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Fixed point behavior of cumulants in the three-dimensional
Ising universality class
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Abstract: High-order cumulants and factorial cumulants of conserved charges are suggested for the study of the
critical dynamics in heavy-ion collision experiments. In this paper, using the parametric representation of the three-
dimensional Ising model which is believed to belong to the same universality class as quantum chromo-dynamics,

the temperature dependence of the second- to fourth-order (factorial) cumulants of the order parameter is studied. It

is found that the values of the normalized cumulants are independent of the external magnetic field at the critical

temperature, which results in a fixed point in the temperature dependence of the normalized cumulants. In finite-size

systems simulated using the Monte Carlo method, this fixed point behavior still exists at temperatures near the critic-

al. This fixed point behavior has also appeared in the temperature dependence of normalized factorial cumulants

from at least the fourth order. With a mapping from the Ising model to QCD, the fixed point behavior is also found

in the energy dependence of the normalized cumulants (or fourth-order factorial cumulants) along different freeze-

out curves.
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I. INTRODUCTION

One of the main goals of current relativistic heavy-ion
collision experiments is to make clear the phase diagram
of quantum chromo-dynamics (QCD) [1]. At vanishing
baryon chemical potential, the transition from hadronic
matter to quark —gluon plasma has been proved to be a
crossover by lattice QCD [2]. Due to the fermion sign
problem, lattice QCD can not calculate the cases at large
baryon chemical potential. Some effective theories pre-
dict that the QCD system undergoes a first-order phase
transition at high baryon density and low temperature
[3— 8]. From first-order phase transition to crossover,
there is a critical point, which is a unique feature of the
QCD phase diagram. Large fluctuations and correlations
of conserved charges are expected at this critical point.

The high-order cumulants of conserved charges, re-
flecting their fluctuations, have been suggested for use in
the search for the critical point [9—12]. Results from ef-
fective theories of QCD suggest that the non-monotonic
behavior of the high-order cumulants is related to the crit-
ical point [13—15]. Particularly, sign change of the fourth-
order net-proton cumulant has been used to search for the
critical point in experiments [16, 17], while in Refs. [18,
19], the authors argued that the sign change is not suffi-
cient to prove the presence of the critical point. Other

work pointed out that the peak structure remains a solid
feature and can be used as a clean signature of the critic-
al point [20, 21].

Recently, the factorial cumulants, which are also
known as the integrated multi-particle correlations, have
received a lot of attention [22—30]. Multi-proton correla-
tions have been found in the STAR data, at least at the
lower energies [26, 29, 31]. It has been shown that the
signs of the second- to fourth-order factorial cumulants
are a useful tool to exclude regions in the QCD phase dia-
gram close to the critical point using parametric repres-
entation of the Ising model [26]. The causes of sign
change of factorial cumulants far away from the critical
point compared with the cumulants have been analyzed in
our recent work [32]. In the vicinity of the critical point,
the sign and temperature dependence of factorial cumu-
lants is almost the same as that of the cumulants. It has
also been argued in Ref. [24] that the cumulants and
factorial cumulants can not be distinguished in the vicin-
ity of the critical point in a model of critical fluctuations.

Aside from non-monotonic behavior or sign changes
of the cumulants and factorial cumulants, other behavior
of the high-order cumulants has also been suggested for
use in searching for the critical point, such as finite-size
scaling [33, 34]. Finite-size scaling implies a fixed point.
Usually, the fixed point is obtained from the scale trans-
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formation of the re-normalization group, resulting in the
independence of rescaled thermodynamics on the system
sizes at the critical point [35—37]. This feature has also
been used to search for the critical point [38—40].

The QCD critical point, if it exists, is expected to be-
long to the same universality class as the three-dimen-
sional Ising model [41-44]. Critical behavior of the cor-
responding thermodynamics in different systems that be-
long to the same universality class is the same as that
which is supervised by the same critical exponents. Re-
cently, many studies have been carried out to map the res-
ults of the three-dimensional Ising model to that of QCD
[21, 45]. Usually, a linear ansatz is suggested between the
QCD variables, temperature and net-baryon chemical po-
tential, and the Ising variables, temperature and external
magnetic field [46—49]. Cumulants of net-baryon number,
which are the derivatives of the QCD free energy density
with respect to net-baryon chemical potential, can be re-
garded as the combination of the derivatives with respect
to temperature and magnetic field in the three-dimension-
al Ising model in the vicinity of the critical point. Since
the critical exponent of external magnetic field is larger
than that of temperature [50], the critical behavior of net-
baryon number fluctuations is expected to be mainly con-
trolled by the derivatives with respect to the external
magnetic field, i.e., the fluctuations of the order paramet-
er in the three-dimensional Ising model.

In this paper, using parametric representation and
Monte Carlo simulations of the three-dimensional Ising
model, we study and discuss the other kind of fixed point
behavior in the temperature dependence of the normal-
ized cumulants and factorial cumulants. Assuming the
system formed in the heavy-ion collision experiments is
in equilibrium, with a mapping from the Ising model to
QCD, the fixed point behavior is also studied and dis-
cussed in the energy dependence of the normalized cumu-
lants and factorial cumulants along different freeze-out
curves, which may be helpful to locate the QCD critical
point.

The paper is organized as follows. In section II, the
three-dimensional Ising model and its parametric repres-
entation are introduced; parametric expressions of
second- to fourth-order cumulants and factorial cumu-
lants of the order parameter are derived; and, at the critic-
al temperature, the independence on the external magnet-
ic fields of the normalized cumulants are deduced. In sec-
tion III, the temperature dependence of second- to fourth-
order cumulants and factorial cumulants at different dis-
tances from the phase boundary and the fixed point beha-
vior of the corresponding normalized cumulants are stud-
ied and discussed in the parametric representation. In sec-
tion 1V, the fixed point behavior of normalized second- to
fourth-order cumulants and factorial cumulants is dis-
cussed in finite-size systems simulated by the Monte
Carlo method. In section V, a mapping from the Ising

model to QCD is introduced; and the fixed point behavi-
or of the energy dependence of the normalized (factorial)
cumulants is studied and discussed. Finally, conclusions
and summary are given in section VI.

II. THE SECOND-TO FOURTH-ORDER CUMU-
LANTS AND FACTORIAL CUMULANTS

The three-dimensional Ising model is defined as fol-
lows,

(}‘{Z—JZS,‘S]'—HZSI‘, (1)

(@) i

where H is the Hamiltonian, s; is spin at site i on a
simple cubic lattice which can take only two values +1. J
is the interaction energy between nearest-neighbor spins
(i, j). H represents the external magnetic field. The mag-
netization M (the order parameter) is

1 {s)
M= V(Z&') =3 2

s=Y,s; and V =L¢ denotes the total spin and volume of
the lattice, respectively, where d =3 is the dimension of
the lattice and L is the number of lattice points of each
direction on the cubic lattice. The magnetization is de-
pendent on the external magnetic field H and the reduced
temperature ¢ = (T —T.)/T., where T, is the critical tem-
perature. At ¢ > 0 is the crossover side. ¢ <0 is the first-
order phase transition side.

High-order cumulants of the order parameter can be
obtained from the derivatives of magnetization with re-
spect to H at fixed ¢,

0"1M)

mmm=@m4

)

t

In particular, the second- to fourth-order cumulants are as
follows,

1
Ky ==((65)%),

\%
1
m=v«&f%
1
M:V«mgﬂ—uw@%%, 4)

where s = s —(s).

Turning to the parametric representation of the three-
dimensional Ising model, magnetization M and reduced
temperature ¢ can be parameterized by two variables R
and 6 [51, 52],
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M =moRP0, t=R(-6%). (5)
The equation of state of the Ising model can be given by
the parametric representation in terms of R and 6 as

H = hoR® h(0). (6)

Where mg in Eq. (5) and Ay in Eq. (6) are normalization
constants. These are fixed by imposing the normalization
conditions M(t=-1,H=4+0)=1 and Mt=0,H=1)=1.
B and ¢ are critical exponents of the three-dimensional
Ising universality class with values 0.3267(10) and
4.786(14), respectively [53].

If M, ¢t and h are analytic functions of 6, the analytic
properties of the equation of state are satisfied [54]. The
analytic expression of the high-order cumulants can be
derived in the parametric representation. What is more,
the function 4(6) is an odd function of 6 because the mag-
netization is an odd function of the external magnetic
field M(—H) = —M(H).

One simple function of A(6) obeying all the require-
ments is as follows,

h(0) = (3 - 26%). (7

This is a mean-field approximation of representation
for the equation of state of the three-dimensional Ising
model to order &2, where & is a parameter related to the
number of dimensions of space. e-expansion is one of the
techniques to explore critical phenomena. This is enough
for our purpose, although the parametric representation is
also known up to order & [52]. There is an excellent
agreement between the scaling magnetization data from
Monte Carlo simulation and the equation of state in the
parametric representation [55].

When taking the approximate values of the critical
exponents S=1/3 and 6§ =5 (accurate enough for our
purpose), the first four order cumulants in the parametric
representation are as follows:

«1(t, H) =myR'36,
myy 1
tLtHy=—"——|
ot H) = R 3)
moy 46(6% +9)
h% R3(67 —3)(267 +3)? ’
mo (268 — 56 + 1056* — 78362 + 81)

t,H)=12"2 @8
e H) B R -3) Q262 +3) ®

k3(t,H) =

The reduced temperature ¢ and external magnetic field
H are functions of R and 6 provided by Eq. (5) and Eq.
(6). At fixed H, R can be represented in terms of 6 by Eq.
(6). As a consequence, cumulants in Eq. (8) just depend

on 6, as does the reduced temperature ¢ in Eq. (5). There
are three kinds of special values of 9, which are 9 = 67
for the peak of «, if the peak exists, § = #™" for the val-
ley of «, if the valley exists, 6 = 1 for the reduced temper-
ature 7 = 0 (the critical temperature) at a positive magnet-
ic field (or 6 = —1 for ¢ = 0 at a negative magnetic field).

The first two cases imply the ratios (the factor of H is
offset in the ratios) of the peak hight to the valley depth
for x4, ks and k¢ are universal and independent of H.
They are approximately —28, —0.1, and —6, respectively,
for H> 016, 32].

At a positive magnetic field, temperature dependence
of even-order cumulants shows a positive peak in the vi-
cinity of the critical temperature, while it is a negative
valley for the odd-order cumulants [32]. Normalizing the
even-order cumulants by their peak hight «%,n=
1,2,3..., and the odd-order cumulants by the absolute
value of the valley depth |K‘2‘;lif: \,n=1,2,3..., then from the
last case, one can get a fixed point behavior of temperat-
ure dependence of normalized cumulants «}°™ for differ-
ent values of H at 1 =0.

Especially, one can get the second- to fourth-order
normalized cumulants,

KIQ\Iorm :Kz/Krznax’

K5O =k /K5,

KGO =k /KX )

At any positive magnetic field, values of second- to
fourth-order normalized cumulants at ¢ = 0 are as follows,

9=1)
Nom, gy = K2O0=D _se
2 ( ) K2(9 — eglaX)
Ko, gy = RO=D 4
: ks@=gmm|
-1
Ko (1 = 0) = =D 49, (10)

Ka(6=67™)

In fact, cumulants can be normalized by their values
at any 6 to get the fixed point behavior at the critical tem-
perature, but among those the most convenient choice
would be normalization by the extreme values which can
be identified easily from measured data.

The second- to fourth-order factorial cumulants can
be expressed by the cumulants as follows [28],

Ca =Kz — k1,
C3 =k3 — 3Ky + 2k,
C4 =K4—6K3+11K2—6K1. (11)

They can also be normalized by their maximum or the
absolute values of their minimum as follows,
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Cglorm =C2 / Ctznax’
Gy =C5/IC3™,

CLo™ =Cy/CJ™. (12)

Because the factorial cumulants mix different orders
of cumulants as shown in Eq. (11), far away from the crit-
ical point the behavior of factorial cumulants is very dif-
ferent from the same-order cumulants [32]. It also ap-
pears that there may be no fixed point behavior in the
temperature dependence of the factorial cumulants at the
critical temperature for different external magnetic fields.
But one should keep in mind that, in the vicinity of the
critical point, cumulants and the same-order factorial cu-
mulants can not be distinguished. The higher the order of
the factorial cumulant, the more dominant the role of the
same-order cumulant in its critical behavior.

III. FIXED POINT BEHAVIOR OF NORMAL-
IZED CUMULANTS AND FACTORIAL
CUMULANTS IN THE PARAMETRIC
REPRESENTATION
As the value of H increases, it moves far away from

the phase boundary. At three different magnetic field val-
ues H=0.05,0.1,0.2, the temperature dependence of

second- to fourth-order cumulants and factorial cumu-
lants are studied in the parametric representation of the
three-dimensional Ising model, as shown in Fig. 1(a)—(f).
The vertical green dashed line shows the critical temper-
ature.

It is clear that, as the value of H decreases, the qualit-
ative temperature dependence of «, does not change, all
showing a peak structure in the vicinity of the critical
temperature. But the peak becomes higher, sharper and
closer to the critical temperature, as shown in Fig. 1(a).
The similar situation occurs for «3 in Fig. 1(b) and «4 in
Fig. 1(c). The smaller the value of H, the closer to the
phase boundary, the more singular the behavior of cumu-
lants.

In the vicinity of the critical temperature, trends of
temperature dependence of factorial cumulants are simil-
ar to the same-order cumulants, as shown in Fig. 1(d)—(f).
When far from the critical temperature, the sign of
factorial cumulants can possibly change, which is consist-
ent with the results in Ref. [32].

The normalized cumulants and factorial cumulants
are shown in Fig. 2. The vertical green dashed line shows
the critical temperature, while the horizontal green
dashed line shows the value of normalized cumulants at
the critical temperature, which are inferred from Eq. (10).

It is clear that for K™, «3°™ and ™ shown in
Fig. 2(a)—(c), a common feature occurs. That is the fixed
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(color online) Temperature dependence of «; (a), k3 (b), x4 (), C2 (d), C3 (e) and C4 (f) at three different values of external

magnetic fields, H=0.05, 0.1 and 0.2, in the parametric representation of the three-dimensional Ising model. The green dashed line

shows the critical temperature.
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(color online) Temperature dependence of K™ (a), k5™ (b), o™ (c), com™ (d), o™ (e) and Co™ (f) at three different

values of external magnetic fields, H =0.05, 0.1 and 0.2, in the parametric representation of the three-dimensional Ising model. The

crossing point of the green dashed lines is the fixed point.

point behavior at the critical temperature. At different
values of H, values of KZN"”“ are the same at the critical
temperature. This is independent of the distance to the
phase boundary. So are the values of ™ and «}°™.
The fixed point is exactly at the crossing point of the two
dashed green lines. That is to say, the values of the nor-
malized cumulants at ¢ are consistent with Eq. (10).

As shown in Fig. 2(c), the valley depths for Kff"rm at
H =0.05,0.1,0.2 are almost the same [16]. One can con-
clude that the ratios of the peak hight to the valley depth
are independent of H. For the fourth-order cumulant, in
some cases, if the peak can not be determined, one can
normalize it by its valley depth. The fixed point behavior
also exists.

All in all, the ratios of the value of even-order cumu-
lants (odd-order cumulants) at critical temperature to its
peak value (valley depth) is independent of the external
magnetic fields. This results in a fixed point behavior in
the temperature dependence of normalized cumulants,
which may be helpful in the search for the critical tem-
perature.

Turning to the normalized factorial cumulants shown
in Fig. 2(d)—(f), it is clear that far from the critical tem-
perature, each order of factorial cumulant has sign
changes with increasing H. That is to say, far from the
phase boundary, there exists a sign difference between
cumulants and the same-order factorial cumulants.

Let us pay attention to the fixed point behavior of the
normalized factorial cumulants. There is no fixed point
behavior in the temperature dependence of CYo™, as
shown in Fig. 2(d), which is in line with the inference
from the relation between factorial cumulants and cumu-
lants in Eq. (11).

For C}°™ in Fig. 2(e), the fixed point behavior is not
so clear. But the fixed point occurs again in C}°™, as
shown in Fig. 2(f). The position of the fixed point is just
at the crossing point of the two green dashed lines, con-
sistent with «}°™. In fact, the higher the order of the cu-
mulants, the more sensitive the cumulants are to the cor-
relation length, the more dominant the role of the cumu-
lants in the critical behavior of the same-order factorial
cumulants. So fixed point behavior occurring in Cyo™
again is not hard to understand.

IV. FIXED POINT BEHAVIOR OF NORMALIZED
CUMULANTS AND FACTORIAL CUMU-
LANTS IN MONTE CARLO SIMULATIONS

Using the Monte Carlo simulation method, the fixed
point behavior is tested in finite-size systems at three dif-
ferent values of external magnetic fields. Because of the
finite-size effects, the temperature dependence curves of
the cumulants will shift to the higher temperature side un-
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til the system size is large enough to sufficiently con-
verge to the thermodynamic limit. The typical size is de-
termined by the saturation of size dependence of an ob-
servable at a given magnetic field [56]. For cumulants up
to the fourth order at three different magnetic field val-
ues H =0.05, 0.07, and 0.1, lattice sizes L =14, 12 and
10 respectively are sufficient to converge to the thermo-
dynamic limit. For each value of H, the simulations are
performed at 5 values of inverse temperature
J/T =0.202, 0.212, 0.222, 0.232 and 0.242 near the critic-
al temperature T./J ~4.51, where the value of interac-
tion energy J is set to 1. The Wolff cluster algorithm is
used with helical boundary conditions [57]. At each pair
of (H,J/T), 48 million independent configurations are
generated and used in a Ferrenberg—Swendsen reweight-
ing analysis to calculate observables at intermediate tem-
perature values [58].

Results of the second- to fourth- order normalized cu-
mulants and factorial cumulants are shown in Fig.
3(a)—(f), respectively. It is clear that the fixed point beha-
vior in temperature dependence of «)°™, k5™ and g}
still exists, as shown in Fig. 3(a)—(c). The crossing point
of the two green dashed lines shows the position of the
fixed point. The corresponding temperature is about one
percent lower than the critical temperature. What is more,
the higher the order of the cumulants, the closer the fixed
point is to the critical temperature. In addition, the values

of the normalized cumulants at fixed points are different
from those in the parametric representation. This can be
caused by the finite-size system, the choice of function
(0 and the different quantitative temperature depend-
ence of «, in Monte Carlo simulation and the parametric
representation.

Comparing the temperature dependence of normal-
ized factorial cumulants shown in Fig. 3(d)— (f) with the
same-order normalized cumulants shown in Fig. 3(a)—(c),
there are no significant differences between them. That is
because the temperatures are close to critical. This result
is consistent with that in Refs. [24, 32], that these two
kinds of cumulants can not be distinguished in the vicin-
ity of the critical point. So it is not hard to understand that
except for CY°™, there is obvious fixed point behavior in
the temperature dependence in C}°™ and CJ°™, as
shown in Fig. 3(e) and (f). The positions of the green
dashed lines are set the same as those in the same-order
normalized cumulants. It is not hard to infer that the tem-
perature of the fixed point in the normalized factorial cu-
mulants is almost the same as that in the normalized cu-
mulants.

All in all, at different external magnetic field values
in finite-size systems of the three-dimensional Ising mod-
el, the temperature dependence of the normalized cumu-
lants or factorial cumulants (at least from the third-order)
form a fixed point just about one percent distant from the

L Monté Carlo ‘
I —H=0.05
r ——H=0.07
[ ——H=0.1

@1

1 PRNTEN R R . | 1 1

1 1 ool by 10 o

0 L TR Fa— I P
-0.1  -0.05 0 0.05

t
Fig. 3.

0.1 -0.1  -0.05

0.05 0.1 -0.1  -0.05 0 0.05 0.1
t t

(color online) Temperature dependence of K5°™ (a), &5°™ (b) and ko™ (c), CYo™ (d), CYo™ (e) and Co™ (f) at three differ-

ent values of external magnetic field, # = 0.05, 0.07 and 0.1, in the three-dimensional Ising model simulated by Monte Carlo method.
The crossing point of the green dashed lines is the fixed point for the upper panel. The positions of the green dashed lines in the lower

panel are kept consistent with those in the upper panel.
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critical temperature. Comparing the positions of the peak
and the sign change, the fixed point of the normalized cu-
mulants or factorial cumulants is much closer to the crit-
ical temperature.

V. FIXED POINT BEHAVIOR IN THE ENERGY
DEPENDENCE OF NORMALIZED CUMU-
LANTS AND FACTORIAL CUMULANTS

In the current study we focus on the equilibrium prop-
erties of the cumulants and factorial cumulants. Thus the
non-equilibrium effects are not taken into account [59].

In order to apply the results of this paper to the heavy-
ion collision experiments to search for the QCD critical
point, it is essential to specify the map between the Ising
variables ¢, H to the QCD variables temperature 7 and ba-
ryon chemical potential pp. The ¢ axis is tangential to the
first-order phase transition line at the QCD critical point.
The angle between the horizontal (fixed 7) lines on the
QCD phase diagram and ¢ axis is @. For simplicity, we
assume that the H axis is perpendicular to the ¢ axis after
the map to the T —up plane, which has been studied in
Ref. [48]. Then a linear mapping relations can be ob-
tained as follows:

T - Tcep H 4 . t
=—cosa— +sina—,
AT AH At
HB— HBc . H 1
——— =——sina—— —cosa—, 13
Aup YAH YA (13)

where Tc.,, pp. represent the temperature and baryon
chemical potential at the QCD critical point, and AT and
Augp denote the width of the critical regime in the QCD
phase diagram. Because the location of the critical point

e

Fig. 4.

and the width of the critical regime for QCD are not
known, the suggestion that Aug~ 0.1 GeV from model
calculations [60] and lattice QCD calculations [61] is
used. We set Aug=0.1 GeV and pp. =0.25 GeV as in
Ref. [59].

AH and Ar denote the width of the critical regime in
the Ising variables. For simplicity, we set AH =0.4 and
Ar=2. The fixed point behavior is not sensitive to the
width of the critical regime in the Ising variables. For
more information to define the critical regime, see Ref.
[59].

Finally, the freeze-out curve is assumed to be below
the crossover/first-order phase transition line. An empir-
ical parametrization of the heavy-ion collision data from
Ref. [62] can be used to describe the freeze-out curves,

Tr(up) = a—bug* - cup®, (14)

where a=0.166 GeV, b=0.139 GeV~!, and c¢=0.053
GeV 3. At a range of small ug (0.15 < up < 0.35 GeV),
Ty is varying approximately linearly with up in this
study. The angle between the straight line of T¢(up) and
the horizontal (fixed 7) line on the QCD T —pujp plane is
very small. For simplicity, we assume the freeze-out
curve is approximately parallel to the ¢ direction which
has been mapped to the QCD phase diagram.

A straightforward phase diagram of the three-dimen-
sional Ising model on the t— H plane and one possible
sketch of the r— H axes mapped onto the T —up plane of
QCD are shown in Fig. 4(a) and (b), respectively. Thus
three lines parallel to the ¢ axis from left to right at three
different values of H in Fig. 4(a) can be simply mapped
to three freeze-out curves from top to bottom in QCD as
shown in Fig. 4(b).

Based on this mapping and using Eq. (13), the tem-

T (b)

Fy

(color online) Phase diagram on 7— H plane of the three-dimensional Ising model (a). Sketch of the r— H axes mapped onto the

QCD T —pug plane (b). The black solid line and the red point are the first-order phase transition line and the critical point, respectively.

The ¢ axis is tangential to the QCD phase boundary at the critical point. The H direction is set to be perpendicular to the ¢ axis. The

three lines parallel to the phase boundary from left to right (H = 0.05, 0.1 and H = 0.2) of Ising model (a) are mapped to the three

freeze-out curves which are parallel to the ¢ axis from top to bottom (FC I, FC II and FC III) in QCD T - pug plane (b).
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perature dependence of normalized cumulants and
factorial cumulants at the three different values for H can
be converted to the up dependence of normalized cumu-
lants and factorial cumulants along the three different
freeze-out curves.

Turning to the heavy-ion collision experiments, using
the energy (+/s) dependence of up given in Ref. [62],

do

up(Vs) = il

15)

where dy = 1.308 GeV, d; = 0.273 GeV~!, one can get the
energy dependence of normalized cumulants and factori-
al cumulants along the three different freeze-out curves.
Supposing the angle a =3°, based on the parametric
representation of the Ising model, energy dependence of
the second- to fourth-order normalized cumulants and
factorial cumulants along the three freeze-out curves are
shown in Fig. 5(a)—(f), respectively. The vertical green
dashed lines show the critical energy +/s,=15.5 GeV
which corresponds to pp. =0.25 GeV at the QCD critical
point through Eq. (15). It is clear that the fixed point be-
havior exists at /s, in the energy dependence of k)™ to
«}°™, as shown in Fig. 5(a)—(c), respectively. The values
of the normalized cumulants at the fixed point shown by
the horizontal green dashed line are slightly changed

compared to the values given by Eq. (10) because of the
mapping from the Ising variables to the QCD variables.

For the normalized factorial cumulants shown in Fig.
5(d)—(f), the fixed point behavior occurs from the fourth-
order one, and its position is consistent with that in ™.

The fixed point behavior in the energy dependence of
the normalized cumulants is derived directly from the lin-
ear mapping in Eq. (13), where AH, Ar and the angle o
are all set to fixed values in this paper. The influence of
these three parameters on the fixed point behavior should
be explained. The fixed point behavior still exists with
the variation of these three parameters. Different values
of AH and At leave the energy at the fixed point almost
unchanged. They just influence the range of the energy
(the range of up) after the mapping. Small values of «
(like 3° used in this paper) have little influence on the
fixed point behavior, while high values of @ not only
change the range of the energy, but also shift the fixed
point away from +/s, (but one should notice that a small
value for @ should be closer to the truth here).

One other problem that should be discussed is how
one can get different freeze-out curves in the heavy-ion
collisions. In fact, the centrality dependence of the chem-
ical freeze-out temperature and baryon chemical poten-
tial have been studied in Refs. [63, 64]. Although the
chemical freeze-out temperature does not vary much with

Norm

Norm

Vs (GeV)

Fig. 5.

(color online) Energy dependence of kY™ (a), Y™ (b) and «J°™ (c), Y™ (d), cfom™ (e) and CYo™ (f) along three different

freeze-out curves as shown in Fig. 4(b). The vertical green dashed lines show the energy +/s. corresponding to up.. The horizontal

green dashed lines show the value of the normalized cumulants at the fixed point for the upper panel. The positions of the green dashed

lines in the lower panel are kept consistent with those in the upper panel.
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centralities, the temperature interval between the three
different freeze-out curves can be very small. If we set
Teep = 0.18 GeV and AT = T.,/8, which has been used in
Ref. [59], the critical regime of QCD temperature is AT =
0.0225 GeV. When the external magnetic field H changes
from 0.05 to 0.2 at the same ¢, after mapping to the QCD
variables through Eq. (13), the freeze-out temperature in-
terval is just about 0.0084 GeV. What is more, baryon
chemical potential increases from peripheral to the most
central collisions [64]. It is enough for one to get differ-
ent freeze-out curves at different centralities. So the cent-
rality controlling the freeze-out curves in the QCD phase
diagram may play a similar role of the external magnetic
field H of the Ising model.

Under the mapping from the three-dimensional Ising
model to QCD, the fixed point behavior may be expected
in the energy dependence of normalized net-proton
(factorial) cumulants in heavy-ion collision experiments.
This feature can be used to locate the QCD critical point.

V1. SUMMARY

By using the parametric representation of the three-di-
mensional Ising model, the temperature dependence of
the second- to fourth-order cumulants and factorial cumu-
lants of the order parameter has been studied. The qualit-
ative behavior of temperature dependence of cumulants
does not change with the varying external magnetic field
in the vicinity of the critical temperature. Nor does that of
the factorial cumulants.

The fixed point behavior in the temperature depend-
ence of normalized cumulants at the critical temperature
for different magnetic fields has been deduced and

shown.

By Monte Carlo simulation of the three-dimensional
Ising model, the fixed point behavior in the temperature
dependence of normalized second- to fourth-order cumu-
lants has been checked in finite-size systems. The fixed
point behavior still exists just about one percent distant
from the critical temperature, which is much closer to the
critical temperature than the peak structure or sign change
shown in the temperature dependence of the cumulants.

For the normalized factorial cumulants, the fixed
point behavior also survives from at least the fourth-or-
der cumulants, both in the parametric representation and
finite-size systems, which reflects the fact that the critic-
al behavior of factorial cumulants is dominated by the
corresponding cumulants. The higher the order of the
factorial cumulant, the more dominant the role of the
same-order cumulant in its critical behavior.

Through a mapping from the three-dimensional Ising
model to QCD, the fixed point behavior is also found in
the energy dependence of the normalized cumulants (or
fourth-order factorial cumulants) along different freeze-
out curves. The fixed point is very close to the critical en-
ergy (corresponding to the baryon-chemical potential at
the QCD critical point). It is promising that this method is
applicable to locate the QCD critical point in heavy-ion
collision experiments.

More generally it must be emphasized that all of the
results here rely on the equilibrium of the system. Wheth-
er the fixed point behavior survives in the non-equilibri-
um cumulants needs further study. What is more, further
studies of different ways of mapping from the Ising mod-
el to QCD would be helpful.
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