian kernel, which is one of the most pop-
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ular ML approaches, is used to improve the description of
the nuclear charge radius by taking six phenomenologic-
al formulae as examples. Least-square fitting based on the
Levenberg—Marquardt (LM) method [54] is applied in or-
der to obtain the new parameters in these formulae, and
then the KRR method is adopted to train the charge radi-
us residuals. The two hyperparameters (o, 1) in the KRR
method are determined by leave-one-out cross-validation.
The performance and reliability of the extrapolated pre-
dictions of the KRR method are also analyzed in detail.
The comparison with the radial basis function (RBF)
method, which has been widely used to predict the nucle-
ar mass and f-decay half-lives, etc. [55-61], is also dis-
cussed. Note that the KRR method has already provided
successful descriptions for nuclear mass predictions [62,
63] and also has been used to build nuclear energy dens-
ity functionals [64].

This paper is organized as follows. A brief introduc-
tion of the phenomenological nuclear charge radius for-
mulae and the KRR method is presented in Sec. II. The
results obtained by the KRR method and the extrapola-
tion power comparison to the RBF method are given in
Sec. III. A summary of this work is given in Sec. IV.

II. THEORETICAL FRAMEWORK

Considering the nuclear saturation property, the radi-
us of nuclear charge distribution is usually described by
the A'/3 law [18]

Ro=rA'"", )

where A is the mass number and R, = 5/3(+*)!/2, with
(r*)!/? the rms nuclear charge radius. In order to obtain
the global description of the charge radius, the parameter
ra 1is fitted to the experimental data [13]. However, it is
found that the A'/? formula is not valid for all nuclei
since ry is not a constant but decreases systematically
with increasing mass number. Investigations show that
ra ~ 1.30 fm for light nuclei and 1.20 fm for heavy nuclei.
In Ref. [19], a Z'/3 law was proposed

RC = rZZl/3 ’ (2)

which is much better than the conventional A'/3 formula.
Investigations show that the parameter r, remains almost
constant, i.e., rz ~ 1.65 fm, for nuclei with A >40. Fur-
thermore, the N-dependence of nuclear charge radii was
discussed [65] and an N'/? formula was proposed [25],
which can be written as

R.=ryN'. 3)

To have a better description of the nuclear charge

radii, improved A'/3, N'/3 and Z'/? formulae that include
the isospin dependence have also been proposed [20, 22,
25], which can be written as

N-Z

Rcer(l—b—A )A”3, 4)
N-Z

Rcer(l—b—N )N1/3, (5)
5 5 N-N*\_.5

R.=ry 1+§ﬁ 1+bT VA , (6)

where f is the quadrupole deformation, which in the
present work is taken from Ref. [66], and N* is the neut-
ron number for the nuclei along the fS-stability line, which
can be extracted from the nuclear mass formula [18] and
can be written as Z = A/(1.98 +0.0155A%/3). r4, ry, rz and
b are constants, which are obtained by fitting the experi-
mental data. Note that the influence of deformation on
nuclear charge radius was studied systematically in Ref.
[67].

KRR is a popular ML method with the extension of
ridge regression on the nonlinearity [68, 69]. It uses a
kernel machine to map data into higher dimensional
space and then uses a regression method to treat the data.
The KRR function S (x;) can be written as

S(x)) = ZK(xj,xi)wi, (7
P

where m is the number of training data, x; denotes the
location of training data, w; are weights to be determined,
and K(x;,x;) is the kernel function, which characterizes
the similarity between the data. There are several kinds of
kernels that can be used in the KRR method, e.g., linear
kernel, polynomial kernel, Gaussian kernel, etc. In the
present work, the Gaussian kernel is adopted,
K(x; x4):exp(_w) (8)
Jo 202 ’
where o (o> 0) is a hyperparameter defining the range
that the kernel affects. By minimizing the following loss
function

L) = ) IS &)=yl + Al , ©)
i=1

the weights w; can be determined, where w = (w1, ..., Wp,).
The hyperparameter 4 (1 > 0) determines the regulariza-
tion strength and is adopted to reduce the risk of overfit-
ting. Minimizing Eq. (9) leads to
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w=(K+A)y, (10)

where I is the identity matrix and K is the kernel matrix
with elements K;; = K(x;,x;).

In the present work, the KRR method is applied for
nuclear charge radius predictions. Therefore, the coordin-
ate x; of each nucleus is naturally chosen as x; = (N;,Z).
The Euclidean norm

r=l-xll = @-ZP + =Ny (1)
is defined to be the distance between two nuclei.

1. RESULTS AND DISCUSSION

In this work, 884 experimental data [13] with proton
number Z > 8 and neutron number N > 8 have been adop-
ted for least-square fitting with the Levenberg—Marquardt
method to obtain new parameters in these six phenomen-
ological nuclear charge radius formulae. The obtained
parameters and the corresponding rms deviations are
shown in Table 1. In addition, old parameters and the cor-
responding rms deviations obtained by previous investig-
ations are also shown for comparison. These old paramet-
ers are fitted with the experimental data in Ref. [70] ex-
cept the two N'/3 formulae. It can be seen that the rms
deviations are reduced a little when these new paramet-
ers are adopted. By considering the isospin dependence,
the descriptions are improved a lot, especially for the
N'3 formula. It seems worth noting that the Z'/3 for-
mula with only one parameter achieves an accuracy of
charge radii comparable to those of the two-parameter
A'73 and N'73 formulae with isospin dependence. Among
these six phenomenological formulae, the Z'/* formula
with isospin dependence can reproduce the data best, with
a rms deviation of 0.049 fm. Note that the parameters
have also been refitted in Ref. [25], with results quite
similar to the present work except those in Eq. (6). In ad-
dition, the parameters are fitted by the rms charge radius
(r*»!/% in Ref. [25], which has a factor of +/5/3 relative to
the parameters in Table 1, including these two N'/3 for-

mulae.

The KRR function (7) is trained to reconstruct the dif-
ferences between experimental and calculated nuclear
charge radius AR(N,Z) = R®*P(N,Z)— R (N,Z). Once the
weights w; are obtained, the reconstructed function
S(N,Z) can be obtained for every nucleus. Therefore, the
predicted charge radius for a nucleus with neutron num-
ber N and proton number Z is given by RKRR =
RN, Z)+S (N, Z).

In the present work, leave-one-out cross-validation is
adopted to determine the hyperparameters (o, 1). In Fig.
1, the leave-one-out cross-validation rms deviations are
presented as a function of the hyperparameter ¢ with se-
lected penalties A ranging from 1073 to 10'. The calcula-
tions with A =0 are also shown, which corresponds to the
RBF results. For comparison, the corresponding rms de-
viation of each formula is also shown with horizontal
black dashed lines. It can be seen that for small ¢ values,
the rms deviations obtained by the KRR method are close
to those obtained by the phenomenological formulae, re-
gardless of the magnitudes of 4, so the corresponding re-
constructed functions S (N,Z) are quite small. The role of
the penalty term can be clearly seen with ¢ increasing.
The penalty /4 has a great influence on the selection of the
hyperparameter 0. When the penalty term is neglected
(1=0), the rms deviations are minimized at
o =0.83, 0.84, 0.84, 0.82, 0.81, 0.79 for Egs. (1) to (6),
respectively, and they grow rapidly with increasing ¢. In
addition, the rms deviations obtained with A =0 are sys-
tematically larger than those with the penalty term A # 0.
It can be seen that when A # 0, the rms deviations do not
grow very fast for a larger o, in contrary to the case 1=0,
which demonstrates clearly that the penalty term can ef-
fectively prevent the results from overfitting.

It can be seen in Fig. 1 that those minima at 1 =0.001,
0.01, and 0.1 are quite close to each other. This indicates
that the results may not be that sensitive to the hyperpara-
meters in this region. The optimized hyperparameters o
and A from the KRR method in each formula are shown in
Table 2. The obtained rms deviations are smaller than
0.017 fm, except for the Z!/3 formula with isospin de-
pendence, which has a rms deviation with 0.0197 fm. It is

Table 1. Parameters and the root-mean-square deviations (Ays ) for the six phenomenological nuclear charge radius formulae. Exper-
imental data are taken from [13], with proton number Z > 8 and neutron number N > 8.
Formula Parameters Arms/fim New parameters Arms/fm
R, =r A3 ra=1.223 fm [18] 0.094 ra=1.227 fm 0.093
R, =ryN'/3 ry=1.472 fm [25] 0.151 ry=1.470 fm 0.151
R, =ryZ'3 rz=1.631 fm [19] 0.076 rz=1.639 fm 0.072
R.=ra[1-b(N -2Z)/A]A3 ra=1.269 fm; b = 0.252 [20] 0.068 ra=1.282 fm; b = 0.342 0.065
Re=ry[1-b(N—Z)/NIN'/3 ry=1.629 fim; b = 0.451 [25] 0.063 ry=1.623 fim; b = 0.438 0.063
Re = rz(1+58%/8m)[1 + b(N — N*)/Z] Z\/3 rz=1.631 fm; b = 0.062 [22] 0.057 rz=1.634 fm; b = 0.220 0.049
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Fig. 1. (color online) The rms deviations as a function of the hyperparameter o with several selected A values. For comparison, the

corresponding rms deviation of each formula is also shown with horizontal black dashed lines.

Table 2.

Adopted hyperparameters ¢ and 4 in the KRR method for each formula obtained through the leave-one-out cross-validation.

The corresponding rms deviations between the experimental data and the KRR method are shown as AKRR The ASR% and ASRI3-04 de-

Tms ms

note the rms deviations of the training and test sets when the nuclear charge radius in Ref. [70] is chosen as the training set (denoted as
"CR04"), and the "new" nuclei appearing in Ref. [13] are chosen as the test set (denoted as "CR13-04").

Formula o AKRR /fm ASRO /fm ASRI3-04 /fm
R, = ryAl3 3.01 0.01 0.0166 0.0125 0.0288
R.=ryN'/3 3.86 0.001 0.0165 0.0128 0.0369
R, =rzZ'3 293 0.01 0.0168 0.0123 0.0268
R.=ra[1=b(N-2)/A]A'/3 2.88 0.01 0.0165 0.0122 0.0280
R.=rn[1=b(N-2Z)/N]N'/3 2.88 0.01 0.0166 0.0122 0.0280
R. = rz(1+58/87%) [1+b(N — N*)/Z1Z'/? 2.46 0.06 0.0197 0.0146 0.0301

quite interesting that this formula can reproduce the data
best without the KRR method, but after the KRR modi-
fication, the results are the worst of these six formulae.
This may be caused by the deformation effect, since the
deformation is considered only in this formula. Maybe a
better deformation parameter set can further improve the
result. It can be seen that the KRR method can enorm-
ously improve the description of the nuclear charge radi-
us by these phenomenological formulae, even when the
original rms deviation is as large as 0.151 fm in the N'/3
formula. In addition, the predictive power of the KRR
method was tested by separating the nuclear charge data
into two subsets, i.e., the 782 nuclei in the nuclear charge

table of 2004 (denoted as CR04) [70], and the 102 "new"
nuclei (denoted as CR13-04) appearing in Ref. [13]. It
can be seen that nearly all the rms deviations for the test
sets are smaller than 0.03 fm, except for the N'/3 formula.

When the hyperparameters (o, 1) of each formula are
determined, the reconstructed function S(N,Z) for every
nucleus can be calculated by KRR method, which are
shown in the middle panels of Fig. 2. For comparison, the
differences AR = R*P — Rl between experimental and the
calculated values by A3, N'/3 and Z!'/3 formulae are
shown in the upper panels of Fig. 2. The magic numbers
are shown by vertical and horizontal dotted lines. In the
present work, the number of possible existing nuclei with
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Fig. 2.

(color online) Differences AR = R®*P — R°?! between experimental and the calculated values using A3, N1/3 and z!/3 formulae

(upper panels), the KRR reconstructed function S(N,Z) (middle panels), and the differences AR’ = R*P — (R° + SKRR) between experi-
mental and the predictions of these three formulae with the KRR corrections (lower pannels). The magic numbers are shown by vertic-

al and horizontal dotted lines. The possible existing nuclei are taken from [71].

Z>8 and N > 8 is taken as 7275 according to Ref. [71].
It can be seen clearly that for each formula, the recon-
structed function S(N,Z) has a similar pattern to AR,
which indicates that the charge radius residuals can be
learned well by S(N,Z). After considering the KRR cor-
rections, the predicted charge radius by these three for-
mulae are in good agreement with the data, which are
shown at the lower pannels of Fig. 2. The corresponding
rms deviations are reduced to less than 0.017 fm (see
Table 2).

Figure 3 is the same as Fig. 2, but for the three formu-
lae considering the isospin dependence. It can be seen
that, after considering the isospin dependence, the de-
scriptions of the experimental data are improved a lot, es-
pecially for the N'/3 formula [see Fig. 3(b)]. After con-
sidering the corrections of the reconstructed function, the
predicted charge radius (the lower panels of Fig. 3) are
quite similar to those corresponding results in Fig. 2. It
can be seen in the middle panels of Figs. 2 and 3 that ex-
cept for those nuclei close to the nuclei with known
charge radius, the KRR reconstructed function S(N,Z)
becomes to zero for most nuclei with unknown charge ra-
dius. This is due to the Gaussian kernel adopted in the
present calculation. It means that for a given nucleus,
very little information can be learned from the nuclei far

away from it. Therefore, for the very neutron-rich nuclei,
the reconstructed function S(V,Z) vanishes since no data
can be learned from the neighboring nuclei.

To study the predictive power of the KRR method for
the neutron-rich nuclei, the 884 nuclei with known charge
radius are redivided into a training set and test sets as fol-
lows. For each isotopic chain with more than nine nuclei,
the six most neutron-rich nuclei are removed from the
training set, and then they are classified into six test sets
according to the distance to the last nucleus in the train-
ing set. Test set 1 has the shortest extrapolation distance
and test set 6 has the longest. For comparison, the pre-
dictive power of the RBF method with the Gaussian ker-
nel is also studied. Note that the hyperparameters ob-
tained by the leave-one-out cross-validation remain the
same in the following studies of KRR and RBF extrapola-
tions.

In Figs. 4(a) and (b), the rms deviations of the calcu-
lated nuclear charge radius after taking into account the
KRR and RBF corrections are shown as a function of the
extrapolation distance for six test sets. It can be seen that
the rms deviations of these six formulae are increasing
with extrapolation distance for both KRR and RBF meth-
ods. In the KRR method [see Fig. 4(a)], the extrapolation
power of Z!/3 formula is the worst, while after consider-
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(color online) Comparison of the extrapolation power of the KRR and the RBF methods for six test sets with different extra-

polation distances. The upper panels show the extrapolated rms deviations of the KRR and RBF methods. The lower panels show the
rms deviations scaled to the corresponding rms deviations for the phenomenological charge radius formulae without KRR or RBF cor-

rections.

ing the isospoin dependence, it becomes the best. In the
RBF method [see Fig. 4(b)], the extrapolation power of
N'/3 formula is the worst. After considering the isospoin
dependence, the results become much better. The Z'/3
formula with isospin dependence is also the best one
among these six formulae. Note that the extrapolation

power of A'/3 formula with isospin dependence becomes
worse than the traditional A'/3 formula with larger extra-
polation distance both in KRR and RBF methods. To see
it more clearly, in Figs. 4(c) and (d), the rms deviations
are scaled to the corresponding rms deviations of the phe-
nomenological charge radius formulae without KRR or
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(color online) Comparison between experimental and calculated root-mean-square nuclear charge radii without (upper panels)

and with (lower panels) KRR corrections for Ca and K isotopes. The experimental data taken from Ref. [13] (denoted as "CR2013") are
shown by black solid circles, and the new data taken from Refs. [14, 15, 17] (denoted as "New") are shown by olive open circles.

RBF corrections. It can be seen in Fig. 4(c) that the scaled
rms deviations increase approximately linearly and there
is no overfitting in the KRR method for all of these six
formulae. As for the RBF method, the scaled rms devi-
ations increase sharply from the first to the second extra-
polation step, and the overfitting appears in the fifth or
the sixth step of extrapolation. Note that the overfitting is
not that serious due to the Gaussian kernel adopted in the
present RBF calculation. If the linear kernel is adopted,

the overfitting will be much more obvious, which has
been shown in the mass prediction in Ref. [62]. Thus, it
can be seen clearly that compared with the RBF method,
the KRR method has a better extrapolation power for any
phenomenological formula. This is because the ridge pen-
alty term A in the KRR method can automatically identi-
fy the limit of the extrapolation distance.

As shown in Fig. 1 before, the rms deviations are not
sensitive to the hyperparameter 4 when A is chosen as 0.1,
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0.01 and 0.001. Therefore, it is important to know the in-
fluence of the ridge penalty term A on the extrapolation
power. Fig. 5 shows the extrapolated rms deviation of the
KRR method with 2 =0.1, 0.01 and 0.001. Note that the
hyperparameter ¢ is chosen as the optimum value for
each A, which can obtain the smallest rms deviation. It
can be seen that for most cases, a smaller 4 gives an obvi-
ously worse extrapolation power, especially for
1=0.001, except for the Z'/? formula [Fig. 5(c)]. For
A1=0.01 and 0.1, the extrapolation power is quite similar
for these six formulae. Therefore, one should be very
careful to choose the hyperparameters if they are not
sensitive to the results. Note that when 1=0.001 is adop-
ted in the N'/3 formula, the extrapolation power is not
that bad. Therefore, the hyperparameters adopted in the
present work (see Table 2) are quite reasonable.

Very recently, the charge radii of several very exotic
K and Ca isotopes have been observed [14, 15, 17].
Figure 6 shows the comparison between the experiment-
al and calculated root-mean-square nuclear charge radii
without (upper panels) and with (lower panels) KRR cor-
rections for Ca and K isotopes. It can be seen that the cal-
culated results by these six formulae without KRR cor-
rections deviate a lot from the experimental data. After
the KRR corrections being considered, all these six for-
mulae can reproduce the data in "CR2013" quite well.
However, for the "new" data observed by later experi-
ments, the calculations become quite different. For the Ca
isotopes [Fig. 6(c)], the N'/3 and A'? formulae repro-
duce the data not very well, while other formulae repro-
duce the data at the same level. For the K isotopes [Fig.
6(d)], all the formulae can reproduce the data for the pro-
ton-rich side, while the A!/3 formula and the Z'/3 for-
mula with isospin dependence can reproduce the data bet-
ter for the neutron-rich side. It is also interesting to see
that only the Z'/3 formulae with isospin dependence can
reproduce the slight staggering in the K isotopes. This
may be due to the deformation effect considered in this
formula. Therefore, it can be seen that although KRR
method is a powerful machine learning method, a micro-

scopic model which can provide a better description of
the nuclear charge radius is still needed. Note that a
Bayesian neural network has also been applied to study
the nuclear charge radii for the Ca and K isotopes re-
cently [53].

IV. SUMMARY

The kernel ridge regression (KRR) method was adop-
ted to improve the description of the nuclear charge radi-
us by several phenomenological formulae. The widely
used A3, N'3 and 7'/ formulae, and their improved
versions that include the isospin dependence, were adop-
ted as examples. First, 884 experimental data with proton
number Z > 8 and neutron number N > 8 were adopted
for the least-square fitting with Levenberg —Marquardt
method to obtain new parameters in these six phenomen-
ological nuclear charge radius formulae. The root-mean-
square deviations were reduced when these new paramet-
ers were adopted. Then the radius for each nucleus was
predicted with the KRR network, which was trained with
the deviations between experimental and calculated nuc-
lear charge radii. For each formula, the resultant root-
mean-square deviations was reduced to about 0.017 fm
after considering the modification of the KRR method.
The extrapolation ability of the KRR method for the neut-
ron-rich region was examined carefully and compared
with the radial basis function method. It was found that,
compared with the RBF method, the improved nuclear
charge radius formulae from the KRR method can avoid
the risk of overfitting, and have a good extrapolation abil-
ity. The influence of the ridge penalty term on the extra-
polation ability of the KRR method was analyzed. The
charge radii of several recently observed K and Ca iso-
topes were also analyzed.
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