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Abstract: Various Higgs factories are proposed to study the Higgs boson precisely and systematically in a model-
independent way. In this study, the Particle Flow Network and ParticleNet techniques are used to classify the Higgs
decays into multicategories, and the ultimate goal is to realize an "end-to-end" analysis. A Monte Carlo simulation
study is performed to demonstrate the feasibility, and the performance looks rather promising. This result could be
the basis of a "one-stop" analysis to measure all the branching fractions of the Higgs decays simultaneously.
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I. INTRODUCTION

The historic observation of the Higgs boson in 2012
at the Large Hadron Collider (LHC) [1, 2] declared the
discovery of the last missing piece of the most funda-
mental building blocks in the Standard Model (SM). The
SM has been remarkably successful in describing experi-
mental phenomena. However, a precision Higgs physics
program would be critically important given that the SM
does not predict the parameters in the Higgs potential, nor
does it involve particle candidates for dark matter. The
precision determination of the Higgs couplings to the SM
particles, gauge bosons and leptons/quarks, are the agents
probing the Higgs mechanism for generating masses [3].
In particular, potential observable deviations of the Higgs
couplings from the SM expectations would indicate new
physics [4]. Therefore, the Higgs discovery marks the be-
ginning of a new era of both theoretical and experimental
exploration. Various e*e” colliders were proposed as
Higgs factories by the high energy physics community,
such as ILC [5], CLIC [6], FCC-ee [7], and CEPC [8, 9].

The most important advantages of a Higgs factory are
that the center of mass (CM) energy is precisely defined
and that they could perform absolute measurements of the
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Higgs boson. Neglecting Z fusion production, in an
e*e” — ZH event, where the Z decays into a pair of vis-
ible fermions or their stable decay final states (Z —
ete”, utu~, 17, or qq), the Higgs boson can be identi-
fied from the kinematics of those fermion pairs or their
stable daughters independent of the Higgs decays. For ex-
ample, the Z — e¢*e™ and p*u~ modes are studied system-
atically in Refs. [10, 11]. The production cross-section
and most of the decay branching fractions of the Higgs
could be measured model-independently by the counting
method. For example, CEPC could measure the cross-
section of ete™ —» ZH, o(ZH), at 240 GeV, to a precision
of 0.5% and the branching fractions of the Higgs boson to
a few percent, respectively, by combining the four decay
modes of the Z boson [11, 9].

The physics goal of a Higgs factory must be accom-
plished by optimizing the detector design and making use
of the latest developments in data science. Recently, vari-
ous Machine Learning (ML) techniques have already
shown very promising performance in data analysis for
high energy physics [12], in particular for jet studies. For
instance, jets are treated as images [13—18], as sequences
[19-22], as trees [23, 24], as graphs [25], or sets [26, 27]
of particles, and ML techniques, most notably deep neur-
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al networks (DNNs), are used to build new jet tagging al-
gorithms automatically from (labeled) simulated samples
and even data [28—31]. While the above ML techniques
are used at jet-level for case studies, they naturally can be
applied for the event level in e*e™ collisions, which have
much simpler topologies and are pile-up free.

In this article, two ML approaches are used to study
the classification problem of Higgs events. The classifica-
tion results can serve as the basis of an "end-to-end"
(E2E) analysis, which enables the simultaneous analysis
of almost all the Higgs decays modes with the state-of-
the-art ML techniques, starting with particle-level inform-
ation and ending with physics observables. The approach
also is a "one-stop" analysis to support extracting all
Higgs couplings and taking into account the correlations
and commonalities of the same detector for the experi-
ment. Throughout this paper, the term "one-stop" analys-
is refers to an analysis method used to extract multiple
observables of the same type at once. It differs from a
conventional analysis in several ways. First, because
many physics observables are measured using modern
ML techniques at the same time, "one-stop" analysis is
more efficient. Second, ML techniques usually deploy
more information. Instead of only some limited number
of selection criteria being used in conventional analysis,
four-momenta and impact parameters (only charged
tracks) of all particles in an event will be used by the ML
techniques. Third, "one-stop" analysis could take into ac-
count the correlations and commonalities of the same de-
tector for the experiment. Because all the measurements
and their correlations are obtained in a consistent way,
creating a combination based on these measurements will
be easy.

The rest of this paper is organized as follows. The ML
methods used in this study are introduced in Sec. II, fol-
lowed by the implementation of the ML methods with a
Monte Carlo (MC) simulation in Sec. III. Finally, a sum-
mary is presented.

II. MACHINE LEARNING METHODS

Recently, various ML techniques were proposed for
jet tagging studies. Among them, PFN [26] and
ParticleNet [27] achieved superior performance.

In the original publication of PFN [26], the authors
applied the Deep Sets concept [32] to the jet-tagging
problem. They proposed two elegant model architectures,
named EnergyFlow Network (EFN) and ParticleFlow
Network (PFN), with provable physics properties, such as
infrared and colinear safety. In these two architectures,
the features of each particle are encoded into a latent
space of ® [32] and the category, F, is extracted from the
summed representation in that latent space. Both ® and F
are approximated by neural networks. The key mathemat-
ical fact is that a generic function of a set of particles can

be decomposed into an arbitrarily good approximation ac-
cording to the Deep Set Theorem [32]. The performance
of these models in classification problems is comparable
with other more complicated models. The authors also
tried to interpret and visualize what the model has learned
[26].

Motivated by the success of CNNs, the ParticleNet
[27] approach based on the Dynamic Graph Convolution-
al Neural Network (DGCNN) is proposed for learning on
particle cloud data. The edge convolution ("EdgeConv")
operation, a convolution-like operation for point clouds,
is used instead of the regular convolution operation. One
important feature of the EdgeConv operation is that it can
be easily stacked, just like regular convolutions. There-
fore, another EdgeConv operation can be applied sub-
sequently, which makes it possible to learn features of
point clouds hierarchically. Another important feature is
that the proximity of points can be dynamically learned
with EdgeConv operations. The study shows that the
graph describing the point clouds is dynamically updated
to reflect the changes in the edges, i.e., the neighbors of
each point. Reference [27] shows that this leads to better
performance than keeping the graph static.

As suggested by the authors [26] and according to the
performances of EFN and PFN, we choose PFN and
ParticleNet to classify the Higgs decays. This ML at-
tempt contains some distinct features in contrast to con-
ventional data analysis. First, the ML approach is used to
classify many physics processes at the same time. If some
tiny decays are neglected, there are about 9 branching
fractions of the Higgs decays to be measured. The num-
ber of classes is greater than 9 when the SM backgrounds
are included. In addition, the classification results could
be the basis of an E2E analysis, which means that all the
particle-level information, such as four-momenta, PID,
and impact parameters of charged particles, is used as in-
put directly, and the network calculates the scores of each
event. In this case, the analysis no longer needs some
dedicated and complicated reconstruction tools, such as
lepton/photon isolation, jet-clustering, t finder, etc.

III. CLASSIFYING THE HIGGS DECAYS

In this section, four 9-category classifications of the
all accessible Higgs decay final states are realized accord-
ing to different Z decay modes with the PFN method, and
their confusion matrices are determined. As a prelimin-
ary attempt, a more ambitious 39-category classification
is tried with the ParticleNet, and promising and consist-
ent results are achieved.

A. ML model setup

For the two ML models used to classify the Higgs de-
cays, kinematic information of energy, polar and azi-
muthal angles are always given for each reconstructed
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particle. We should note that energies and polar angles
are used instead of the transverse momenta and rapidities,
respectively, in the original studies [26, 27] since the
models are utilized for e*e™ collider experiments in this
study. The inputs also include the PID and impact para-
meters of charged particles.

The PFN architecture [26] is designed to parameter-
ize the functions @ and F in a sufficiently general way,
using several dense neural network layers as universal ap-
proximators. For ®, three dense layers are employed,
with 100, 100, and / nodes respectively, where / is the lat-
ent dimension that takes 256 after comparing the per-
formances of 128 and 256. For F, we use the same con-
figuration as the original paper, which has three dense
layers, each with 100 nodes. Each dense layer uses the
ReLU activation function and He-uniform parameter ini-
tialization [33]. A nine-unit layer (depending on the num-
ber of classes) with a SoftMax activation function is the
output layer.

The ParticleNet [27] architecture consists of three
EdgeConv blocks, one aggregation layer, and two fully-
connected layers. The first EdgeConv block uses the spa-
tial coordinates of the particles in the §—¢ space to com-
pute the distances, while the subsequent blocks use the
learned feature vectors as coordinates. The number of
nearest neighbors & is 16 for all three blocks, and the
number of channels C for each EdgeConv block is (64,
64, 64), (128, 128, 128), and (256, 256, 256), respect-
ively. After the EdgeConv blocks, a channel-wise global
average pooling operation is applied to aggregate the
learned features over all particles in the cloud. This is fol-
lowed by a fully-connected layer with 256 units and the
ReLU activation. A dropout layer with a drop probability
of 0.1 is included to prevent overfitting. A fully connec-
ted layer with 39 units, followed by a SoftMax function,
is used to generate the output for the 39-category classi-
fication task.

B. Simulation samples

In this study, there are 4 production modes for the
Higgs boson at 240 GeV to be analyzed, i.e., efe” —
ete"H, utu"H, v*1vH, and ¢gH. In each production
mode, the same 9 decay modes are measured, which are
H —ce, bb, utu~, vv17, gg, vy, ZZ*, WW*, and yZ, re-
spectively. So there are 36 processes in total. For each
process, 400,000 events are generated with WHIZARD
1.9.5 [34] and fed to Pythia6 [35] for hadronization,
where decays of most intermediate particles, such as W,
Z, and 7, etc., are also simulated by Pythia6 according to
its default configuration, and the branching fractions of
the Higgs are customized based on Table 1. All the cross
sections and decay branching fractions used in this study
are summarized in Table 1. The organization and descrip-
tion of 4-fermion backgrounds are complicated and need
some sophisticated scheme. Here ZZ represents that the 4

Table 1.
fractions and cross sections at 240 GeV of a 125 GeV Higgs
boson, with their irreducible backgrounds at the CEPC.

Standard model predictions of the decay branching

Mode Cross section or branching fraction
o(ete” - ete H) 7.04 fb
o(ete” - utu H) 6.77 fb
o(ete” > 17T H) 6.75 fb
oete” - qtq H) 136.81 fb

o(ete” - Z7) 67.81 fb
o(ete” = ZZy) 516.67 fb
o(ete” = ZZp) 556.49 fb
B(H — c¢) 2.91%
B(H — bb) 57.7%
B(H — p*p7) 2.19% 107
B(H— 1717) 6.32%
B(H — gg) 8.57%
B(H —yy) 2.28x107
B(H —» WW¥) 21.5%
B(H — ZZ*) 2.64%
B(H — Zy) 1.53x1073

fermions are produced via two (virtual) neutral vector bo-
sons. More details can be found in Ref. [36]. It should
also be noted that the sequential decays of W and Z are
not dealt with specifically, to avoid complexity, though it
can enhance the classification performance if more decay
knowledge is used.

All the generated samples are simulated in a simpli-
fied way to model detector responses. In detail, all
particles are simulated according to the performance of
the baseline detector in the CEPC CDR [9]. The mo-
mentum resolution of charged tracks is

.001
AN 10*5@—0_032
Pt psm/ 0

[GeV].

The energy resolution of photons is

o(E) 0.20
00l —
E ® VEGeV)

and that of neural hadrons is

o(E) 0.50
0030 ——,
E ® VE/(GeV)

and all the reconstruction efficiencies are assumed to be
100% in the simulation. In the case of impact parameters
and particle identification, they are taken directly from
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the truth of generation. While the simplified simulation is
a bit too ideal, it is sufficient for a feasibility study. The
performance is expected to get worse in the full simula-
tion since the impact parameters are crucial for the separ-
ations among Higgs hadronic decays, especially for

bb/ct/gg.

C. 9-category classification: training and evaluation

The ParticleFlow Network and ParticleNet are imple-
mented and running with 8 Intel® Xeon® Gold 6240
CPU cores and 8 NVIDIA® Tesla® V100-SXM2-32GB
GPU cards at the IHEP GPU farm. During model train-
ing, the common properties of the neural networks in-
clude categorical cross-entropy loss function, the Adam
optimization algorithm [37], a batch size of 1000, and a
learning rate of 0.001. 400,000 events are used for each
production mode, and the total number of events for 9 de-
cays is 3,600,000. The full data set is split into training,
validation, and test samples according to the ratio 8:1:1.
The monitoring of loss and accuracy on training and val-
idation samples shows that the models converge well and
there is no obvious over-training after the models are
trained for 100 epochs; see Fig. 1 as an example.

The computation consumption of two architectures
can be estimated and compared. Only total consumption
of the GPU and CPU is used for comparison, because all
the computing resources can only be accessed indirectly
via a workload manager server. Taking the 9-category
classification as an example, ParticleNet takes about 347
minutes for training (40 epochs) and 4 minutes for infer-
ence while PFN takes only about 76 minutes for training
(100 epochs) and inference. It can be seen that computa-
tion of both architectures can be finished on a reasonable

1.75 — Training loss
Validation loss
1.50 —— Training accuracy
—— Validation accuracy
1.25
£1.00
2
=
£0.75
<
0.50
0.25
0.00
0 20 40 60 80
Number of epoch
Fig. 1. (color online) Accuracy and loss versus the number

of epochs of the e*e™ — e*e™H process during training.

time scale, although PFN is much faster than ParticleNet.
This is consistent with the results in the Ref. [27].

The outputs of the classifier, which are from a nine-
unit layer with a SoftMax activation function, are visual-
ized in various ways. The SoftMax is essential because it
helps to produce scores comprising 9 probabilities pro-
portional to the exponential of the input information for
each event, which is input for a cut-based data analysis.
Figure 2 presents the 9 scores for each category. Taking
the bottom left panel as an example, these events are of
H — ZZ*, and the curves in different colors represent the
probability distributions identifying H — ZZ* as the oth-
er processes. The blue curve peaks when the score ap-
proaches 1, which means the classifier can identify
H — ZZ* signals. There are two small peaks in the blue
and brown curves around 0.8, which shows that H — ZZ*
and H — yZ can contaminate each other because of the
similarity of their cascade decays. From Fig. 2, it can be
seen that high-dimensional data is difficult to visualize
intuitively. A better way is plotting data in lower dimen-
sions to show the inherent structures. To aid visualiza-
tion of the structure of 9 outputs, the +~-SNE [38] method
is used. Figure 3 shows the distribution of the two largest
components after the dimensionality reduction, where la-
bels 1-9 represent the 9 decay modes of the Higgs boson
from c¢ to yZ in the same order as the above. The pat-
terns in Fig. 3 are consistent with those in Fig. 2 but
much clearer. It can be seen that u*u=(3), yy(6), v¥v7(4)
and yZ(9) modes are almost isolated clusters and their
backgrounds are rather low in this simplified case. The
clusters of the others can also be seen and the overlaps
are also significant.

Some standard quantities can measure the perform-
ances of classifiers. For instance, efficiency (EFF) meas-
ures the fraction of correctly classified observations,
ROC curve (Receiver Operating Characteristic curve)
visualizes the True Positive Rate (TPR) versus the False
Positive Rate (FPR), and AUC (Area Under the Curve) is
the area under the ROC curve. If we have a better classi-
fication for each threshold value, the area grows, and a
perfect classification leads to an AUC of 1.0. The EFF
and AUC for all 36 processes in the 4 tagging modes are
summarized in Table 2. Several conclusions can be drawn
from the table. First, the accuracy reaches about 87%,
which is good and adequate for further analysis. The de-
cays of H— u*u~, v"1~, and yy have the best efficiency
and largest AUCs, as expected. Last but not least, the ef-
ficiencies of H — ZZ* or WW* are not as good as the oth-
ers. The main reason is that the similarities between them,
as well as bits of bb, cc, and gg can also fake WW*/ZZ*.
This leaves room for further improvement.

Finally, the confusion matrices are used to evaluate
the performance of the ML model and to be used as an
important ingredient for further data analysis. Confusion
matrices are calculated by comparing the prediction of
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(color online) Classification performance on the test

are used, taking 10,000 events of e*e™ — ete”H for illustra-
tion.

the model and the true labels. Figure 4 shows the confu-
sion matrices of the four classifiers. In terms of the confu-
sion matrix, the efficiencies appear as the diagonal ele-

meH\ U RO BRI
0.2 0.4 0.6

Score

bb r HHY

88 B 124

I

ww —cc —bb —pup vZ

0.8 1 0 0.2 0.4 0.6 0.8 1
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(color online) The distributions of 9 outputs for each true category, taking e*e”H as an example. Each score is calculated by

ments of the corresponding confusion matrices, and the
off-diagonal elements represent misclassification rates.
So confusion matrices contain complete information of
both the correct and incorrect classifications, which could
help to unfold the generated numbers of signals, N;.

D. Attempted 39-category classification

The above study shows that multicategory classifica-
tion is very promising in data analysis, so here a more
ambitious case of 39-category classification will be tried.
For the signal processes, considering that Z decays into 4
categories (neglecting neutrino decay and W fusion pro-
cesses up to now), i.e, ete”, utu~, ¥, and ¢g, and that
the Higgs has the same 9 decay modes as above, so there
are 36 signals. For a realistic analysis, the backgrounds
must be taken into account, especially the irreducible
ones. In the analysis of e*e™ — ZH study, the irreducible
backgrounds mainly come from the SM process of
e*e” — ZZ. The background can be categorized into 3
classes depending on the decays of Z bosons, i.e, pure
leptonic (ZZ;), semi-leptonic(ZZ), and hadronic (ZZ)
decays. Overall it is a 39-category classification problem.

Same data sets of the signal and extra 3 background
processes are pre-processed with the same procedure,
which has 39x400,000 = 15,600,000 events, which is
very challenging because of memory usage. So we switch
to another deep learning framework, ParticleNet/Weaver
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Table 2. Efficiencies (left) and AUCs (right) of four classifiers.

Decay mode e’ wH T H i
EFF AUC EFF AUC EFF AUC EFF AUC
H—cc 0.880 0.991 0.882 0.991 0.857 0.987 0.755 0.966
H — bb 0.908 0.994 0.893 0.994 0.877 0.991 0.733 0.972
H-outu 0.997 1.000 0.986 1.000 0.981 1.000 0.983 1.000
H- 7ttt 0.993 0.999 0.985 0.999 0.985 0.999 0.982 0.999
H—gg 0.810 0.985 0.830 0.986 0.816 0.982 0.736 0.954
H—vyy 0.997 1.000 0.999 1.000 1.000 1.000 0.997 1.000
H—Z7Z* 0.650 0.958 0.667 0.960 0.585 0.947 0.535 0.926
H—> WW* 0.806 0.981 0.801 0.981 0.771 0.974 0.632 0.952
H—-vyZ 0.921 0.996 0.936 0.996 0.910 0.993 0.896 0.993

cc 0.00 0.00 0.02 0.00 0.02 0.04 0.01 cc 0.00 0.02 0.04 0.01
bb 40 0.00 0.01 0.00 0.03 0.00 0.01 bb 4 0- 0.00 0.05 0.00 0.01
0.8 0.8
e 0.00 0.00 0.00 0.00 0.00 0.00 up A 0- 0.00 0.00 0.00 0.01
tr40.00 0.00 0.00 0.00 0.00 0.01 0.01 0.6 40 0.00 0.00 0.00 0.01 0.6
() ()
a g9 1 0.03 0.03 0.00 0.00 0.00 0.06 0.06 0.01 a gg 10 0.00 0.06 0.06 0.01
= =
vy 0.00 0.00 0.00 0.00 0.00 @MN 0.00 0.00 0.00 r0.4 vy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.4
77 40.05 0.08 0.00 0.01 0.08 0.00 0.11 0.02 7z 40.05 0.05 0.00 0.01 0.08 0.00 {H¥A 0.12 0.01
ww ]0.03 0.00 0.00 0.01 0.06 0.00 0.09 0.01 02 ww ]0.03 0.00 0.00 0.01 0.06 0.00 0.09 0.01 02
¥Z 0.01 0.01 0.01 0.02 0.00 0.01 0.02 0.01 ¥Z 0.00 0.00 0.01 0.01 0.00 0.01 0.02 0.00
T T T T T T T T — 0.0 T T T T T T T T — 0.0
R R RV G CE R S S R NV G
Predicted Predicted
(a) (b)
cc 0.00 0.00 0.02 0.00 0.02 0.04 0.01 10 cc HLEH 0.09 0.00 0.00 0.07 0.00 0.03 0.04 0.02
bb 0.00 0.01 0.00 0.04 0.00 0.02 bb 40.11 0.00 0.09 0.00 0.05 0.01 0.02 08
0.8 -
e 0.00 0.00 0.00 0.00 0.00 0.01 Iiﬂl 0.00 0.00 0.00 0.00 0.00 0.00 0.01
7 40.00 0.00 0.00 0.00 0.00 0.01 06 -7 40.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.6
(5]
g g9 0.04 0.02 0.00 0.00 0.05 0.07 0.01 E g9 0.09 0.06 90.00 0.00 0.00 0.05 0.05 0.02
= =
e 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F0.4 e 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 r0.4
77 40.06 0.08 0.00 0.01 0.09 0.00 0.13 0.02 7z 40.09 0.09 0.00 0.02 0.16 0.00 Uik 0.09 0.02
Www40.05 0.00 0.00 0.01 0,08 0.00 0.08 0.01 02 ww {008 0.04 0.00 0.01 0.13 0.00 0.09 0.01 02
vZ 0.01 0.01 0.01 0.02 0.01 0.00 0.02 0.01 vZ 1 0.02 0.02 0.01 0.02 0.02 0.00 0.02 0.01 NeXeV)
T T T T T T T T — 0.0 T T T T T T T T —- 0.0
A T VR G e S T IR G
Predicted Predicted
(c) (d)
Fig. 4. (color online) Confusion matrices of (a): ete™ — ete™H, (b): ete™ - utu~H, (c): ete” - v77"H, and (d): ete™ — ggH.
[27, 39], which has a more flexible memory strategy. ation power among all 39 processes. For the signal, four
The confusion matrix of the 39-category -classifica- blocks of the e*e™H, u*u~H, t"1t~H, and qgH processes
tion is presented in Fig. 5, which shows very good separ- can be seen clearly, which demonstrate similar patterns to
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the corresponding processes in Fig. 4. In each sub-matrix,
the H — yy, p*u~, and 777~ decays achieve the best per-
formances. Among the four "blocks", the misclassifica-
tion rates are rather small. The H — ZZ* decay doesn't
achieve as good performance as the other decays, which
is also consistent with the results of the 9-category classi-
fication. For the irreducible backgrounds of e*e™ — ZZ,
all of three processes are labeled correctly with very high
efficiencies, greater than 90%, which indicates that the
kinematics of different events can be learnt to discrimin-
ate the irreducible backgrounds by the ParticleNet.

In this 39-category classification, all 9 Higgs decays
in 4 tagging modes with the irreducible backgrounds to-
gether can be classified with rather good accuracy. It is
different to the single tagging mode, which indicates that
the Higgs decays can be determined with a combined
method using much more information.

IV. SUMMARY AND DISCUSSION

In this paper, we presented a study of the classifica-
tion of the Higgs decays with the state-of-the-art ML ap-
proaches at electron —positron colliders. We deploy the
ML techniques and try to classify both the signal and

(color online) Confusion matrix of the 39-category classification.

background events with only particle-level information
and to obtain the confusion matrices, which can be used
in further data analysis. This approach is the basis of an
efficient and balanced "one-stop" analysis, which makes
it possible to measure all Higgs branching fractions using
all detector information and taking all the commonalities
and correlations into account. For the analyses of tens or
hundreds of channels, they can be repeated using this
technique in a few days if all data samples are ready. In
contrast, the time could be considerably longer using con-
ventional analysis methods.

This work is only a feasibility study. There are vari-
ous possibilities to improve and further validate these
methods. One is to enhance the performance by taking
the sequential decays of W and Z bosons into account and
add more categories in the classification, which can ad-
opt more information for each category and enhance the
classification performance. Another endeavor with more
physical significance is incorporating some physics pro-
cesses beyond the SM in the analysis, such as invisible
and semi-invisible decays of the Higgs boson, which can
enhance the sensitivity of an experiment to new physics.
In addition, an important issue is to investigate the de-

113001-7



Gang Li, Libo Liao, Xinchou Lou ef al.

Chin. Phys. C 46, 113001 (2022)

tailed performance of the classification method based on
full simulation. It is also very constructive to take the full
SM backgrounds and main systematic uncertainties into

account.
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