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Scattering and fusion reaction dynamics of O + Zr system around
Coulomb barrier
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Abstract: A partial wave scattering matrix for the total effective complex potential of nucleus nucleus collisions is
proposed to easily analyze the angular variations of elastic scattering and fusion cross-sections simultaneously with a
unique potential. The expectation value of the imaginary part of the potential calculated using the distorted waves
from the full potential in the elastic channel accounts for o-,. This is equated to the sum of the cross-sections due to
absorption in different regions of the potential where the imaginary part is actively present. The potential is taken as
energy independent and features a weakly absorbing nature, which supports the resonance states in various partial
wave trajectories. Therefore, these resonances show oscillatory behavior changes with respect to energy
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. In this paper, we discuss elastic scattering and fusion cross-sections in conjunction with
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I. INTRODUCTION

Nuclei are examples of many particle open quantum
systems, in which there is a complex aggregation of nuc-
leons that interact with each other through exchange of
mesons, giving rise to both bound and free states, which
can be strongly coupled. Currently, it is of great interest
to analyze the fusion reactions for a wide range of nuclei.
Heavy ion fusion reactions at energies near the Coulomb
barrier have been an important topic for nuclear physics
in the last 20 years. Various types of fusion beams lead to
different nuclear interests. For instance, the reaction with
stable beams reveals a clear figure of nuclear structure
and fusion unlike that of exotic beams, thereby opening
new perspectives to investigate the impact of weak bind-
ing energies and large isospin in fusion reactions [1]. Ac-
cording to partial wave analysis, the total cross section is
the sum of the scattering cross section and reaction cross
section, which further includes different partial reaction
cross sections. For low-energy collision reactions, the fu-
sion channel is prime among all channels. Mathematic-
ally, it is difficult to extract the part from the total reac-
tion cross section (o) so that it can exactly account for

fusion cross section (o). To produce a clear picture of
fusion reactions and fusion dynamics, many calculation
approaches have been proposed, such as the coupled
channel (CC) [2] calculation. However, many of these
theoretical approaches were unable to explain the ob-
served spin distribution and average angular momenta re-
lated to fusion cross section. In the calculations hereby
presented, we use the optical model potential (OMP) [ 3]
with a U type pocket shape in the interior part of the ef-
fective potential that generates the resonance states due to
standing waves in nuclear well. This method was success-
fully employed for light and bound systems, e.g.,
°Li+?Bi [4] and '°O+°%92Ni [5], in previous studies
conducted by our co-authors. The potential consists of a
real part and an imaginary part. The real part corresponds
to scattering, whereas the imaginary part corresponds to
the fusion cross section for compound nucleus formation.
It is known that scattering is a surface phenomenon,
while fusion is an interior activity. All the parameters are
set hereby fitting the measured data of elastic scattering
cross sections at various energies. With the same poten-
tial, we explain the fusion cross section of the '°0 +2Zr
system. Hence, we aim to find an energy independent set
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of optical potential parameters; this is the main motiva-
tion of our study for this system. According to the
concept of OMP, the expectation value of the imaginary
part of the potential with the distorted wave function of
the full potential in the elastic channel accounts for o,
which can easily be obtained by adding the absorption
cross sections of different regions of the potential where
the imaginary part is actively present. We introduce the
same wave function as the one used to explain elastic
scattering data to obtain the absorption cross section !
in infinitesimally small ith radial interval, represented as
or;. Thus, the total absorption cross section can be writ-
ten as o4 = X7, 0-2, where 7 is the total number of inter-
vals of the potential, and the range of potential
R=Y" or.

Given that the fusion of nuclei is an interior phe-
nomenon, it occurs in the interior part of the radial posi-
tion of the electrostatic Coulomb barrier. The absorption
in the region of 0 <r <Ry should account for the o "
data. The exact value of the radius up to which the ab-
sorption cross section is accountable for the experimental
fusion cross section o " is called fusion radius. In this
study, we propose a method suitable for calculating the
region wise absorption in the reaction process. In this
process, we model the potential as a number of small
rectangular parts. Using the exact wave functions and the
boundary conditions in between the neighboring rectan-
gular parts, we obtain the expression of the scattering
matrix (S-matrix). Using the S-matrix value, we can ob-
tain the absorption cross section in each i radial interval.
Calculating the absorption for all the rectangular parts us-
ing the above method throughout the potential, we can
find the total reaction cross section o (r) by taking their
sum. However, the sum over a limited region 0 < r < Ry
within the radial position Rz of the Coulomb barrier rep-
resents the value of fusion cross section o,s. The vari-
ation of o with bombarding center of mass energy
E.m. 1S a smoothly varying curve without any structure
information. Nevertheless, the barrier distribution func-

2
tion D(Eep)= d (Ec.r;.o-fus)
structure in its variation with the center of mass energy
E.m., thereby generating resonance states. The theoretic-
al results of ops and D(E.;n,) of our system, i.e.,
160 +92Zr, were compared with the corresponding experi-
mental results [6]. Interestingly, we successfully explain
the peak structure in Sec. III.C. The selected potential
shows two significant characteristics: (i) a very deep real
part with a small diffuseness, which is useful for explain-
ing the effect of coupling, and (ii) a weak imaginary part,
which indicates a less absorptive nature of the potential.
This nature is useful for explaining the (experimentally
unobserved) [7] shape resonance states. These reson-
ances are the cause for the oscillatory structure in the
variation of D(E. ) as a function of E.p, . There is a spe-

shows peculiar oscillatory

cial interest to study the fusion cross section for the colli-
sion of one nucleus with a given element along isotopic
chains. In this study, we investigated the isotopic depend-
ence of fusion probabilities for oxygen nuclei and **Zr.
We also investigated the dependence of the fusion cross
section by the addition or removal of neutrons from the
projectile nucleus. These reactions provide knowledge re-
garding the possibilities of synthesis of new neutron rich
nuclei. The isotopic study of fusion probability was con-
ducted based on the N/Z ratio of the compound nuclei.
Section II contains the theoretical formulation for the
analytical expression of the S-matrix and region-wise ab-
sorption. Section III contains the analysis of experiment-

al data of m otus(Eem), and D(E.n) for the

dog(69)’ L
160 492 Zrsystem. "[)he results are summarized in Sec. IV.

II. THEORETICAL FRAMEWORK

A smoothly varying potential U(r) can be considered
as a chain of "n" number of rectangular potentials, each
having an arbitrarily small width "w." Simulating the po-
tential up to a maximum range r=Rp., Wwe have
Rmax = Z!'w;, where w; =w is the width of the ith rect-
angle. Let us consider the jth region, Z{:_ll wi<r< 2{:1wi,
in which the strength and width of the potential are de-

noted by U; and w;, respectively. The reduced
Schrodinger equation in this region is
d*o@r) 2m
W+;(E—Uj)cb(r)=0, (1)
with solution
Di(r)=a;e™ +be ", )

where the wave number k; is defined as &k;=

2 .
—T(E —U;) for the j-th segment of width w;. Here, E

indicates incident energy and m denotes the mass of the
particle. Using the exact Coulomb wave function, i.e., G;
and Fj, and their derivatives in the outer region r > Ry«
and the wave function ®,(r) and its derivative in the left
side of r = Rpax, and matching them at r = Ry,x, we ob-
tain the expression for the partial wave S-matrix: n, as

ne=2iCp+1, 3)
kF}— FoH
Ce= - s 4)
H(G(+iFp)— k(G| +iF})
O DO eikiRus _ =ik, R
H= " =ik, = ¢ (5)

®, " DO gkRu 4 o-hRy
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b_n = qnn—1,n-2,-1
2ik,
dnn-1t4qn-1,n-2,-1€ 1 W (6)
1 +9nn-1 ><‘]n—l,n—2,-~1ezik”"w”’I ’
) . kj—ki
with ¢»;=—1. We use the notation ¢j; = —¢;; = Tk Us-
J 1

ing the above expression (3) for 7,, we can explain the
elastic scattering of the '©O+%2Zr system. For the total re-
action cross section, the following formula can be used:

o= 2 > 00D -l @
t

This is equal to the absorption cross section:

i3 | a, |? Pis ‘- @
Uabs:ﬁ2(2€+l)(l— A z)sz(zfﬂ) >,
4 b | s <
®)

Taking the complex conjugate of the Schrodinger Eq.
(1) and rearranging, we have

|an|2
1_|b |2=]1+12+"', (9)
n

Simplifying the corresponding integral:

ZImk, w; _ ])

2
Ij_( l)ImUj 1Dl o2 o

“\ k)b, 2] 21mk;

2
|bj| 2Imk; w_, [ ,—2Imk; w
_me i Wi- (e j /_])

j

1 .
* Rk Im(abfe?™ W (e2Rebs v — 1))}. (10)
J

The symbol * indicates the complex conjugate of the
respective quantity. The problem of higher partial wave
can be treated as scattering by the effective potential
Vn(r) + Ve(r)+ Vi(r), and one can adopt the MP approx-
imation method described above for this effective poten-
tial. The contribution to the absorption or reaction cross
section from any part within the range 0 — Ry, can be ob-
tained by considering the corresponding number of seg-
ments in the above summation. This is the unambiguous
calculation of region-wise absorption in the collision pro-
cess with no disturbance of potential and hence the wave
function explains the angular distribution of elastic-scat-
tering data. If one wishes to obtain the amount of absorp-
tion cross section in the region O0<r< Rgys, Where
Rpys < Ruax, the total number of segments to be con-

Rfus

sidered in the summation (9) is ngs = . The resulting
w

cross section

P Mg
Ttus = pZ(%H)[Zlﬁ.‘)] (11)
¢ =1

corresponds to the fusion cross section in the framework
of the direct reaction model (DRM) proposed by Ud-
agawa et al. [8].

This multi-step (MP) approach is the simplest compu-
tation to the solution of the differential equation as com-
pared to the well-accepted method explained in Refs.
[9-21]. The advantage and significance of this method
are reported in previous studies of ours, Refs. [3, 22].
However, note that the way of transparency to estimate
the contribution of absorption in each part of the effect-
ive potential with this MP method is highly popular. This
is why we use the MP method instead of the most suc-
cessful Runge-Kutta method [23], which requires re-nor-
malization of the wave function at different stages of the
phase shift calculations [24]. To examine the feasibility
and pertinence of this MP method, we studied both scat-
tering and fusion phenomena of '6O+°2Zr systems simul-
taneously and also applied the same to the isotopes of the
projectile. Thus, the results calculated in this study can be
useful for future experimental studies in heavy-ion colli-
sions.

III. RESULTS AND DISCUSSION

The formulation developed in the above section is ap-
plied to the '*0O+°2Zr system to analyze the collision data
and obtain a unified and consistent description and meas-
urement of elastic scattering and fusion cross section. The
value of oq,s was calculated not only for the '*O+°2Zr re-
action but also for '$200+°2Zr reactions using the same
potential. The formulation was also applied to study the
peculiar peak structure in the variation of the barrier dis-
tribution function D(E. ) as a function of E. ., . Accord-
ing to optical model potential (OMP) analysis of scatter-
ing, the potential that describes the scattering of nuclei of
mass number A; and A, and atomic number Z; and Z, is
given by V(r)=Vnf(r,Ry,ay)—iWg(r,Rw,aw)+ Vc(r) in
the entrance channel.

The form factor wused in this

(r-R|

study s
1
f(r,R,a) = g(r,R,a) = |1 +exp Vy, and W is the

a
strength of the real and imaginary parts of the OMP. The
Ry
/3, 41/3
A" +A,

radius parameters are expressed as ry = and

Rw
W= a5
A+ . L
parameters. The Coulomb potential Vc(r) is given by

where ay and ay represent diffuseness
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2 2
Ve(r) = 21 Zye? (3 - 1;—2) . r << ReVe(r) = lez% . r>Re,
1 C\

where Rc =rc(A; +A;), and rc represents the Coulomb
radius parameter. The optical potential we adopted was in
the form of the DRM [8], and the radius parameter was
the same as that of Eq. (7b) reported in Ref. [8] and by
Moore et al. [9]. Note that there are many optical poten-
tial parameter sets to explain scattering and fusion phe-
nomena, but they are energy dependent. A few of them
can be found in Refs. [6, 10— 18]. Particularly, in page
number 10 of Ref. [10], the authors clearly conclude that
"the potential is essentially energy dependent," which fur-
ther increases the importance of the present study, in
which we found an energy independent parameter set.
There are a total of seven parameters, namely Vy, ry, ay,
W, rw, aw, and rc, in this OMP.

A. Elastic scattering cross section

Despite the existence of several parameters to de-
scribe the potential as well as angular distribution of
elastic scattering, we selected the aforementioned seven
parameters, which are energy independent. We also gave
importance to the complex nature of the potential, with a
deep real part [25, 26] featuring less diffuseness and a
weak imaginary part.

For the '°O+%2Zr system, the real part is made deep
with depth Vy =-70.0 MeVand less diffused with the
diffuseness parameter ay =0.367 fm; moreover, ry =
1.337 fm, the Coulomb radius parameter rc = 1.2 fm, and
the shallow imaginary potential of strength W =4.0 MeV.
Other parameters are ry =1.35 fm and awy =0.15 fm.
The variation of the real part of the combined nuclear and
the Coulomb potentials for the s-wave as a function of ra-
dial distance are shown in Fig. 1. Note that there can be
several sets of parameters that explain elastic scattering
and fusion cross section individually. All the seven para-
meters we found are energy independent, noting that the
resonance should be manifested if and only if the imagin-
ary part W is weak. Furthermore, such a weak absorption
is sufficient if the real part is considered deep and less
diffused. The value of the Coulomb radius parameter is
taken as 1.2 fm, is a bit lower than the usual value rc =
1.25 fm. This does not affect the results of the elastic-
scattering cross section in our calculations. When we ex-
plain the experimental data of fusion cross section at
higher energy, we need to increase the rc value, which is

Table 1.
barrier, respectively.

r (fm)
Fig. 1. (color online) Plot of the real part of nuclear plus
Coulomb potentials for partial wave / = 0 as a function of radi-
al distance.

equivalent to incorporate indirectly the energy depend-
ence for the total potential. However, we focused on the
unified description of elastic and fusion cross section cal-
culation in '*O+%2Zr system. Note here that, for the ana-
lysis of both elastic and fusion cross sections, we used
smaller values for diffuseness parameter ay. The result-
ing sharply falling potential in the interior side of the
Coulomb barrier depicted in Fig. 1 is found to be crucial
in explaining the elastic-scattering cross sections in an
energy-independent way. If the value of ay in a given
system 1is increased to fit the fusion cross-section oy
data, we have to further decrease the value of fusion radi-
us parameter Rg,s, which would force us to be energy de-
pendent.

A sharp fall of the repulsive barrier in the interior side
of position Rp=10.80 fm and from a height of
Vg =41.13 MeV is shown in Table 1. In the region of
0 <r < Rnmax, the effective potential is a combination of
nuclear, Coulombic, and centrifugal terms, and it is taken
as a combination of n rectangular parts each of width w;
however, at r > Ry.x, the potential is no longer a combin-
ation of all three potentials. On the contrary, it is only the
result of combining the Coulombic potential along with
the centrifugal term. Using the partial wave S-matrix 7,
given by Eq. (3) in Sec. II, results of angular variation for
differential scattering cross section at laboratory energies
of 56, 48, 47, 46, and 45 MeV are obtained. The results
are shown as solid curves in Fig. 2.

The solid dots represent experimental data taken from
Refs. [27, 28]. The theoretical calculations show a re-

Optical model potential parameters used in the calculations. Vg and Ry represent height and radial position of the Coulomb

System Vy/MeV ry/fm ay /fm W /MeV ry /fm aw /fm rc/fm Vp/MeV Rp/fm Riys/fm
160 492 7 —-70.0 1.337 0.367 4.0 1.35 0.15 1.2 41.13 10.80 8.4
180492 7¢ —=70.0 1.355 0.367 4.0 1.35 0.15 1.2 40.10 11.10 8.4
2004927 —=70.0 1.373 0.367 4.0 1.35 0.15 1.2 39.17 11.37 8.4
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Fig. 2. (color online) Angular distribution of elastic scatter-
ing cross section (ratio to Rutherford) of the 10 +°2 Zr system
at different laboratory energies. The full drawn curves are the-
oretical results of present optical model calculation. The
circles indicate the experimental cross sections extracted from
Refs. [ 27, 28].

markable agreement with the experimental data. We used
the same set of OMP parameters shown in Table 1. Giv-
en that the OMP parameters are energy independent, the
same set of OMP parameters mentioned in Table 1 were
used to explain the angular distribution of elastic scatter-
ing cross section for energy range between 45 to 56 MeV.
The value of rc was set as 1.2 fm, which is slightly less
than the usual rc value. Still, the elastic scattering cross
section remains unaffected in terms of the potential of
weakly bound nuclei.

B. Fusion cross section

As a result of studying scattering and fusion cross
sections simultaneously in low energy collision process,
we extracted the fusion cross section o from the total
reaction cross section o,. Note that it is extremely diffi-
cult to extract the part from o, to exactly account for the
measured results of o, at various incident energies over
a wide range. To overcome this difficulty, we adopted the
region wise absorption method mentioned in the DRM by
Udagawa et al. [ 8]. Here, the radius Ry, is less than Rp,
and Rjp is known as the radial position of the s-wave Cou-
lomb barrier for a given nucleus-nucleus system. The
value of oy is calculated using Eq. (11) and the afore-
mentioned DRM principle. The results are shown in
Figs. 3 and 5.

Using Ry = 8.4 fm, we obtain the results of o for
the 10 +°2Zrsystem and compare it (solid curve) in Fig.
3 with the experimental data (solid dots) from Ref. [6].
The data show a very well agreement with the experi-
mental measurements. The values of the parameters of
the OMP are the same as those used to explain the elastic
scattering data. The values of Ry = 8.4 fm is less than the
value of the Coulomb radius Rz = 10.80 fm because fu-

1.0x10" T

1.0x10°
—
O
g
~ -
bé 1.0x10”
1.0x107
e e e e b b
35 40 45 50 55 60 65 70
E
c.m.
Fig. 3. (color online) Variation of oy, as a function of E¢

for the 190 +°2 Zr system. The full drawn curves represent cal-
culated results. The experimental data shown by solid dots are
obtained from [6].

sion is an interior phenomenon.

Given that scattering is a surface phenomenon, simil-
ar values for different parameters of the Wood-Saxon po-
tential are obtained. However, being an interior phenom-
ena fusion cross-section, it will be different for different
potential parameters. This is because the depth and slope
in the interior of the effective potential as well as the
value of Ry is different for different sets of parameters,
unlike the height Vp and radial position R of the Cou-
lomb barrier. They have the same value, fixed for all sets
of potential parameters. Thus, to describe these two phe-
nomena simultaneously, we chose energy independent
parameters. We also set a single potential to describe both
elastic and fusion cross sections. This energy independ-
ent nature of Ry assists in calculating the barrier distri-
bution function, which is the energy derivative of
Ecm.Otus.

Fusion cross-section also depends upon the strength
of the imaginary part W. A greater value of W results in a
decrease in the amplitude of the wave function in the in-
terior, which requires a larger value of Ry, to account for
the experimental data of the fusion cross-section oyy.
However, with a comparatively small W, Ry, is small
when it comes to matching the o, data.

Along with the imaginary strength, fusion cross-sec-
tion also depends on the diffuseness parameter ay. With
an increase in ay, Rps has to be decreased to obtain suit-
able data for ogs. Thus, we set a smaller value for the
diffuseness parameter ay, as shown in Table 1 for the
OMP, to analyze both elastic scattering and fusion cross
sections. The sharply falling potential in the interior side
of the Coulomb barrier shown in Fig. 1 is a key feature
for describing the elastic scattering cross section in an en-
ergy independent way.

The method of region wise absorption used in our cal-
culations while extracting o is a unique method for ex-
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plaining fusion reaction. However, to overcome the en-
ergy dependent nature of the imaginary part, we set a
very strong real part of the nuclear potential so that the
results of elastic scattering and fusion were not affected.
The experimental results of o [6] are shown as solid
dots in Fig. 3, whereas our results are shown as a solid
curve in the same figure. We set Rpy = 8.4 fm, which is
less than Rg= 10.80 fm for a barrier height
Vg =41.13 MeV. To achieve this, we changed the value
of ryfrom 1.337 fm to 1.334 fm. In this study, we mainly
focused on the unified description of an elastic-scattering
cross section and fusion cross section o, as well as the

_ dz(Ec.mAO-fus)
results of D(E. ) =————
dES .
gion covering near and sub barrier energies around the
Coulomb barrier. Moreover, we chose energy independ-
ent parameters for our potential because a fusion reaction
channel is prominent among all reaction channels in the
lower energy region. Thus, for the simultaneous explana-
tion of fusion and scattering by a unique potential, we
needed an energy-independent potential along with the
structure information in heavy ion collision processes.
This potential helps us in explaining the oscillatory struc-
ture of the barrier distribution function D(E.) =
dz(Ec.m.O'fus)

dEZ

in the lower energy re-

C. Explanation of D(E. ;)

The variation of o as a function of E., depicted in
Fig. 3 does not exhibit any structure. The smooth curve of
ors as a function of E .y, is shown in Fig. 3; it cannot
provide any idea about the experimental peculiarities that
might have been taking place during fusion. To attain
some insight, we studied o in a different form: the bar-
rier distribution function was set equal to

2 i
D(Eq ) = L Eem i),

The variation of D(E. ) as a function of E., shows
some oscillatory structure (see Fig. 4). To calculate
D(E. ), we used the following point difference formula:

[(E—-AE)o_ —2Ec+(E+AE)o,]

D)= (AE)?

. (12)

where o_, 0, and o, denote the fusion cross section oy
at center of mass energies E—AE, E, and E+AE, re-
spectively, with energy gap AE. The experimental results
for D(E. ) as a function of E.,. for the '°O+%2Zr sys-
tem were extracted from Ref. [6]. They are shown as sol-
id dots, whereas the theoretically calculated results are
shown as solid curves in Fig. 4.

The solid curve shows a main peak and some smaller
oscillatory structures. The theoretical and experimental
structures clearly match for our '*O+°2Zr system. They

600

B.D. (mb/MeV)

=
—T

-200

400

. A R U RO RS R RS R
609&0 35 40 45 50 55 60 65 70
c.m.

. .. 2

Fig. 4. (color online) Variation of D(E. ) = %;;fm) as a
function of energy E.n . The full curves represent our calcu-
lated results. The experimental data shown by solid dots were

extracted from Ref. [ 6].

show very good agreement, especially in the lower en-
ergy region. In the higher energy region, the plot of barri-
er distribution with incident energy shows some deeps of
negative nature which are accounted for quite well.
However, the oscillatory structure vanishes when the
strength of the imaginary part W or the step size AE in
Eq. (12) is increased. A larger value of Coulomb radius
rc also destroys the oscillatory structures of the barrier
distribution function D(E.). The values of W and rc
were fixed according to the accurate explanation of meas-
ured results for o, and D(E. ). The value of r. was 1.2
fm and that of W was 4.0 MeV to match the measured
data of D(E.n.) well along with the ogs data shown in
Fig. 3 and Fig. 4, respectively. The peak structures are re-
lated to the theory of such a physical phenomenon taking
place in the process of fusion of two nuclei within the re-
gion where the imaginary part is actively present. The
nature of potential is very important in explaining the os-
cillatory structures of D(E. ). A potential having a deep
pocket followed by a thick barrier gives rise to resonance
states that remain experimentally unobserved [7]. Here,
these resonances are observed as the peaks in reaction
cross sections (o7,) vs. incident energies E.pn shown in
Fig. 4. The shape of the pocket region is also controlled
by the Coulomb radius parameter rc. With a smaller
value of rc, we obtained a U-shaped pocket region that
generated more oscillation in o, leading to resonances.
Each partial wave gives rise to a resonance structure.
Thus, it is the cumulative effect of all these resonance
structures that is primarily responsible for the oscillation
in D(E.n ). The width of a resonance becomes large
when the potential is more absorptive, which can be
achieved by adding a larger imaginary part to the real part
of the potential. The larger width of resonance leads to
extinction of the corresponding resonance state in the col-
lision process. However, the potential we choose to ex-
plain the fusion of '®O+°2Zr is characterized by a deep
real part and weak imaginary strength capable of generat-
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ing many resonances, which are clearly visible in the
form of peaks in the variation of partial wave reaction
cross section as a function of energy in different partial
wave ( {,) trajectories. Our calculations and Ref. [6] in-
dicate that these oscillations play a critical role in fusion
cross sections. From the above discussion, it may be
speculated that the formation of a compound nucleus oc-
curs through the fusion of two nuclei at low energy and is
represented by shape resonances.

D. Isotopic dependence of fusion probability

So far, we have successfully explained various
factors, such as the differential scattering cross section,
fusion cross section, and barrier distribution as functions
of center of mass energies ( E. . ) having the same poten-
tial and energy independent potential parameters. Next,
we extend our study by analyzing the isotopic depend-
ence of interacting potential and fusion cross section. We
introduce two more isotopes such as '#2°0 of oxygen.
We consider the fusion reaction of these two isotopes of
oxygen with *?Zr to investigate the dependence of fusion
probability on various factors. The isotopic study of fu-
sion probability was conducted based on the N/Z ratio of
the compound nuclei. We kept the same value for the Ry
parameter to calculate ogs for the 18200+2Zr systems as
that used to calculate o, for the 1©O+92Zr reaction.

Recently, Lin Gan Group [29] derived a linear rela-
tionship between Woods-Saxon parameters with the mass
of projectile and target. We partially used the same rela-
tionship to study the isotopic effect in the sub barrier fu-
sion cross section while keeping Rg,s constant, as shown
in Fig. 5. The results we obtained were successfully com-
pared with the experimental results (represented as solid
dots in the same figure) [ 6]. From these results, we found
that, when the values of the radius parameter
Ry = rV(A}/ 3 +Aé/ %) for the respective '618200+927r sys-
tems increase with the decrease in barrier height Vj, the
fusion probability increases. Therefore, our study re-
quires experimental verification, particularly in the sub-
barrier region.

IV. CONCLUSIONS

We analytically solved the Schrodinger equation
composed of an optical model potential to derive an ex-
pression for the scattering matrix (S-matrix), which fur-
ther led us to calculate the region-wise absorption cross
section to account for the reaction cross section. We ap-
plied this formulation to the '0+°2Zr and '82°0 +2 Zr
systems to study the isotopic dependence of fusion prob-

1.0x10*
1.0x10° |~ 6o o |
® Expt: O+ Zr
— Theory: "0+ ”zr
— e
i) — %04+%zr
é — 20, %
E] o i
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Fig. 5. (color online) Variation of oy, as a function of E¢p,

for the 1618200+92Zr system. The full drawn curves represent
calculated results. The experimental data shown by solid dots
are obtained from Ref. [ 6].

ability. Throughout the study, the parameters of the ef-
fective potential remained unchanged. The other experi-
mental data that were analyzed consistently were (i) the
angular variation of the differential scattering cross sec-
tion at several energies around the Coulomb barrier, (ii)
the fusion cross section o, as a function of the energy
over a wide range covering the Coulomb barrier region,

and  (iii) 2the extracted
d“(E :
D(Eepm) = ( c.r;.a-tus)

rived with the above analysis are as follows: (i) an en-
ergy independent complex nuclear potential in the Wood-
Saxons form, with a large depth and small diffuseness in
the real part and less absorption (weak strength) in the
imaginary part, successfully explains elastic scattering
data at several energies with great success; (ii) the calcu-
lation of the fusion cross section by the extraction of the
parts of the reaction through the proposed region-wise ab-
sorption method is a natural process in the sense that we
did not use any extra energy dependency in the process of
extraction or arbitrarily partition the imaginary part; (iii)
the peaks in the variation of the barrier distribution as a
function of E., in Fig. 4 are explained successfully by
our calculated results of os; (iv) the oscillatory nature of
the D(E.n.)is simply represented as resonance states oc-
curring during the collision of two nuclei, and these res-
onance states are allowed because of the less absorptive
nature of the optical potential; and (v) with the
addition/removal of neutrons, the fusion cross sections
follow a linear dependence for all considered isotopic
systems. Therefore, further research in the sub-barrier re-
gion is still needed.

result of the quantity

. Some important features we de-
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