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Abstract: We investigate generalized Jackiw-Teitelboim gravity, coupling the dilaton field with two scalar matter

fields. We obtain the equations of motion for the fields and investigate a linear perturbation of the solutions in gener-

al. We study two specific situations that allow for analytic solutions with topological behavior and check how the

dilaton field, the warp factor and the Ricci scalar behave. In particular, we show how the parameters can be used to

modify the structure of the solutions. Moreover, the perturbations are, in general, described by intricate coupled dif-

ferential equations, but in some specific cases, we can construct the corresponding zero modes analytically.
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I. INTRODUCTION

An interesting way to study quantum effects in grav-
ity is through two-dimensional gravitation. Although this
is not a phenomenological description, 2D gravity allows
for the testing of some conjectures, thereby providing a
path for the construction of a quantum theory of gravity
in the future. 2D gravity has also been used as a theoret-
ical framework to describe complex situations of 4D
gravity, such as the evaporation of black holes [1-3], dy-
namics of black holes [4], supergravity [5—7], and other
possibilities.

It is known that it is not possible to use the Einstein-
Hilbert action for the description of 2D gravity, as this
leads to identically null equations of motion. In this
sense, it becomes necessary to resort to alternative repres-
entations to describe two-dimensional gravity. A well
known alternative was proposed in the 1980s by Jackiw
and Teitelboim, entitled Jackiw-Teitelboim (JT) gravity
[8, 9]. In this representation, a real scalar field coupled to
gravity, called dilaton field, is used to provide the dynam-
ics of the model. The dilaton field has been used to in-
vestigate other physical problems, not only with JT grav-
ity but also through other descriptions; see [10—12].

In order to describe new possibilities, many propos-
als for generalizing JT gravity have been presented over
the years [13—17]. Many of them are motivated by so-
called modified theories of gravitation in 4D, such as
F(R)-gravity, which introduces a general function of the

Ricci scalar in action [18—21], Teleparallel Gravity, in
which curvature is replaced by torsion as the mechanism
by which geometric deformation produces a gravitational
field [22] and also K-fields, which include modifications
of the kinematics of the fields [23, 24]. Some generalized
gravitation models have proved satisfactory for an at-
tempt to build phenomenologically favorable inflationary
models [25-27].

Recently, new theoretical studies have deepened the
discussion about the stability of topological solutions in
generalized Jackiw-Teilelboim gravity. In Refs. [28, 29]
it was shown that it is possible to investigate the linear
stability of the solutions by choosing an appropriate
gauge. In Ref. [30] it was shown that it is possible to ob-
tain stable solutions for models with unusual dynamics in
the form of K-fields, to which cuscuton terms can be in-
troduced to change stability conditions. More recently, in
Ref. [31] the authors obtained double-kink solutions us-
ing models with standard dynamics.

The key point of these studies was the observation
that the result of an analysis of the stability is very simil-
ar to the scalar perturbations obtained in five-dimension-
al braneworld models, which are theories of gravity in
which the four-dimensional spacetime is immersed in an
extra spatial dimension of infinite extent. This theory was
proposed by Randall and Sundrum in 1999 and motiv-
ated the development of an alternative explanation for the
hierarchy problem [32, 33]. The generalization of the ori-
ginal Randall-Sundrum scenario by incorporating scalar
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fields was initially proposed in [34—36], and introduced
new and interesting perspectives for brane cosmology,
such as the study of quintessence [37— 39], inflation
[40—43] and Teleparallel Gravity [44—46]; see [47-51] for
other extended braneworld scenarios.

As 2D gravitation has been mirrored in the study of
braneworld models, we think it is of interest to under-
stand how the inclusion of new fields of matter can inter-
fere in the study of stability. We know that in braneworld
scenarios, when we include new scalar fields as a source
of the density Lagrangian, interesting changes can appear
in the internal structure of the model. Furthermore, when
we include the cuscuton term in Bloch brane models, it
seems to induce the appearance of a split in the warp
factor [52-55].

Moreover, there is already extensive literature report-
ing investigations on topological defects in field theories
in flat spacetime in the presence of several scalar fields
[56—-60]. We know that, in these models the study of lin-
ear stability is not trivial, because the linearized field
equations are, in general, coupled differential equations
[61, 62]. Therefore, we think that replicating some con-
siderations of the studies of field theories in flat space-
time, in this new scenario of 2D gravity, may also open
new research directions for dilaton gravity.

With these motivations in mind, we organize this pa-
per as follows. In Sec. II, we present the general formal-
ism that describes generalized JT gravity in the presence
of a dilaton field and also in the presence of coupled scal-
ar matter fields. In Sec. III, we study the linear stability
by using the dilaton gauge in the linearized equations of
motion. In Sec. IV, we investigate two distinct models
that engender kink-like solutions and describe conditions
for the emergence of possible bound states. In Sec. V, we
present the conclusions and perspectives for future work.

II. FORMALISM

Let us start this investigation by considering a gener-
alization of the Jackiw-Teitelboim gravity that describes
two-dimensional gravity in the form

1 1
S= _fd%c \/|g|(§Vﬂ&pV‘“tp—<pR+K.£m), (1)
K

where ¢ is the dilaton field, x is a coupling constant, g is
the determinant of the metric g,.,, R = g"'R,, is the Ricci
scalar and £, is the Lagrangian density of matter. Here,
the greek indexes y,v,... run from 0 to 1 and the fields are
all dimensionless.

It is possible to verify that the action defined by Eq.
(1) depends on several independent quantities, which are
the dilaton field ¢, the metric tensor g,,, and in general,
the several fields introduced by the Lagrangian density of
matter. In this sense, we can derive equations of motion

for these quantities by varying the action with respect to
them. For example, by variations of the actions with re-
spect to the metric tensor we get the Einstein equation in
the form

8uv (VQSDVQSD + 4I:I(p) - ZV,u‘PVvSD - 4V,uvv90 = 2KT,uw ()

where 0= V,V? is the two-dimensional Laplacian operat-
or and T}, is the energy-momentum tensor defined in the
usual way as

_ 2 o(VislLa)

el og” ®

Note that to obtain the specific form of the energy-mo-
mentum tensor we must consider the Lagrangian density
L,,. In this paper, we are interested in investigating mod-
els of two scalar fields as matter source fields. With that
objective in mind, we will consider a simple Lagrangian
density that describes an interaction between the two
fields w and y in the form

1 1
L= SV VY + SV Vi = V), )

where V(y,y) is the potential that governs the interaction
of these fields. With this description, we can express the
energy-momentum tensor as

T =V Vol +V,xVox — 8uyLim.

See that in addition to the representation giving by the
Lagrangian density (4), it is also necessary to specify the
form of the potential. Using a variation of Eq. (1) with re-
spect to fields w and y and using the Lagrangian density
(4) we get

V.V +V, =0, (5a)

V,.Vix+V, =0, (5b)
where we use the indices of ¥ to denote the derivatives of
the potential with respect to the matter fields. Similarly,
the equation of motion for the dilaton field is obtained by
a variation of Eq. (1) with respect to ¢, i.e.,

V,Vio+R=0. (6)

In this case, we then have four independent quantities to
consider: the dilaton, the metric tensor and the two scalar
fields.
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In an attempt to describe solutions with topological
behavior, in [28], a two-dimensional representation of the
Randall-Sundrum metric used to build five-dimensional
braneworld models [33] was considered. We will follow
this line and consider a metric in the form

ds? = e*dr* —dx*. ©)

As in the brane models, 4 is the warp function and e*
will also be called warp factor. We assume that it de-
pends only on the spatial coordinate x, i.e., A =A(x).
Thus, the Ricci scalar can be written as R =2A” + 24’2,
where the prime stands for the derivative with respect to
x. Furthermore, we will consider static configurations for
the matter fields and for the dilaton field, that is, ¥ = ¥/(x),
X =x(x) and ¢ = ¢(x). In this case, the equations of mo-
tion (5) become

Wy A =V, (8a)

X' +x'A =V, (8b)

Note that in general we get coupled equations for the
fields w and y as V depends on both fields. Using static
configurations, we can also obtain the non-vanishing
components of the Einstein equation (2) as

1 1
¢’2+4<p" = —ZK(Ew’2+§,\('2+V), (9a)

1 1
¢ 4Ny = —2K(§¢/2 + EX/Z - V). (9b)

In contrast, the equation of motion for the dilaton field (6)
becomes

¢+ P A =247 +2A7 (10)

The five differential equations represented by Egs.
(8), Egs. (9) and Eq. (10) describe all known information
about the system. It is possible to show that one of these
equations is not independent and can be obtained from
the others, for example, we can use Egs. (8), (9b) and
(10) to obtain Eq. (9a). Thus, the set of five equations can
be reduced to four independents equations. This is all we
need, as here we have the dilaton ¢, the warp function 4
and the two scalars y and y to be determined.

It was shown in [28] that it is possible obtain a gener-
al solution for Eq. (10) in terms of two integration con-
stants. In order to deal with first-order equations we con-
sider a particular solution of Eq. (10) in this paper in the
form

o(x) =2A(x). (11)

To improve the mathematical description, we can use the
above solution to rewrite Eqgs. (9) as

~4A" = k" iy, (12)
and
4A" = k' + 1 = 24V (13)

From these two equations it is possible to write the Ricci
scalar defined below Eq. (7) in terms of the potential as

R=—«V. (14)

Note that, now, we need to work with a system of
second-order differential equations that can be solved us-
ing the so-called first-order formalism, which allows for a
reduction of the second-order differential equations to
first-order equations. To proceed with this method, we
must introduce an auxiliary function W(y,y) that correl-
ates the fields y and y such that

W' =W, and x =W, (15)

where W, = 0W/dy and W, = 0W/dy. Using the descrip-
tion in Eq. (12) we get the warp function as

A =- g W ). (16)

Moreover, we can use Eq. (13) to write the potential in
the form

1 1 K
V) =5 Wi+ s Wi- o W2, (17)

The set of first-order equations represented in (15) are
commonly found when one studies models described by
two scalar fields. See for example [57, 60] in which the
authors studied the presence of kink-like solutions in two-
dimensional Minkowski spacetime. Also, see [52], in
which a system was investigated, which could be de-
scribed by two real scalar fields coupled with gravity in
(4,1) dimensions in warped spacetime involving one ex-
tra dimension. It is worth noting that the first-order Egs.
(15) and (16) solve Egs. (8) and (9) provided that the po-
tential is given by (17). Furthermore, static and uniform
solutions can be obtained from the algebraic equations
W, =0 and W, =0, which takes us to a set of points in
the space of fields given by v; = (;, i), i = 1,2,---, which
satisfies Eq. (15). Then, we impose that the static solu-
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tions ¥ (x) and y(x) tend to these values when x — +oo.

Due to the asymptotic behavior of the fields, as de-
scribed above, the function W assumes constant values
when the fields ¥(x) and y(x) are evaluated at x — +oo,
1.e., Wp(x — +00), y(x = +00)) = W.. With this, we can
use Eq. (16) to write A(Jx|> 0) ~ —(kW./4)x, such that
the warp factor e** becomes, asymptotically,

e U/, (18)

Thus, it may diverge, become a positive constant or van-
ish, depending on the sign of W, for positive « .

OI. LINEAR STABILITY

In this section, we study the linear stability of dilaton
gravitation in the presence of matter fields considering
small perturbations around static solutions for the fields.
Firstly, let us consider small perturbations in matter fields
in the form ¢ — ¥(x)+n(x,f) and y — y(x)+&(x,1). For
the dilaton field we write ¢ — ¢(x)+d¢(x,1). Lastly, we
consider perturbations with the metric tensor as
8uv = &u(¥)+ 7, (x,1), where the indices of n,,, are raised
or lowered as 7" = —gh¥m,8P" .

Using the field perturbations, we can linearize the
equations of motion to investigate the linear stability. For
example, the (0,0) component of the Einstein equation
(2) can be written as

—2¢'6¢" —48¢" — ¢ *miy — 4y w1 - 297,

’_7 1 ! 1 ’ 1 /7
=2k Vl/ﬂ’]+VX§+lﬁ7’] +X§ +§lﬁ 27T11+§)( 27T11), (19)

where V,, and V, are applied to the static solutions. The
(0,1) or (1,0) components are identical and have the form

28700 —¢'6p—20¢" —g'mi =k (W'n+x'é). (20
In contrast, the (1, 1) component is
4e 60— 4A'5¢" +2¢' ¢ +4¢'TT - (,0'27r] 1 —4¢" 13
’_7 7 &t 1 ’ 1 7’
=2K(V¢7]+VX§—I//7] -X'é +§l,b 27r11+§/\,/ 27T11), (21)

where we used the dot to express the derivative with re-
spect to # and introduced a new variable as

1
O =e 7o +A'mo0 — Eng)o). (22)

One can show that the linearization of the equations
of motion (5) provides us with the relationships,

672A7'7 — CiA (CAU/) + V¢,/,T] + V'J/)(f

’ 7 ’ 44 1 ’_’
+YTI-AY =y ﬂ11—§¢ﬂ11=0, (23)
and

e AE - () + Vign+ Vit

’ 1.7 1’ ] ’_/
+Y'TI-A'Y'm1—x nll—z)(ﬂM:O. (24)

We can also linearize the dilaton equation (6). Here,
however, we will follow the description used in [28] and
adopt the dilaton gauge, i.e., ¢ = 0. With this choice, the
linearized equation that comes from Eq. (6) vanishes.
Furthermore, we can use Eq. (11) to write Egs. (19) and
(21), respectively, as

K

2AY

KN (XN eV X
o425

Let us assume that the perturbations in matter fields
can be decomposed as n(x,t) =2, n,(x)cos(wyt) and
&(x,1) = 3, E(x) cos(wpt), where w, is a characteristic fre-
quency. Using this decomposition and the set of Egs.
(25), we can represent Egs. (23) and (24) as

W'n+x'é), (25a)

T =-

(25b)

—et (ehr) + AU, = Wl (26)

where we defined

U = (P(X) q(x)]
q(x) px)
) e
and

2\’
P) = Vi + g (W + (‘i" ) ) (28a2)

— K 72 X/Z '
px)=V,, + 3 [/\/ + (7) ], (28b)
q(x) = Vy, + g (lﬁ’/\/’ + (wA/Y ) ) (28¢)

Note that Eq. (26) is a Sturm-Liouville equation. We
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can define the inner product of two states as

(@[T = f dxp(x)®'(X) 1 (), (29)

where p(x) =e™™ is the weight function [63, 64]. One
can show that Eq. (26) has a state with w =0, which is
given by

00 = X Cf) (30)

where N is a normalization constant which can be de-
termined from Eq. (29).

We can use the first-order Egs. (15), (16) and the po-
tential in the form (17) to rewrite Eq. (26) in terms of the
function W(y, ) as

e R CR SR ICY U TETy

where we defined

w2 W, W,
Wyy = -2 Wy = X
M= 4 Wl (32)
W)(Ww W)?
W)(l// - W xx W

In this case, we can express the stability equation as
S8, = w2T,, where

SzeA(—%]HM); St = A((%]HM). (33)

As in the study on supersymmetric quantum mechanics
[65], we can define the supersymmetric partner operator
as §ST, and applying it to the state ®,, we have

SS1®, = -t (A0) +et (MM - (A M) )@, (39)

The supersymmetric partner operators S'S and SS7
can be used to relate their respective eigenstates and ei-
genvalues, which can facilitate the study of the stability
equation (26).

We can also make a change in the variable in the form
dz =edx in order to make the metric conformally flat;
in this case, the stability equation (26) becomes a
Schrodinger-like equation, i.e.,

d?r,

iz U, = Wy, (35)

where

2
62A Vmp + g (ZZ ] CZA V¢X + g (—WIZXZ)
UR) = ;/Z X; . (36)
K[ XW7 K
CZAVXW + E ( 1241 )Z 62A V)()( + E (A—ZZ]

Here, we are using the index z to represent the derivative
with respect to the new variable z, as in ¥, = dy/dz, etc.
We also have a state with w = 0, that is

1O = g sz) (37)

Similarly to the Sturm-Liouville equation, we can fator-
ize Eq. (35) into S'SYT, = w?7,. Here, the operator S is
given by

2
d A W¢ A Wy Wy
——+e | Wyy — — Wy —
o | @ e( Wy C\ T Ty

W, W, ) d w? ]

. (38)

! (WW‘ W W

As we see, it is possible to study the linear stability of
static solutions through a Schrddinger-like equation. In
this case, to determine the correspondence between the
two variables x and z, one has to integrate to find x as a
function of z. However, this change cannot always be
done analytically. Therefore, it is necessary to resort to
numerical methods, as we will illustrate in one of our ex-
amples.

We can see from Eq. (37) that the zero mode may be
divergent for A, =0, and that this may lead to a non nor-
malized zero mode. As the derivative of the warp func-
tion is proportional to W (see Eq. (16)), we can analyze
the asymptotic behavior of W to get further insight into
the behavior of the zero mode. We know that W — W,
asymptotically, so if the sign of W_ is different from the
sign of W,, W has to vanish somewhere along the z axis
to obstruct the normalization of the zero mode. In this
sense, to make the zero mode normalizable, the sign of W
should not change, and the warp factor should not di-
verge asymptotically.

IV. SPECIFIC MODELS

In this section, we study two distinct models in order
to understand how the formalism presented so far works.
Furthermore, we investigate how the matter fields inter-
act and give rise to the dilaton field, the warp factor and
the Ricci scalar.

A. Model A

The first model that we consider in this paper is mo-
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tivated by the so-called Bloch brane, which is a five-di-
mension braneworld model constructed by the interac-
tion of two real scalar fields. The model was first con-
sidered in [52], in which the authors used an auxiliary
function W(y,y), to which we now add a real constant ¢
to get

3
W) =+, (39)

where r is a real parameter. In particular, ¢ can be used to
modify the structure of the solutions and r is positive and
controls the coupling between the fields. Using the algeb-
raic equations, W, =0 and W, =0, we obtain four sets of
values for the asymptotic behavior of the fields:
vi = (1,0), v2 = (=1,0), v3 = (0,1/ vr) and v4 = (0,~1/ r).
Therefore, the auxiliary function W assumes the values,
W) =c+2/3, W(vp) =c—2/3 and W(v3) = W(vy) = c.

We can then obtain the asymptotic behavior of the
warp factor using the asymptotic behavior of the fields.
For example, for the solutions that connect v, to vy, we
get

e2A(|)r|>>0) ~ e—(K/2)(2/3tc)|x|, (40)

where the plus sign in the exponential is for x — o and
the minus sign for x —» —co. Note that, the warp factor has
an asymmetric behavior when ¢ # 0; furthermore, it tends
asymptotically to zero at both extremes if |c|<2/3,
however, if |c| > 2/3 the warp factor diverges at one side.
In contrast, the solutions that connect the values v4 and
vs3, lead to

e2A(|)c|>>0) ~ e—ch/Z. (41)

In this case, the warp factor is asymmetric and not
localized anymore. Using the model defined in (39), we
can obtain the interaction potential of the matter fields as

Vw0 =5 (1-07 =) + 2207

3 2
—%(c+¢/—l%—rw)(2) . (42)

Using the asymptotic values of the solutions, we find
that V(+1,0) = —(x/8)(c +£2/3)* and V(0,+1/+r) = —kc?/8.
Note that, for « > 0, we have V(¥;, ;) <0 in all cases; this
indicates that the space can be AdS, or M, asymptotic-
ally depending on the value of parameter c¢. As men-
tioned below Eq. (13), it is possible to relate the potential
with the Ricci scalar. This result is interesting because it
is possible to calculate the asymptotic value of the Ricci
scalar directly without knowing the solutions in their ex-

plicit form, using only the required boundary conditions,
as we will implement below.

We can now investigate the specific solutions of the
model. For this, we use Eq. (15) to obtain a system of
first-order differential equations as

Y =1-¢7—ry?, (43a)

X' =-2ryx. (43b)

We can solve the set of coupled differential equations
in Eq. (43) numerically aiming to obtain solutions that
connect the values v; obtained by solving the algebraic
equations. However, it was shown in [58] that it is pos-
sible to decouple this system of equations considering the
orbits F(¥,x) =0 that connect the uniform solutions v;.
For this model we have orbits in the form

r

¢2+(E)X2—bxl/r= L, (44)

where b is a real integration constant that controls the
shape of the above orbits. Here, we consider b = 0. There
is an interesting orbit, which is an elliptical one; in this
case we have the solution

W) = tanh(2r), (45a)
o) = 4/ —r2r sech(2rx), (45b)

with r € (0, 1/2]. The parameter » controls the thickness of
the solutions and the height of y.(x), as can be seen in
Fig. 1, where we display the above solutions for » =0.15,
0.30 and 0.45. We can show that, for » — 1/2, the orbit
becomes a straight line, with the solution

¥s(x) = tanh(x), (46a)

Xs(x) =0. (46b)

Using Egs. (16) and (11), we can obtain the dilaton
field solution for the different possible orbits. For ex-
ample, for the straight orbit we get

KC

K _ i 2
> X+ 3 In (sech(x)) B tanh“(x). 47)

ps(x) =—

In contrast, for the elliptic orbit we have

tanh? 2rx).
(48)

k(1-3r)
12

@e(x) = —Ex + X In(sech(2rx)) +
2 6r r
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We also study the warp factor, and the two panels in
Fig. 3 show how it behaves for the straight orbit (top pan-
el) and for the elliptic orbit (bottom panel) with r = 1/4.

We can also calculate the Ricci scalar to verify how it
behaves for the orbits obtained above. Using Eq. (14) and
the potential in Eq. (42), the Ricci scalar can be obtained;
for the straight orbit we get

K 4 K> 1 3 2
Ri(x) = ~5 sech™(x) + ) (c + tanh(x) — 3 tanh (x)) . (49

However, in the case of the elliptic orbit we obtain

R,(x)=— 2;<r((1 —2r)sech?(2rx) — (1 - 3r)sech4(2rx))
K2 1 3
+ T (c +tanh(2rx) — 3 tanh’(2rx)

2
—(1-2r)sech(2rx) tanh(2rx)) : (50)

Figure 4 shows the Ricci scalar for the two orbits ob-

0 T 0 s tained here. We used k=1, ¢=0,1/3,2/3,1 and for the
Fig. 1. (color online) Solutions for the elliptic orbit repres- elliptic orbits, r=1/4. For both, the straight and elliptic
ent by Eq. (45a) (top panel) and Eq. (45b) (bottom panel). orbits, we have R(x — +o0)=(xk*/72)(2+3c)*, as calcu-

lated below Eq. (42). As we can see, the Ricci scalar is
asymptotically constant, indicating that the two-dimen-
sional space can be M, or AdS,, see Ref. [66] for more
details.

Now, we turn our attention to investigating the linear
stability of the solutions. We begin by analyzing the sta-
bility of the solutions for the straight orbit given by Eq.
(46). In this case, the component g(x) of Egs. (28) van-

c= (1)/3 . ishes, i.e., g(x) =0. Thus, the equations of stability (26)
o 23 RN become two independent equations. In this case, we can
c=1 151 examine each perturbation separately, i.e.,
—e* (en;) + e p(om = wpna, (51a)
et (Ag,) + P = 2me  (51b)
7 where
t ~
[ N
esin | RN =4 6sech’(x) + = W,(x) tanh(x) + = sech*
a1 [ “”..\‘ p(x) =4 —6sech”(x) + 3 s(x)tanh(x) + Esec (%)
c=1 t 4
15[ 4tanh h
15] 2( anh(x) sec3 (x))sech4(x), (52a)
Ws(x) W3 (x)

Fig. 2.  (color online) Dilaton field for straight orbit (top
panel) and elliptic orbit (bottom panel) with « =1 and r = 1/4.

k
p(x) = 1—2sech?(x) + ZWs(x) tanh(x), (52b)
Moreover, Fig. 2 shows the behavior of the dilaton field

solution obtained by previous equations and depicted for and we defined W,(x) = c+tanh(x)—(1/3)tanh’(x). We
k=1, r=1/4 (elliptical orbit), and ¢ =0, 1/3,2/3, 1. can use Eq. (51a) to obtain the zero mode as
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-10 -5 L 5 10
Fig. 3. (color online) Warp factor for straight orbit (top pan-
el) and for elliptic orbit (bottom panel) with k=1 and r=1/4.
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Fig. 4.
el) and for elliptic orbit (bottom panel) with k=1 and r=1/4.

(color online) Ricci scalar for straight orbit (top pan-

sech?(x)
Wi(x) -~

no(x) =N (53)

where N is a normalization constant that can be obtained

with Eq. (29). It is possible to verify that the zero mode is
only normalizable for ¢>2/3. This integration can be
done numerically, for example, for xk=c=1, we have
N ~0.668. Using the supersymmetric partner equation in
(34), it is possible to show that there is no normalizable
eigenstate, regardless of the value of ¢. Thus, the stability
equation (51a) will only have the eigenvalue wy =0 with
the eigenstate given by (53).

Let us now analyze Eq. (51b). In this case, the mode-
zero is given by

&o(x) = N sech(x), (54)

where N is another normalization constant. In this case,
we find that the zero mode is always normalizable, re-
gardless of the value of the parameter c. For instance, tak-
ing k=1and ¢c=0, 1/3, 2/3 and 1, we obtain A ~ 0.683,
0.682, 0.679 and 0.673, respectively. We also verify that
the zero mode is the only eigenstate present in this case.

We can change variables from x to z, as dz = e 4dx, so
that the Egs. (51) become Schrodinger-like equations of
the form

d217

n _ 2
- de +(Lll (Z)T]n = WyMn, (553)
d? "
Lo = R, (55b)
dz
where the potentials are defined as U (z) = e*4@p(z) and

Uy(z) = e*@p(z), and A(z) = ¢(z)/2 is obtained by Eq.
(47). In Fig. 5 we show the behavior of the potentials
U, (z) and U, (z) for k =1 and c as in Fig. 2. This result is
numerical because it is not possible to change the vari-
able from x to z analytically. It is possible to show that
the potential U;(z) supports the zero mode if
2/3 <c¢<2(12+k)/(3«). This result is in accordance with
the investigation presented in Ref. [28]. For the second
field there is the potential U,(z) which is a result of the
perturbation around the corresponding solution. In this
case, it is possible to obtain the zero mode if 2/3 <c¢ <
2(6+«)/(3«), as can be seen in the bottom panel of Fig. 5.

To study the stability for the elliptical orbit, we first
notice that g(x) # 0, and the system of Egs. (26) no longer
decouples. In this case, we must deal with a matrix rep-
resentation of the equations. As the expressions of p(x),
p(x) and ¢g(x) in Eq. (26) are long and awkward, we first
define the quantities 7(x)=tanh(2rx), S(x)=sech(2rx)
and

1
W,.(x) =c +tanh(2rx) — 3 tanh’(2rx)
— (1 =2r)tanh(2rx) sech®(2rx)

=c+T(x)— %T3(x) —(1-2NT(X)S%*(x),  (56)
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Ui(2)

Fig. 5. (color online) Plot of the stability potentials 2/ (z)
(top panel) and U, (z) (bottom panel) for the straight orbit us-
ing k=1.

and now the components of Eq. (28) can be worked out to
be written in the following form

p(x) =4—4(1+27)S%(x) + kS *(x)

+ gWe(x)T(x) + 32r3S4(x)(éV];—8
(1-2r—(1-31)52(x)) S 2(x)
+ 5 ) (57a)
We(x)
p(x) =4r2 +4r(1-4nS* + % W,(x)T(x)
L ams2arcol 32r(1-282())
+Kr( — I’) (x) (x) (X)+W
32r(1 —2r—(1- 3r)52(x))52(x)T(x)
+ 9
KW (x) (57b)

g(x) = r(1 - 2r)( (41 +2r) +krS2(x)) S ()T ()

8r(3-45%(x))
kW, (x)

16r(1-2r=(1-3r)8%(x)) S 2 ()T (x)

- W, (%) ))

+ g W,(x)S 2(x) - 2rS 3(x)(T(x) +

(57¢)

In this case, the zero mode can be obtained by Eq.
(30) in the form

TO) =

Nsech(2rx) [ sech(2rx)

We(x) | =4/ ! —rZr tanh(zrx)]’ (58)

where N is the normalization constant determined by Eq.
(29), and in order to have normalized states, we need to
assume that ¢ > 2/3.

B. Model B

Let us now consider another model for which we ob-
tain kink-like solutions. For this, we assume that

1 1
Wb x) =c+vy1 (¢—§¢3)+72(X—§X3), (59

where, in addition to the real constant ¢, we also intro-
duce two new real parameters y; and y, that influence
the thickness of the solutions. It is interesting to note that
although Eq. (59) does not contain interactions between
fields explicitly, we still have a system whose potential
V(¥,x) is coupled. This can be easily verified by Eq. (17),
whose term W? provides the interaction between the two
fields. This possibility was also considered in Refs.
[67—69] in the braneworld context in five-dimensional
spacetime with an extra spatial dimension of infinite ex-
tent. In the present case, the potential becomes

[\S]

2
Vw0 =2 (1-07) + 2 (1-)

1 1)\
—g(c+71(¢—§¢3)+72()(—§)(3))~ (60)

The asymptotic values of the solutions of model (59)
can also be obtained by algebraic equations in the form
Wy, =0 and W, = 0. In this case, we have v, = (1,+1) and
Ve =(=1,%1). Thus, W)= W.=c+2y1/3+2y,/3 and
W)= Ws =c—2y1/3+2y,/3. Using the asymptotic
values of the solutions for the potential, we obtain V(v.) =
—«kW2/8 and V() = —kW2/8.

Let us now obtain the solutions for this model. We
can write the first-order equations (15) as

v =y (1-v?), (61a)

X =7 (1-x%). (61b)

The above first-order equations allow for kink-like solu-
tions in the form:
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¥ (x) = tanh (y1(x— xo)), (62a)

x(x) = tanh (y2(x = %)), (62b)
where xo and X, are real constants that define the center
of the solutions, while the parameters y; and y, control
their thickness. We can also find the dilaton field using
Egs. (16) and (11) to write

() =— ke K sech(y1(x — xp)) sech(y2(x — Xp))
= 2 x 3 n sech(yxg)sech(y, %)
K
12
+tanh? (y(x - %)) — tanh’ (2 %) ). (63)

(tanh? (1 (x = x0)) - tanh*(y1 x0)

As we know it is possible to calculate the warp factor of
this model from the above equation as e*4¥). Let us now
turn our attention to how the parameters c, vy, y2, xo, and
Xo modify the dilaton field and the warp factor. Firstly,
we consider ¢ =0, y; =v,, and ¥ = —xo; in this case, the
parameter xp enlarges the center of the dilaton and the
warp factor. This behavior can be seen in Fig. 6, in which
we display ¢(x) and e*™, for c=0, k=y; =y, =1, and
xp=0, 2.5, 5 and 7.5. In the previous model, the para-
meter ¢ was responsible for an asymmetry in the dilaton
field and warp factor; however, in the present model, we
can generate an asymmetry from the parameters y; and

P(x)

-15 -10 7 45 / NIRRT 15
- 7 NN
R4 ol NN,
R4 NN
R // AV
R4 e \ N 3

o // / * N O \
s N
7 &l AN
s/ - X0=0 SN
/ _ —25 [\

/ X0 = 4. \
/ -8r X0 =5.0 \
xo=17.5
_10 .

-15
Fig. 6.
forc=0,«x=1,y =y, =1 and % = —xp.

10 15
(color online) Dilaton field and warp factor plotted

v>. To see this, we consider Fig. 7, where ¢=0, k=
vi=1,and xp = -% =5 with y, =1, 1.1, 1.2, and 1.3. As
can be observed, it is possible to obtain asymmetric
quantities with the parameter ¢ = 0. This is interesting be-
cause the model allows the warp factor to be always loc-
alized. Nevertheless, it is also possible to obtain asym-
metric quantities through the parameter c. However, de-
pending on the value of ¢, this may lead to a delocalized
warp factor. In addition, the parameter ¢ works differ-
ently from y; and 7y, in producing asymmetries; there-
fore, it is not possible for them to cancel each other's ef-
fects.

To better understand the asymptotic behavior of grav-
ity we can calculate the Ricci scalar. In the present case
we have:

2 2
Ky Ky N
R(x) =~ 71863ch4 (71(x=x0)) — TZSech4 (y2(x = %))

K2
+ (e yrtanh 0 (x- x0) - Z tank® (1 (- x0)

- Y2 3 ~ 2
+ > tanh (y2(x — Xp)) — 3 tanh” (y2(x— xo))) .
(64)

It is possible to show that

, 2 (2 2 2
lim R(x) — —(§|y1|+§|yz|ic) .

X—+00 8

Y2 = 1.3

Fig. 7.  (color online) Dilaton field and warp factor plotted
forc=0,«k=y;=1and xp =-% =5.
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This result shows that the Ricci scalar tends to a non
negative constant asymptotically, whereby the parameter
c also generates an asymmetry in this case. In Fig. 8 we
depict the Ricci scalar for some values of the parameters.
In the top panel, we use ¢=0, k=y;=y2=1, X =—xp
with xp as in Fig. 6. In the bottom panel, we use ¢ =0,
k=y1=1,xo=-% =5 and y, as in Fig. 7.

Again, a study of stability is implemented via the
matrix Eq. (26), with the components (28), which in this
case can be written as:

2
K Ky
P =4y} =671+ TWITi(0+ 51w

4y Ty (x)
W(x)

¥2SH(x) +y353<x))

+2y3S ‘l‘(x)( T

(652)

2
— K Ky
p(x) :4’)/% - 6’}’% + %W(X)TZ(X) + TZS;‘(X)

sot, [42T2(x)  ¥1ST0)+7355(0)
+2y58 2(x)( e Wit ,
(65b)
_KY1Y2 16 (y1T1(x) +y2T2(x))
90 ==,=\1 W(x)
(1S 1) +7385(x)
i IKWZ(X; 2 ))Sl(x)Sz(x), (65¢)

where T(x)=tanh(y;(x—x0)), T2(x)=tanh(y2(x— %)),
S 1(x) = sech(y1(x = xp)), S2(x) = sech(y2(x— X)) and

1
W(x) =c+7y; (tanh (y1(x=x0))— 3 tanh? (y1(x— xo)))
1
+72 (tanh (y2(x—X0)) — 3 tanh® (y(x - 560)))

1 1
=c+y (T1 (x) - §T13<x>) +72 (Tz(x) - §T§’<x)). (66)

Again, we can calculate the zero mode in the following
form

N sech?(y; (x - xp))

YOy = 2 (71 1 ~0 i 67
=W haseeh?ae-s))

where the normalization constant AV can be obtained us-
ing Eq. (29).
V. COMMENTS AND CONCLUSIONS

In this study, we investigated two-dimensional

-10

:':.'i:{‘ i
-5 5
_02 |-
—0al
LIV - P
™ -06f 7=10
i - v2=1.1
i i - =12
08 - 7»=13

Fig. 8.
picted for ¢=0, k=y; =y, =1 and % =-xy. Bottom panel
shows the Ricci scalar depicted for ¢ =0, k=y; =1 and x =

(color online) Top panel shows the Ricci scalar de-

—X0=5.

Jackiw-Teitelboim gravity, in which the Lagrange dens-
ity of matter displays coupled scalar fields. We investig-
ated models that appeared before in studies of the five-di-
mensional braneworld model and considered two specif-
ic situations for which it is possible to obtain topological
solutions to the matter fields analytically. For each case,
we obtained the solution of the dilaton field and analyzed
the linear stability. We verified that, in general, the equa-
tions of stability for the matter fields are coupled, ob-
tained in the matrix form.

In the first model, we investigated the analogous situ-
ation of the so-called Bloch brane that was studied in
[52]. We verified that it is possible to obtain a set of solu-
tions for the matter fields that present topological behavi-
or and connect the asymptotic values obtained by the al-
gebraic equations Wy, =0 and W, =0; however, the res-
ult is generally non-analytical. Nevertheless, for an ad-
equate choice of parameters, it is possible to obtain two
classes of analytical solutions that describe straight and
elliptic orbits. For these two specific situations, we found
the dilaton field solution and showed that the Ricci scalar
presents the usual behavior, connecting two asymptotic
AdS, or M, spaces. Although the general solutions only
allow us to reconstruct the stability potential in the mat-
rix form, we found that for the specific case of the
straight orbit, the equations of the perturbations were de-
coupled, and we could analyze each perturbation of the
matter fields separately.
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In the second model studied in this paper, we used an
auxiliary function that generates kink solutions with dif-
ferent thicknesses. We showed that even though the coup-
ling of the fields is not present in the auxiliary function,
the scalar potential is still coupled. We also obtained the
solution for the dilaton field and verified the behavior of
the Ricci scalar. Moreover, we studied the stability in the
matrix representation as the equations of stability do not
decouple. However, we found the zero mode analytically.

In addition to the study presented here, we think it is
also of current interest to address situations in which JT
gravity is generalized by introducing new scalars built
from the Ricci scalar, such as in F(R)-gravity [18-21],
and models with gauge and other fields. Another direc-

tion of current interest concerns the study of 2D Einstein-
Maxwell-Dilaton gravity and connections with AdS»
holography; see, e.g., Ref. [70] and references therein for
further details on this subject. Furthermore, modifica-
tions that aim to encompass exotic properties such as dark
matter and dark energy were obtained through the inclu-
sion of matter fields with unusual dynamics, called K-
fields [23, 24]. We are also studying dilaton gravity [12]
with the inclusion of fields that engender compact beha-
vior. We believe that new studies along the above lines
may add other effects and give rise to new research per-
spectives for 2D gravity. These and other related issues
are now under consideration, and we hope to report on
them in the near future.
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