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Abstract: The search for an effective reduction method is one of the main topics in higher loop computation. Re-

cently, an alternative reduction method was proposed by Chen in [1, 2]. In this paper, we test the power of Chen's

new method using one-loop scalar integrals with propagators of higher power. More explicitly, with the improved

version of the method, we can cancel the dimension shift and terms with unwanted power shifting. Thus, the ob-

tained integrating-by-parts relations are significantly simpler and can be solved easily. Using this method, we present

explicit examples of a bubble, triangle, box, and pentagon with one doubled propagator. With these results, we com-

plete our previous computations in [3] with the missing tadpole coefficients and show the potential of Chen's meth-

od for efficient reduction in higher loop integrals.
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I. INTRODUCTION

The calculation of multi-loop integrals is essential
when theoretically predicting the scatting amplitude of a
given process. For these calculations, the PV-reduction
method [4] is a widely used approach, and one way to
implement the reduction method is to use the integrating-
by-parts (IBP) relation [5—7]. As one of the most power-
ful techniques for loop integral reduction, IBP gives a
large number of recurrence relations, and the reduction
can be represented by a combination of simpler integrals
via Gauss elimination. However, as the propagator num-
ber and power increase, the IBP method becomes ineffi-
cient; hence, more efficient reduction methods must be
found.

The unitarity cut method is an alternative reduction
method and has been proven to be useful for one-loop in-
tegrals [8—17]. In a physical one-loop process, the power
of the propagator is just one; however, if the method is
complete, it should be able to reduce integrals with high-
er power propagators. Such a situation is not simply a
theoretical curiosity but appears in higher loop diagrams
as a sub-diagram. Furthermore, although the scalar basis
is natural for one-loop integrals, in general, the choice of
basis can be different, depending on the physical input.
For example, in the topology of a one-loop bubble, the

basis, in which one propagator has a power of two, could
be used as part of the UT-basis [18, 19].

In a previous study [3], we successfully obtained an
analytical reduction result for one-loop integrals with
high power propagators by combining the tricks of differ-
ential operators and unitarity cut. We gave coefficients to
all bases except the tadpoles'; however, the unitarity
method could not be used because the tadpole has only
one propagator. To complete this investigation, the miss-
ing tadpole coefficients must be found using other effi-
cient methods.

Other than the unitarity cut method, there are propos-
als to overcome the difficulties of IBP using tricks and
other representations of integrals, such as the Baikov rep-
resentation [20, 21] and Feynman parametrization repres-
entation [22, 23] for loop integrals. In recent years, Chen
proposed a new representation for loop integrals [1, 2].
His method is based on the generalized Feynman para-
metrization representation, that is, an extra parameter
Xu+1 18 introduced to combine U, F in the standard Feyn-
man parametrization representation. Such a generaliza-
tion will offer several benefits when deriving the IBP re-
currence relation, as shown in this paper.

As a common feature, the IBP recurrence relation de-
rived using the generalized Feynman parametrization rep-
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resentation will naturally have terms in different space-
time dimensions. Because we are always concerned with
reducing a particular dimension D, which is typically set
to 4—2¢ for renormalization, we wish to cancel these
terms in different dimensions. In general, this is not easy.
In [24], Gluza, Kajda, and Kosower showed how to avoid
the change in the power of propagators in standard mo-
mentum space. Larsen and Zhang considered the Baikov
representation and demonstrated how to eliminate both
dimensional shifting and the change in the power of
propagators [25-30]. These methods require a solution to
the syzygy equations, which is generally not easy. In
Chen's second paper [2], he proposed a new technique to
simplify the recurrence relation based on non-commutat-
ive algebra.

Motivated by the above discussion and preparing
Chen's method for high-loop computations, in this paper,
we use Chen's method to find the missing tadpole coeffi-
cients from our previous study. Furthermore, we use the
idea of removing terms with dimensional shifting in the
derived IBP relation to construct a simpler reduction
method, with the analytic results expressed by the ele-
ments of the coefficient matrix A.

This paper is organized as follows: In section II, we
review and illustrate Chen's new method with a simple
example in section II.A. In the example, integrals natur-
ally emerge in different dimensions. We discuss the phys-
ical meaning of the boundary terms, which contribute to
the sub-topologies. To cancel dimensional shifting in the
parametrization form and simplify the IBP relation, a new
trick is proposed in section II.B in which free auxiliary
parameters are added based on the fact that ' in the integ-
rand is a homogeneous function of x; with degree L+ 1.
Using this trick, we successfully cancel dimensional
shifting and drop the terms that we are not concerned
with. Moreover, we present a simplified IBP relation in
which all the integrals are in the particular dimension D
and integrals other than the target have a lower total
propagator power. The analytic result is presented as a
determinant of the cofactor of the matrix A, which is en-
tirely determined by a graph. In section III, we calculate a
triangle 13(1,1,2), box I4(1,1,1,2), and pentagon
Is(1,1,1,1,2) in parametric form using this trick and
present the analytic results of all coefficients to the mas-
ter basis, especially the tadpole parts, to complement our
previous study.

II. CHEN'S REDUCTION METHOD IN PARA-
METRIC FORM

In this section, we introduce a new reduction method
proposed by Chen in [1]. The general form of a loop in-

tegral is given by

N
IINIK) = f PPy N0
Dl'D22D3J .. DY
where, for simplicity, we denote [=(I1,,13,---,l;) and

k = (ky,kp, k3, ,k,). Because we consider only scalar in-
tegrals with N(/) = 1 in this paper, let us label

1
. = D D
1(L,/11+1,-~~,/ln+1)—fd ly---d ILW'

2)

Using the Feynman parametrization procedure,

L L L
ZaiDi=2Aijli'lj+22Bi'li+C’ (3)
i ij i=1
and thus loop integrals can be found as

f dP1y -+ dP e E D) —einl(1=2)/27LD/2 et A)=D/2

« el(C-ZA;'BB) ()

Defining U(a) = Det A and C—ZAi‘le,-~Bj =V(a)/U(a)-
Zmizafi 1), we can see that U(a) is a homogeneous func-
tion of a; with degree L, whereas V(a) is a homogeneous
function of «; with degree L+ 1. The loop integral be-
comes

IL; A +1,---,4,+1)
o= Z((A+1)/2)ir

_ inL(1-D/2)/2; LD/2
I, T( + 1)

« f dar -+ day U(@) P2V @U@-Snialgh b (5)

To derive the parametric form suggested by Chen, we
perform the following: Using the a-representation of gen-
eral propagators,

1 e ((rD/in oo oy 2 .,
Byt = T+ Jy dae' ™ ™ a”, Im{l*—m~} >0,

(6)

where "ie" is neglected, we obtain

1) The relation has been verified in many places based on the method in graph theory.
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o= 2 (A1) 2)in ables, we must insert another constraint condition. In gen-
LA +1, 4+ 1)) =—o— | d°1;---dPI, eral, we could let
" " T(;+1)
xf dal~~~da,,eizzz:""'D"af' ek Z xi=1, (8)
0 ieS (1,2.3,-n)
()

) ) where S is an arbitrary non-trivial subset of {1,2,3,---n}.
To go further, we change the integral variables to  Afier carrying out the integration over #, the second line

@; =nx;. Because there is a total of n independent vari-  of Eq. (5) becomes
|
DL UGy - (D/2(L+1)
(—i)(”+/l_DL/2)r(n+/l——)dexl -oodx, o ij—l (x) 5 — zx;ll ,,,x;Lln
2 = [=V(x) + U(x) mix;]r+A-PLI
~n+A-DL/2 DL A pds A
=(~i) F(n+/l—7) dry - d (Y xj= DUS FUad b, 9)

jes

where

U@ = U@ = UG, V) =n V@) = Ve, fx) = -V + U Y mix

n
D DL
/l=;/l,-, Li=ntd=S(Lal), Ap=—n=d+ = (10)
Finally, via Mellin transformation’
T(-A; - A o
atpt = TCA— ) dx(A + Byt x bl (11)

T T(=ADT(=A) Jo

we can express (9) as

A DL\ I'(=4,—21¢) o L
(1) +4 DL/ZF(n+/l— ) “”7f dxl---dxné{ij—l]j(; dx,,+1X(Ux,,+1+f)’l“+’lfxnf‘i 1x’f‘---xﬁ”

2 JT(=A,)T(=2p) £
E(_l-)n+/l—DL/2 I'(n+A-DL/2)['(=A, - Af) fdn(n+1)F,10x,l, S S e
F(-1)0(-2y) Lo
T(n+A-25r=1,-2
( el it (12)
(=) (=45)

E(_l')}’l+/1—DL/2

[
where Combined, we finally obtain the parametric form of the
scalar loop integrals in (5),
A+ =dx, ~~-dxn+16(z xj—1),
jes (-2
n LA+, A+ 1) = (—1)"“1'%“)/2Hl(—‘))im,..%”.
F=Uxp+f, A= Z/l,-, 4 T(+1)
i=1

(14)

1

D
/10 Z/lu +/lf = —E,

D A. 1IBP identity in parametric form
o1 == —1==(L+1)—A-1-n. (13) _ . _ _
2 The parametric form of (14) is the starting point of

1) Different from the traditional Feynman parametrization, here we should add a new auxiliary parameter x4 to transform the integral into symmetric form.
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Chlf):21)1's proposal. The IBP relations in this form are given
by

f ) ; I

X; n+1

+(5/[”0 fdn(n){F/loxfl .. _x;:,,x/l,,+|+1} )

n+1

L,=00 (1)

where i = 1,...,n+1, and dII® in the second term is

dn® = dxl---d3c,~~~~dx,,dxn+16{2xj— 1]. (16)
jes

The second term in (15) contributes to a boundary term,
which leads to the sub-topologies of the former term.

To illustrate the IBP relation (15), we present the re-
duction in I5(1,2) as an example. The general form of
one-loop bubble integrals is given by

Lm+1,n+1) f 47! (17)
m ,n = s
2 (12 —m%)'"”((l—p])z —m%)"*l

and the corresponding parametric form is (in this paper,
we ignore the former factor #-P/?)

L(m+1,n+1) =i(=1)™"*2

r(3)

*Ton+ D+ DE(D—2—m—n)

X f AV Fh Xy, (18)
where
F=(x+ xz)(m%xl + m%xz +x3) —p%)qxz, (19)
and
iymn = f A P, (20)

. D .
with 2y = ~5 and A3 = -3-m—-n-24y. Using Eq. (15),
we can obtain three IBP recurrence relations. First, tak-

ing aixl, the first term in (15) gives

. 2, . .
AoLgy—1;mn + 2””1/101/10—1 im+ln T A/lol/lo—lgm,nﬂ > (21)

where A =m? +m} - p?. The second term gives

2 2 Ao N+dy —2-n-22, _ .
im0 f dIT? (x3 + myxp Yo xy o x "= S 0idyi— -

3
(22)

Here, the notation i,._;,must be explained. From the
middle expression of (22), we see that it is the parametric
form of the tadpole f dP1/(I* = m2)™'. To emphasize its

origin, that is,from a bubble by removingthe first propag-
ator, we extend the definition of iy, . given in (12) by
setting A; = -1 Y, Using the extended notation, we ob-
tain the first IBP relation

. 2, .
/101/1(.—1;n1,n + 21’)11 /101/10—1;m+1,n

+ A/101./10—1;m,n+l + 6m,0i/lo;—],n =0. (23)

When we set m =n =0 in (23), this reads
A0i,-1:0.0 + 2m3 Agia,-1:1.0 + Adoia1:01 +ip-10=0.  (24)

Similarly, we can take the differential ai and obtain the
X
second IBP relation ?

. . 2, . .
A0ia-1:00 + Adoiz,—1;1,0 + 2m5A0i3,-1:0,1 +ix:0-1 =0.  (25)

We should solve iy01 by iy00 from (24) and (25).
However, for the bubble part, we have 1p—1 instead of
Ao. This could be fixed by rewriting 19 — Ao+ 1 because
Ao is a free parameter. However, the boundary tadpole
part iy.0-1 will become i, 4+1.0-1, that is, it will have the
dimensional shifting, which is a common feature in the
parametric IBP relation.

To deal with this, using the parametric form of tad-
poles

. o . ~2-m=2,
idgm—1 = fdl'[(z)(xlx3 +mixd)t g (26)

. 0 0 .
and taking the — and —, we can obtain two IBP rela-
" 6X1 6x3

ions,

1) In some sense, the parametric form can be considered as the generalized Feynman parametrization form. Thus the IBP relation (15) could be called the IBP re-

lation in the generalized Feynman parametrization form.

2) The IBP relation requires the term in the bracket of the first term to be degree (—n), which can be obtained by multiplying any monomial of degree one. Here in
(15) we have multiplied x,,4+; by our experiences from later examples, but one can make other choices.

3) Same notation has also been used in [2] (see Eq. (5a)).
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. 2, . .
AoLy-1ym,—1 + 2my Aol ~1;mr1,-1 +Migy m-1,-1 =0,
Aoip—1sm+1,-1 + (=1 =m—=220)ig;m-1 =0, (27)

from which we solve

. —Ao .
101 =—=———I1-1:0-1,
A0;0,—1 2m%(2/10+1) Ao—1;0,—1
-
110 =————————103-1--10- 28
Ai=1,0 2220 + 1) A-1:-1,0 (28)

Inserting (28) into (24) and (25), we can solve iy 1.0, -
After shifting 1g — 4o + 1, we finally get

) Zm% -A -1 ]
WO TN 00 A A2 = amind) 0!
+ A iy:—1.0-
22200 + 32— dnitnd)
(29)

Translating back to the scalar basis, we obtain the reduc-
tion in I(1,2) as

12(1,2) = 02_,2]2(1, 1) +6‘2_)12]2(1,0) +6‘2_,1;112(0, 1), (30)
with the coefficients

(D -3)(A—2m?)

€20 =
=2 A2 —4m2m;
D=2
€212 _—A 4m2 7
(D-2)A
C2o1T = GD

2mZ(4mim} - A?)

This result is confirmed with FIRE6 [31, 32].

B. Improvement of parametric IBP

As shown in the previous subsection, the IBP relation
given in (15) will contain integrals with dimension shift,
which makes the reduction program slightly troublesome.
As reviewed in the introduction, there are several refer-
ences dealing with this or related problems. Based on
these studies, an improved version of the IBP relation has
been given in [2] (see Eq. (12) and (13)). All these meth-
ods require a solution to the syzygy equations, which is

not generally an easy task. However, for our one-loop in-
tegrals, the function F(x) is a homogeneous function of x;
with degree of two". This good property simplifies the
related syzygy equations, which can then be directly
solved”. In this paper, we develop a direct algorithm to
express the IBP relations without dimension shift and
terms with unwanted higher power propagators.

In the generalized parametric representation, our im-
proved IBP relation involves multiplying Eq. (15) by a
degree zero coefficient z;, for example, z; = “x’g ~e B
Because the degree of the new integrand does not change,
the”IBP identity still holds. Summing them together we
get’

n+l
(n+1) Ay A /ll+,+1
Zf dIT ZlF xl xz KXl }
n+l
0 /]I A/H»I —
+ 600 f AWz Foxt o xbxl |, o = 0. (32)
i=1

Because the second boundary term involves integrals
with sub-topologies, we focus on the first term. Expand-
ing it, we get

n+l1 (9 Z_t')_F )
de('”“[Z(ﬁ + Ag 2 +/l,~ﬁ)+zn—+l}
ox; F Xi Xn+1

i=1

Ao A Ao A, A+l
XFOx) x5 (33)

From (13), we can see that the power Ay of F is re-

lated to dimension. To cancel the dimension shift, we
n+l

must choose the proper coefficients z; so that Zz,— is
l
a multiple of the function F, that is, =
n+1
Zz, +BF =0. (34)

Because the coefficients z; are not polynomials, (34) is
not the "normal syzygy equation,” and we cannot dir-
ectly use the technique developed for the polynomial
ring. In [2], Chen developed a method based on the lift
and down operators. Here, for the one-loop integrals, we
can solve it directly with free auxiliary parameters, as
shown later in this paper. When reinserting the solutions
to the IBP recurrence relation, we can choose these free
parameters to cancel both the dimension shift and un-

1) Note the F(x) is a homogeneous function of degree L+ 1 where L is the number of loops.
2) In general, this trick could be extended to high loops to avoid the troublesome calculation of syzygy equations.

3) Notice the summation of 7 is form 1 to n+ 1, where we have included the auxiliary parameter x,.1, which is an apparent different from the tradition Feynman

parametrization.
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wanted terms with higher power propagators, which leads
to a simpler recurrence relation.

Now, the idea is explained in detail. Note that in the
one loop case, the homogeneous function F is a degree
two function of x;; therefore, we can write F as

1
F= EAijx,‘Xj, (35)

. . .1
where A4 is a symmetric matrix . Thus, we have

h
X1
. S X
fi=s —, f: AA)Ac, fE : , X= : s
6)(,' . .
I n
Xn+1
L fn+1
Solving £ = A~ f, we have
1
F =§chAfc = —fTAHTAA"'f
| REPUN A
=5 1A f= 1KY,
Lo

where the coefficient matrix K is a real symmetry matrix.
In fact, we can go further. Using

0= fTRaf (37)

with any antisymmetric matrix Ké , we can add (37) to
(36) to obtain a more general form )

F=fTRf+fTRaf = fT(R+R0)f = fTRf
I+ K4A. (38)

Note that because the arbitrary matrix K, is of rank n+1,
nn+1)

there are free independent parameters,

ay, 5 Anmn+1))/2» in the matrix Q in (38)
Now, reinserting (38) into (34), we can solve 2 as

fT2+BfT02=0, = 2=-BO%. (39)

Note that because z is degree zero, we should ensure B is
a homogenous function of degree —1. In this study, we
choose B=1/x,.;. The choice of z given by (39) will
guarantee the removal of dimension shift in the IBP rela-
tion. Furthermore, by choosing particular values of the
free parameters of O, we may cancel several unwanted
terms. Some examples are shown in later computations to
illustrate this trick.

III. REDUCTION IN ONE-LOOP INTEGRALS

As mentioned in the introduction, one motivation of
this study is to complete reduction in the scalar basis with
general powers. Using the unitarity cut method in [3], we
are able to find reduction coefficients of all bases, except
the tadpole. In this section, we will use the improved IBP
relation (32) to find the tadpole coefficients as well as
other coefficients.

A. Bubble case

We begin with bubble topology. Although this was
already done in (30), we redo it using the improved IBP
relation (32). The parametric form of bubble is given by
(18), (19), and (20). Using our label, we have

Zm% A1
f=A%, A=| A 2md 1|, (40)
1 1 0
and
F=fTKf,
L _L et
2 2 2
4pl 4p1 4p1
g=| L L miomn
2 2 2
4pl 4pl 4p1
—m% + m% + p% m% - m% + p% A’ - 4m%m§
2 2 2
4p1 4pl 4p1

(41)

Adding the antisymmetric matrix K4, we have

1) In general it is not necessary to make A be symmetry matrix, and this is just one choice. But for the simplification of the following calculation, since we will later
set an antisymmetric matrix Ky, it is convenient to make the convention to set A be symmetry matrix.

2) The antisymmetric matrix K4 will not contribute to the F, but it will change 0 in (38), thus gives more free parameters in the solution of Z in (39).
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1+ 2a; +2a1m% + 2a1m§ —2a1p%

0 ay ar 2
—a; 0 a3 |, 0=
—dy —das 0

o
Il

a3—2a1m%

2 2, .2
—2aym7 —az(my +m; —

1. Deriving the recurrence relation

Taking B=-1/x; in (34), solution (39) gives z; =
(Qijxj)/x3. Expanding (32), we obtain the IBP recurrence
relation

cm,ni/lo;m,n + Cm+1,ni/l‘,;m+1,n + Cm+1,n—-1 i/ln;m+l,n—1
+ Cm,n+1 i/ln mn+1 + Cm—1,n+1 i/ln;m—l,n+1
+ Cman—1 i/lo;m,n—l + Cm—l,ni/lo;m—l,n + 62 = 0, (43)

where §, is the boundary term, which we will compute

ar + 2a1m§ ay
1+2a3— ZaIm% - 2a1m% + 2a1p%
2 1-2 " 2
—<4dpy — a3
p%) —2a3m§ - az(m% + m% - p%) —
42)
Cmpr1 =03243 = —A3(a2A12 — a3Az),
Cm-1n+1 =Q12m = m(a1Az + arAzy),
Cmn—1 =Q23n = —n(a1A13 — azAs3),
Cm—10 =Q13m = m(a1Az; +azA33). (44)

Because we aim to obtain the reduction in I»(1,2), start-
ing from m =n=0, we want to eliminate terms with the
indices (m+ 1,n) and (m+ 1,n—1) while keeping the term
with the index (m,n+1). Thus, we impose c¢y+1, =0 and
Cnt1 -1 =O1 which can be satisfied by choosing the free
parameters

later. The other coefficients are == a1Az; = —a (2 +m2 - p?)
Al 1 13— pi)s
Cmn = Q11 +m)+ O0n(1 +n)+ Q33(1 + A3) + Ao, as :aAA“ = 2aym’. (45)
Cm+1n = Q3143 = —A3(a2A11 + azAzy), 3
Cmrinm1 = Qun = —n(@iAn —asAs), After this choice, the matrix O becomes
1 a a
= —L(ApAs —AnAn) L (Ap3A31 - Ay As)
2 1A31 Az
A a, a)
0,=10 E‘E(AIZAM -AnA3) A_31(AIIA33_A13A31) ,
aq 1 aq
0 —ApAy-Andn) z+-—(ApAy—-AnA»)
A31 2 A3l
leaving five terms with non-zero coefficients”.
—a1 A —a1 A3, ~
Cmntl =%(A11A22—A12A21)= 2\ A3l = ar s,
31 31
ma may -
Cn-1n+1 == —L(A21A3 —AnAsr) = ——A 3] = —aym(m} —m3 - p?),
Asp Asy
na na ~
Crmn-1 =—"L(A11A3 — A13A3)) = —Ap| = —ain,
Az Asy
ma —-ma; -
Cn—1p =— —L(An1A33 - An3Az1) = —A o] = arm,
A31 A31
a a N
Cmn =A—311((1 +m)(A11A32 —AAs) = (A3 + 1)(A11 A —A13A21)) = A_311(n — A3)|A23]
a
=A—311((n—a3)(m% —m}+p})). (46)

1) For this example, one can check that we can not add another constraint to fix aj .

2) where we use the convention |A; j| means the cofactor of matrix element A;;.
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The boundary §, term: The 6, term is given by where A; represents the power of x;. It is worth emphas-
5 izing that because z; contains x;, the total power A; of x;
. . .. 1

5y = 251,,0 fdn(z) {Z,‘F’l"x'l”x’z’xg““} L (47)  isnotequal to m,n, A3 in general. Expanding it, we get

i=1

2 A +1 A A +1 4 A As+1
62 =61, f dMP(Qy FYx ™ xy + Qua FY iy xy + Qs PR ™)

x,=0

2 A o+l n A 2 +1.4 p L+l
+6,12,0de( )(Qle TN + Qo FX T xS + Qoa Fx x5 x5 )

x2=0.
(48)

Remembering our extended notation explained under (22), we have

de(z)Fljj}:Oxg Ei/ltﬂ_l»"’ de(z)Flizzox'ln = i/l(,;m,—l, (49)

and the 6, term can be written as

62;r =6/11,0(Q11;ri/10;m+1,n + QlZ;riﬂo;m,n-%—l + Q13;ri/l(,;m,n> + 6/12,0(Q21;ri/h,;m+1,n + Q22;ri/l(,;m,n+l + Q23;ri/10;m,n)

=0m,~1 Q11:riay= 1,0 T Om0012:r0 0y~ 1n+1 + Om0 Q13:r8ag =10 + 0n 002171 A yms 1,1 + 0 —1 Q2283 sm~1 + 0000230000 m~1,  (50)

[
where the subscript » in 65, and Q;;, indicates that a, equal to zero, and we are left with?
and a3 should be replaced by (45).
Because m and n cannot be -1, the first and fifth
terms are actually zero. €0.012,:00 *+ €0.112,:0.1 + 6200 = 0, 1)
Now, we can use (43) and (50) to get our result dir-
ectlv. Settine m=0. n=0. and all other terms in (43) with the coefficients

co0 =—ai(D=3)(m? —m3 + pd),
co,1 =a1(D— 3)(’"‘1t + méz‘pél‘ - 2’"%17% - ZmEp% - 2’"%’”5)

62:00 =Q12;ri2,-1,1 + O13:ri40:-1,0 + Q218,511 + O23:710,:0,-15 (52)
where

—ai —aj, ~ —a) —aj, ~
D01 =—(A21A3 —ApAz1) = —|A13], O3, = —(A11433 —A13A31) = — A,
Az Az Az Az

—a —a ~ —a —a ~
Q12 =—(A21 Az — ApAsz1) = — A1, Q13 = —(Ag1As3 —An3As) = —|A . (53)
Az Az Az A3

From this, we can directly write the solution as

. . Cop, i
{00 = = 10,00 = [34;-1,0- (54)
0

s 5 5 5 5

1) Since we have kept dimensional regularization €, the A3 can not be zero, thus the corresponding boundary term does not exist.

2) When setting m = n = 0, except the boundary term d,, among other seven terms in (43), the coefficients of the second and the third terms have been chosen to be
zero. For the other five terms, one can show that ¢,;,—1 441, Cmu—1, Cm—1,2 are zero by using the last line of (44). There is another technical point. When m = n =0, the
seventh term will contain i,;-1,0, which looks like the one defined in (49). But they are, in fact, different. The one appeared in (43) with the measure dlI® while the
one appeared in (49) with measure dI1? .
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Translating back to scalar integrals, it is

L(1,2) =c1o-115L(, 1)+ c1251062(1,0)
+¢1252002(2,0) + c1250112(0,1)
+c12-0212(0,2), (55)

with C12-20 = 0 and

—~(=3+D)(m? —m3 + p?))

Cla11 = ,
2 2_ 2 202, 2
(m + (m5 — p7)* = 2miy(m3 + p7)
D-2
c2-10= 2(2 , 2 4 2 2)\?
—2m1(m2+p1)+m1+(m2—p1)
2-D
1201 = 2(, 2, 2 4 2 2\?
—2m1(m2+p1)+m1+(m2—p1)
2,2, 2
—-m?+m:+p
[Tyt Py
Cl2-02 = (56)

—Zm% (m% + p%) + m‘l1 + (m% - p%)z

D-2

Using 1,(2,0) = 5
m

D-2
(1,0)" and 1(0,2) = ——5(0,1),
2m

we have our final results for the reduction in I»(1,2),

L(1,2) = c250 (1, 1) + ¢ 150(1,0) + ¢5,1.112(0, 1), (57)

with the coefficients

(D- 3)(m% —m% +p%)

T e ) el ()
o D-2
i —Zm% (m% + p%) +m‘ll + (m% - p%)2 ’
_ 2,22
. (D=2)(m?+m2 = p?) 9
Zm% (—Zm% (m% +p%) + m‘l‘ + (m% —p%) )
which is given in (30).

B. General case for bubbles

Now, let us consider more complicated examples, that
is, bubbles with general higher power propagators. With
the choice of (45), we get an IBP recurrence relation (46)
and use it to reduce the bubbles i mnqr1 to simpler
bubbles, which have a lower total propagator power and
no higher power in D,. Similarly, by choosing different

1) The reduction of tadpole with higher power is simple. Noticing that 7>(1,0) oc (m

wanted reduction coefficients.

values of a, and a3, we can obtain another IBP recur-
rence relation to reduce the integral to those with no high-
er power in D;. The choice is

a1Axn _alAp
- ) as = )
Az Az

(59)

ay =
and the corresponding IBP recurrence is

Cm+1,ni/lo,m+1,n + Cm+1,n-1 i/h),m+l,n—1 + Cmn-1 i/ln,m,n—l

+ Cm—l,ni/lo,m—l,n + Cm,ni/h,,m,n + 62;r =0, (60)
with the coefficients

Cmrin =(A353D(D=3-m—n), Cmr1a-1 = —nlA2sl,

Cmp-1 =NlA21|,  Cuo1p =—m|Aq1],

Cmn =IA13|(3+2m+n—D), (61)

and the boundary term

62;;" = _6m,0|A11|i/h),m,n + 6}1,0( - |A32|i/l(,,m+l,n + |A21 |i/l(,,m,n)'
(62)

Combining (46) and (60), we can reduce the general
bubbles.

1.  Example: I,(1,3)

In the example I,(1,3), we simply need to reduce D,
from power 3 to 1. The strategy is to use (46) twice. In
the first step, by setting m =0 and n =1 in (46), we get

_Axl(D-5)

Ax|(D-3
L(1,3) = i |A2|(D -3)
33

L(1,2)+ =
2|Az3]

I(1,1)

—A;p(D-3 A
AelD=3), 6.2y Al 0.3), (63)
2|Az3] |A33]

For the first term in (63), setting m =0 and n =0 in (46)
again, we have

Ax|(D-3 An|(D-2
1,2 =209 ) BRI Z2)
|A33] |A33]
A —|Apl(D-2
LAl 0.0, ZA2P=D, 64y (64)
|A33] |A33]
%)(D =22 by dimensional analysis, one can take the derivative over m% to get the
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Insertmg (64) into (63) and using the reduction in the tad-
pole”, we get

L(1,3) = ci3511 (1, 1) + c1351002(1,0) + €1350112(0, 1),
(65)

with the coefficients

(1Az3l1A33] + A3 (D = 5))(D - 3)

Cl3o11 = ,
2|As3/?
o = |A2||A231(D = 5)(D -2)
2|A33/? ’
(D-2)
C13501 = A21(2A3|Ax3|(D = 5)m3 + ApAp3(D - 4)

8|A33|2 M
—4A33|A23|<D—5>m§ —2A33|A331(D - 3)m3)
— AnA31lAxI(D = 5)m) + A3 (D — 4))

+2A23A31m3(2|As3|(D = 5)m; + |As3|(D = 3)).
(66)

The result is confirmed with FIRE6. In this example, we
simply need to solve two equations to reduce the bubble

topology.

2. Example: I,(3,5)

For this example, we must use (60) to lower the
power of D; and (46) to lower the power of D,. Setting
m=1 and n =4 in (60), we can reduce 15(3,5) to 15(2,4),
L(2,5), (1,5), and I,(3,4).

13,5 =AIC=D 5, TARD=9), ) )
2|As3] 2|As3|
—|Ax|(D-T) |Azs|
— 7 Q2.4+ —=—53G.4. (67)
2|Az3 |A33]

Then, setting m=1 and n=3 in (60), we reduce 1»(3,4)
to 1r(1,4), 1r(2,3), [(2,4), and 1>(3,3).

A A;s|(D-8
b(3.4) = = 23|12(3 3+ —A3l( )
|A33] 2|A5;3]

|A111(D-6)
L(2,3)+ ——=1,(1,4). (68
»2(2,3) + Vi 2(1,4). (68)

5(2,4)

N —|A21(D - 6)
2|Az3]

Using the same idea, we must solve 14 equations to com-
pletely reduce I»(3,5). The analytic expressions for these

14 equations have also been confirmed by FIRE6.

C. Triangle case
The triangle I3(m+1,n+ 1,4+ 1) is given by

Lm+1,n+1,g+1)

dP1
e — —— - (69)
(2 =m)ym (L= p1)? = m3)™ (U + p3)? = m3)1*
Its parametric form is
Lm+1,n+1,g+1)
zi(_1)3+m+n+q F( /10) /l mn
Tn+ DI+ DI(g+ DO + 1) omna
(70)
where
. @ gy m n 4 A D
Lymang = dIT™F oxﬁx X3Xy's o= _5’
/14:_4_2/10_m_n—q:D—4—m—l’l—C]. (71)

Using expression (10), we have

2 2 2
Ux)=x1+x2+x3, V(X)=x1x2p] +X1X3p5 + X2X3 D5,
fx)=-V+ UZmizx,- =(x1+x +x3)(x1m% +x2m§ +x3m§)
2 2 2
—X1X2P] — X2X3D, — X1X3 D3,
F(x)=UX)x4+ f(x) = (x1 + X +x3)
X (m%xl +myxy +m3x; + x4)

2 2 2
—X1X2p] —X2X3D5; — X1 X3D3.

(72)
Thus, we can express the matrices as
2 20,2 2 22 2
2my my+m;—p; mi+m;—p; 1
i m%+m%—p% Zm% m%+m§—p% 1
- m +m p3 m2+m p2 2m§ 1|
1 1 1 0
0 aq ay as
ko= 7@ 0@ s L e g
A= —dy —da 0 dg ’ - A
|l —d3 —ds —dg 0
(73)

1) In general, we could repeat the similar procedure to give the tadpoles' IBP recurrence relation, and calculate them step by step. Here, for simplicity, we could just
use the trick, 1(1,0) oc (m?)P=2/2 and 15(0,1) o< (m3)P~2/2 to directly caleulate the 1(2,0) = 8/dm?L(1,0) = (D —2)/2m})1(1,0), 1,(0,2) = 8/0m3L,(0,1) =
(D=2)/2m2)1(0, 1), and L>(3,0) = 1(8/0m>)*1>(1,0) = (D —2)(D—4))/8mH1(1,0), 1(0,3) = 1(8/8m2)? 1(0,3) = (D —2)(D—4))/8m4) (0, 1).
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1. Deriving the recurrence relation

. -1 ijXj . . L . o
Taking B= — in (39), we get z; = Q1% . Taking this relation into our IBP identities (32), we get
X4 X4

4
>, [ anfar o <o, (74)
i=1

for which we deal with the boundary 65 term later. After expanding the first term, we get

Cm,n,q i/lo smn.q + Cm+1,n,qi/lo;m+l,n,q + Cm+l,n,q—1 i/lo;m+ 1,n,q-1 + Cm+l,n—1,q i/lo sm+1l.n—1,q

+ Cm—l,n+1,qi/10;m—l,q+],q + Cm,n+1,q—l i/lu;m,nJrl,q—l + Cm,n+],qi/lu;m,n+l,q + Cm,n,q+1 i/ll,;m,n,qul

+ Cmn-1,4+1 i/l(,;m,n—l,q-#l + Cm—1n,q+1 i/l(,;m—l,n,q+1 + Cm—l,n,qi/h);m—l,n,q + cm,n—l,qim,n—l,q

+ Cmng—1 i/lg;m,n,q—l + 63 = O, (75)

with the coefficients

Cmng =Ao+(m+1)011 + (n+1)0x0 + (g +1)Q33 + (A4 + 1)Qua,
Cmtlng =A4041, Cmring-1 = 4031, Cmiln-14 = 1021, Cmng-1 = qQ34,
Cm-1n+1,g =MQO12, Cputlg-1=q032, Cmpstg =404, Cmpg+1 = 42043,

Cnn—1,g+1 =NQ023, Cp—1ngrl =MO13, Cu—1ng =MO14, Cup-1,4=n024. (76)

Now, we can choose particular values for our six parameters a;, a2, a3, a4, as, and ag to let the coefficients ¢,i1 g,
Cm+1ln,g-15 Cm+1n—1,g> Cm—1,n+1,9> Cmn+l,q> and Cmn+l,g be zero. The solutions are

2,2, 2
u ; Ar1Asp —AnAs a (_ml +m; +p1)
h =—a = — s
A31Ap —AzpAy —m?+m3+2(p; - p2) + p?
20 N[22 2
_a1(A21Azn —ApAs) al(’"l _mz_l’l)(m2+m3_l’2) D
- - - 1 s
A31Ap —AnAgy —m}+m}+2(p1 - p2)+ p? 2
2,0, 2
a a1(A11Agp —ApAyr) al(ml_m2+p1)
4 = == )
A31An —AnAy —m? +m3+2(py - p2)+p?
22 A\(p2 2 22
4 _—ai(AnAn—AnpAs) al(ml —m2+p1)(ml +m3=2(p1-p2) = pj _pz) i
5= - 1 s
A31Ap —AnAgy —m}+m}+2(p1 - p2)+p? !
4 2(,2, 2 2 2)?
:al(A11A22 —A12A21) _ a (ml _2m1 (m2 +[)1)+(m2—p1) (77)
A31A4 —AnAg —mi +m3+2(p1 - p2)+p;
Then, the matrix O becomes
r1 - -
EAA 0 ailA4l ailAq;
1 ~ ~
N 0 A —ay|Az airlAasl Ay A
0, = ™ 2 | 3 y , Ap= Det[ A31 A32 } =A31A4 — An2A41.
410 0 EAA +a1|Az4| a1]Aszs| A aa
~ 1 ~
0 0 —a1]Agl EAA —ai|Ag] |

After this, we obtain the reduced IBP relation, where only the propagator D3 = (I+ p3)> —m3 has one increasing power,
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(78)

Cm,n,q i/lo sm,n.q + Cm,n,q+1 i/lo;m,n,q+l + Cm,n—l,q+ 1 i/lo;m,n—l,q+l + Cm—l,n,q+l i/lo sm—1,n,g+1

+ Cm—l,n,qi/lo;m—l,n,q + Cm,n—l,qi/lu;m,n—l,q + Cmn,g-1 i/lu;m,n,q—l +063,=0,

with the coefficients

Cmpg =Ao +mQO11.r + 1020 +q 033, + Q11 + 022 + Q33 + A4 Qs + Quaer,
—apn ~
|A24],

—a1/l4 -~
Cmng+l =A4Qu3;r = |Adal, Cmpt:g+1 = 1023y =
A31Agp —AnAy A31Agp —AnAy
am _ am _
Cn-1 g+l =mQ13; = [A14l, cm-1ng = mQi4; |A13],
A31Ap —AnAgy A31Ap —AnAgy
—an ~ aq T
Cm,n—1,9 :nQ24;r = |A23|7 Cmpng-1 = QQ34;r = |A33|,
A31Ag —AAgy A31Apn — AAy

(79)

where the subscript 7 in 63, and Q;;,- indicates that the parameters a, to a¢ should be replaced by (77)
The reduction in the boundary ¢§; part: Similar to the bubble situation, inserting the value of z; into the d3 part, we

obtain
03, =(5m+1,0Q11;r + 6m,0Q14;r)i/10,—l,n,q +00012:ri 00~ 1,041, T Om0Q13;r00, ~1,n,g+1

+0n,0021:ri20mt1,-1,9 T (5n+1,0 0227+ 600 Q24;r)i/lo,m,—l,q + 06,0023 L0 m~1,4+1
(30)

+ 611,0 Q31;ri/ln,m+l,n,—1 + 61],0 Q32;ri/ln,m,n+l,—1 + <6q+1,0 Q33;r + 611,0 Q34;r)i/lo,m,n,—la
. . . . . . 1
where i4, mn-1, i1,m-1,4, a0d iy, 1.4 contribute to the sub-topology of the triangle, that is, the bubble |

2. Triangle example: I5(1,1,2)

(81)

Now, we apply the complete recurrence relation to the example I3(1, 1,2). Setting m =n = g =0 in (78), we obtain

€0,0,012,,0,0,0 +€0,0,112,,0,0,1 + 03,000 = 0,

with the coefficients
1
> x{2a1(D = 4)(m{ p3 = 2m3(m3((p1 - p2) + P3) — m3(p1 - p2)

c0,0,1 =A4043.r = —
' —m? +m3+2(py - p2) + p?
+p5((p1 - p2) + PD) +m5Q2(p1 - p2) + pt+ p3) +m5(2(p1 - p2)2(p1 - p2) + pi + p3)

=2m3((p1 - p2) + P1)) + Pr(mi = 2m3((p1 - p2) + P3) + P31 - p2) + i + p)),

D
€000 == 7 + Qi+ Qozir + O35 + (D =3)Qua;
2ay(D=4)(m3(p1 - p2) = m3(p1 - p2) + pD) + Pt (m3 = (p1 - p2) — p3)) -
—mi +m3+2(p1 - p2)+ pi '

In (81), only two terms of triangle topology remain: one is the scalar basis, and the other is the target we want to reduce.
The other five terms in (78) disappear owing to the expression in (79). Thus, there is no need to solve mixed IBP rela-

tions. The 65 term becomes
6:000 = 0 p:rlm=0,1=0,g=0 =Q14:r12,,-1,0,0 + O12;r82,,-1,1,0 + Q13:120,-1,0,1 + O21:r12,,1,-1,0 + O24:02,,0,-1,0 + O23:r12,,0,-1,1

+ O31;082,,1,0,-1 + Q32;002,,0,1,-1 + Q34:12,,0,0,-1-

(83)

1) Since the boundary term having only one x; = 0, it reduces to the sub-topologies with only one propagator pinched.
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Translating back to the / form, we obtain the result

I(1,1,2) =c3s1113(1,1, 1) + cas110l3(1, 1,0) + 35101 13(1,0, 1) + 35011 53(0, 1, 1)
¢3-21003(2,1,0) + 355201 13(2,0, 1) + ¢3512003(1,2,0) + 35021 13(0,2, 1)

c3510203(1,0,2) + ¢3501213(0, 1,2), (34)
with the coefficients
. _co00l(D—3) . O, I(D-2) . 0, I(D-2) . O, I(D-2)
3l =—————, C3s0=——————, (350 =——————, O30l =————,
co0,1I'(D-4) co0,1I'(D-4) co0,1I'(D-4) co0,1I'(D-4)
. _031,I'(D-3) . _ 001, 1(D-3) . _ 01, I(D-3) . _ O3, I(D-3)
35010 =——————, (35001 = ————, (35020 = ——————, C(35]20= ———,
co0,11'(D-4) co0,11'(D—4) co0,1I'(D-4) co0,11'(D—4)
3100 = Q23;rr(D_ 3) 3012 = Q13;rF(D_ 3) (85)
351020 =—————r, S0 .
co0,1I(D—4) co0,1I'(D-4)

The final step is to reduce bubbles that have one propagator with the power two. This problem has been solved in the
previous subsection (see (57)). With proper relabeling of the external variables of the last six terms in (84) and collect-
ing all coefficients together, we get

15(1.1.2) =¢5 3l (1L 1 1) 4 sps5 (1 L0V + €5_515(1,0, 1) + 6301 15(0, 1, 1)
+C3ﬁ1;23[3(1’030)+C3ﬁ1;1313(0,1:0)"'03%1;12]3(0,0’]) (86)

Because the explicit expressions of these coefficients are long, they are provided in the companion Mathematica note-
book. The result is confirmed by FIREG6.

3. General case in triangles

Similar to the bubble case, with different choices, we can obtain three IBP recurrence relations. In each of these rela-
tions, only one term has a propagator with a higher power. For simplicity, we label the IBP recurrence relation egq;,
which shifts the propagator D;. Now, we can use eq; with i = 1,2,3 to calculate the general case for triangles. Let us de-
note

eq . (a1+ l+ +ajp3- 1+3_ +aj- 1+2_ +Cl3—3_ +a272_ +aj- 1~ +Cl0)l'/10,m,n7q +63;r,eql = O,
eqy: (b2 2" +by3 2737 4 by 172" b3 37+ by 27+ by 17 +bo )i mng + 03:req2 = 0,

eqs . <C3+3+ + 6‘273+273+ +ci-3+ 173t + 33" +cp-2 417 + C())l./lo’m’n’q + (53;“(13 =0, (87)

where all coefficients have the same form as in (78). Combining these, we can reduce the general triangles. For ex-
ample, for 13(2,2,3), after setting m=0, n=1, and ¢g=2 in eq;, we can reduce [3(2,2,3) to I53(1,1,3), I5(1,2,2),
I3(1,2,3), I3(2,1,3), I3(2,2,2) and boundary terms, the general bubbles. Then, setting m =0, n=0, and ¢ =2 in eq;, we
can reduce 55(2,1,3) to I5(1,1,2), I5(1,1,3), and I53(2,1,2). After 12 steps, we get the result for the reduction in the tri-
angle topology. The boundary terms involve bubbles and tadpoles, which have been dealt with in previous subsections.
Finally, we can obtain all coefficients from /3(2,2,3) to all scalar bases.

D. Box case

The general form of a box is given by

dP1

n+1 o+ 1 s+l g+l
DI i pitipr

I4(n1+1,n2+1,n3+1,n4+1)=f (88)
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with

D= P-mj, Dy=(-p)*-mj, D3=(-pi—p)*-m3, Dis=(+ps)*—mj. (89)
The parametric form of I4(n; + 1,n; + 1,n3 + 1,n4 + 1) can be written as

l( 1)4+nl +1,+n;+n, F( /lO)

Lini+1,ny+1,n3+1,na+1)= 90
atnt Lyt Lo+ L4 ) = e R e Ty + (g + DTl 3 1) s ©0)
where
[ FA—— :de(S)F’“x PR P e —de(S)(st + Y X A
dIT® =dx;dxydx3dxgdxsé 1 p=-2
=dx;dxodxsdxsdxs (ij— )s 0="7
/15=—5—n1—ng—n3—n4—2/lo=D—5—n1—n2—n3—n4, (91)
and the functions are
U(x) =x1 +x2 +x3 + x4,
V(x) =x102p7 + X103(p1 + p2)* + x1X4(p1 + P2 + p3)* + X2x3 3 + x2x4(pa + p3)? + X3xa 3
fx)==V(x@)+U(x) Z m-zx[ = m2x1 + m%xz +m§x3 + mﬁx4 + (m% + m% - p%)xl X
+[m} +m3 — (p1 + p2)*1x1xs + [m] +mi — (p1 + p2 + p3)*1x1 x4,
+ (mz + m3 _Pz)x2x3 + [mz + m4 -(p2 +P3) 1xox4 + (m3 +my —p%)xsm,
F(x) =U(x)xs + f(X) = mix] + m3x3 +m3x3 +mix;
+(m3 +m3 = pHxixa + [md +m3 — (p1 + p2)*1x1x3 + [m} +m3 — (p1 + pa + p3)1xi x4
+ [m3 +m3 — p31xaxs + [m3 + mj — (pa + p3)*1xaxs + [m3 +mj — p3lasxs
+ X1 X5 + X2X5 + X3X5 + X4X5
=(x1+xp+x3+ X4)(m%x1 + m%xz + m%)@ + mix4 + X5)
— X107 = x1X3(p1 + p2)* = X1x4(p1 + 2+ p3)* = x2x3p5 — X2X4(p2 + P3)* — X3x4 3. 92)
Now, the matrices are given by
Zm% m%+m%—p% m +m p12 m%+mi—p%3 1 0
2,2 2 2 2,2 2 a @ a
my +m; = py 2my my+mi—p;  my+my—pi 1 —-a1 0 a5 as a7
A= m%+m§—p%2 m%+m§—p% 2m§ m§+mi—p§ 1| Ka= —Zz —ZS 2 683 ;19 ,
2,.2_ .2 2,2 2 2,,.2_ 2 2 43 Tl TO8 10
my+my—pyy My Eny = py; mymy—py 2my 1 —as -a; -ay —-ap O
1 1 1 1 0
93)

where pjj = pi+ pis1 -+ pj.
1. Deriving the recurrence relation

. -1
Taking B= — in (39), we get
Xs
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+ S +q— +n—
{cnl+],ng,nz,n4 1"+ Cny+1,ny,n5,m,—1 47+ Cny+1,ny,m5— 1,0, 1737+ Cny+1,n,—1,n5,n, 172
+ +4- +a- +1-
+Cn|,ng+l,n3,n42 +Cn|,n3+l,n3,m—12 4 +Cn|,n2+l,n3—l,n42 3 +Cn‘—l,n2+1,n3,n42 1
+ +4- +9— +1-
+C’l|,"z,”3+1,”43 +C’l|,"27”3+1,”4*13 4 +C"|v":*1,”3+1,n43 2 +C”1*1»”2Jl3+1a”43 1

+ +r- +r— +1-
+cn.,nz,n3,n4+]4 +Cn.,nz,n3—],n4+l4 3 +Cn.,n2—],n3,n4+14 2 +Cn1—],n2,n3,n4+l4 1

+Cnmmn—14" + Cninyni—10,3” F Copny 1, 27+ Cntmnn 1 Cn.,n:,n.«,m}inl,nz,ns,m +64 =0, (94)
where

ot . o — .
T e, = et Longs J Ingeneny = bnyeony=1oomy - (95)

Similarly, we can choose particular values of the parameters a, to a;o with a free a; to ensure the coefficients of the
terms in the first three lines of (94) equal zero. The analytic solution is provided in the companion Mathematica note-
book. Here, we can express the solution for the parameters using the matrix elements of A.

—aj |~ ar |~ —aj |~ ay |~ —aj |~ ay |~
a = |A1345], a3 = |A1445], as= |A1545], as= |A23asl, ae= |A244s], a7 = |A25 451,
ABox Box ABox Box Box Box
A A A
a - —a; - a - 31 Az Az
ag =+ |A3a45], a9 = |A3s45l, aio= |A4sa5l, Apox =| A41 Agr A3 |,
Box Box Box ASI A52 A53

where |4; k| represents the determinant of the matrix 4 after we removed the i, jth rows and k,I/th columns. Then, the
matrix Q becomes

! ~ -
EABOX 0 0 —ai|As| —ai|Ai4]
1 - N
0 EABox 0 ay|Ass| aen
~ 1 1 . -
0= Apor 0 0 EABOX 1 —aj|Aszs| —a1|Az4l
0 0 0 EABOX +aj|Ags| alAl
. 1 .
0 0 0 —ay|Ass| EABox_allAMl |

We then obtain the simplified recurrence relation

Cryma g g+ 1y g ng+ 1+ Cogng =L+ Ung o= Lng+1 F Cny =Ly g+ 1y o= Lingng+1 7+ Coy=Ling g oy Uy = 1ny ng g

+ Cry g =100y e ng =1+ Cy g =1y ny g mi=1ny + Coy oy =1 ng Uy ny = Ling ng + Cony— Ly ny Uy =1y s g

+ Cny oy ngn s, + 040 = 0. (96)

Now, we must calculate the &4 term.

The reduction in the boundary 6, term: Similar to the former case, we can expand the ¢4 term and take the values
of the parameters a; to ajp into the &4 part. Subsequently, we get

64;r :(Sn,+l,OQ11;ri—l,nz,n3,n4 + 5n1,0Q12;ri—1,n2+l,n3,n4 + 611,,0Q13;ri—l,n2,n3+1,n4 + 6n1,0 Q14;ri—l,n3,n3,n4+l
+ 6n1,OQ15;ri71,nz,n3,n4 + 6n2,0Q21;rin1+1,71,n3,n4 + 5nz+1,0Q22;rin,,71,n3,n4 + 5n3,0 Q23;rinl,4,n;Jrl,n4
+ 6n2,0Q24;rin1,—1,n3,n4+1 + 6n2,0Q25;rin.,—1,n3,n4 + 6n3,0Q31;rin.+l,nz,—1,n4 + 6n3,0 Q32;rin1,r12+1,—1,n4
+ 6n3+l,0 Q33;ri111,n2,—l,114 + 6n3,0Q34;rin|,n3,—l,n4+l + 6}1;,0Q35;rin.,nz,—l,n4 + 6n4,0 Q4l;rin,+l,nz,n3,—l
+ 6n4,0 Q42;rin1,n2+l,n3,—l + 6n4,0 Q43;rin| S+ 1,—1 + 6n4+1,0 Q44;rin, Mo,1,—1 + 6n4,0 Q45;rin, J,15,— 1 (97)
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where the subscript "7" represents the value of the parameter Q after we set a; to ag.

2. Example: 1,(1,1,1,2)

Now, we can use recurrence relation (96) to calculate the example I4(1,1,1,2). Letting ny =ny =n3 =nq =0, we get
(the coefficients of the other terms are all zero)

€0,0,0,010,0,0,0 + €0,0,0,110,0,0,1 + F4:0000 = 0, (98)

where 64:0000 = 04l =n,=n,=n,=0. Translating to /, we obtain the following result:

I,(1,1,1,2) =c4—111114(1, 1, 1, 1) + ca111044(1, 1,1,0) + ca—110114(1, 1,0, 1) + ¢4 1011 44(1,0, 1, 1) + c4-011114(0, 1, 1, 1)
+c45211004(2,1,1,0) + c45210114(2,1,0, 1) + c45201114(2,0, 1, 1) + c4121014(1,2,1,0) + c4120114(1,2,0, 1)
+c45021144(0,2,1,1) + ca112014(1,1,2,0) + c45102114(1,0,2,1) + c4-012144(0, 1,2, 1)
+c4-110214(1,1,0,2) + c4101214(1,0,1,2) + c4011214(0, 1, 1,2), %99)

with the coefficients

oy = 0000 (D—5)= TrQjjir + (D —5)Qss5:r — 2  eaon = - 015,I(D-3) ’
€0,0,0,1 Os4:r €0,00,11'(D=5)
oot = 025, I'(D-3)  citiol = — 035, 1'(D-3)  catiio = QO45,1(D-3) ’
0,00,11'(D-5) 0,00,11'(D-5) €0,00,11'(D=5)
ool = Q. I(D-4) o = Q13,1 (D-4) i = Q14 T (D-4) ,
0,00,11'(D=5) €0,00,11'(D=5) 0,00,11(D=5)
oot = 021, I(D—-4) R 023, 1'(D—-4)  caror = 024, T(D—-4) 7
0,0,0,1I'(D - 5) €0,0011(D-3) 0,0,0,1I'(D—5)
ool = 031, 1 (D-4) e 03, I'(D-4) et = O34, T (D-4) ’
0,00,11(D=5) €0,00,11'(D=5) 0,00,11(D-3)
O41,T(D—-4) O, T(D—-4) QO43,T(D—-4)
C4-2110 = C4-1210 = C4o1120 = (100)

co00,T(D=5)’

c0001T(D=35)

co0010(D=5)

Next, we must use the reduction in triangles with one double propagator given in (86). Inserting them into (99), we

obtain the complete reduction in the box I4(1,1,1,2).

L(1,1,1,2) =camala(1, 1, 1, D) + g g i 1400, 1,1, 1) + 435 1a(1,0, 1, 1)+ ¢4 3.505(1,1,0, 1)
+Camnila(1,1,1,0) + ¢4_0.3314(0,0,1,1) + ¢4 0. 7514(0, 1,0, 1) + ¢4 p.7314(0, 1, 1,0)
+Cam330a(1,0,0, 1) + ¢4_25314(1,0,1,0) + ¢4p.5314(1,1,0,0)
+ 410, 14(1,0,0,0) + 41, 14(0,1,0,0) + 41, 14(0,0, 1,0) + 410, 14(0,0,0, 1), (101)

the long coefficient expressions of which are given in the companion Mathematica notebook. The result is confirmed by
FIRE®G.

E. Pentagon case

The general form of a pentagon is given by

dP1
n+1 o+l s+l g+l s+l
DDy DY Dy DY

15(n1+1,n2+1,n3+1,n4+1,n5+1)=f (102)
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with

D1 = lz—m%,

=(-p1)*—m3,

2

Dy =(l-

~p2)*-mi, Dy=(-

The parametric form of Is(n; + 1,n, + 1,03+ 1,n4 + 1,15 + 1) can be written as

where

and the function

U(x) =x1 +xp + X3 + X4 + X5,
2 2 2 2 2 2 2 2 2 2
V(x) =X1X2P] T X1X3D7p F X1 X4 P13 + X1 X5 D74 + X2 X3 D5 + X2 X4 Py + X2 X5 Doy + X3X4 D3 + X3X5 D3y + X4 X5 Dy,

2 2 2 2 2 2 2
S () =(x1 +x2 + X3 + X4 + x5)(M) X1 +M5X2 +M3X3 + My X4 +M5X5) — X1 X2P] — X1 X3P,

Is(ni+1,my+1,n3+1,n4+1,n5+1)=

-p2-p3)*-mj, Ds

( 1)5+n.+n +n;+n4+nsr( /10)

Z C(n; + (A6 + 1)

i=1

. 6) A ns  Ag+1
Losnynyn g ns _fdl_[( )F 0x 'x2 'x3 x4 xSi 66 ’

2 2
—X2X3Py — X2X4Po3

2 2 2 2 2 2
F(x) =(x1 + X2 + X3 + X4 + x5)(my X1 +m; X0 +mM3X3 + My Xy + M5 X5+ Xe) — X1 X2 P

2 2
—X1X5P 14 — X2X3P)

where p;; = p;+ piv1 +--

>
I

Zm%
m? +m3 - p?
o =
mi +mi = piy
ml+m p1

1

2
—X2X4 P53

dH(S) :dxldxzdx3dX4dXde66(Z Xj— D),

D
/lO:—E,

2 2
—X2X5D54 — X3X4P3

2
m +m2 pl

2
Zm2
2,0 9
my +m3 = Ps3
2,2 9
my +my = Pa3

m2+m p24

1
[ 0 aq
—da] 0
—az —de
—asz  —aj
—d4 —ag
L —ds —dg

2 2
—X2X5P)4 — X3X4 P73

A =(D-6)—n

pj-1+pj. Now the matrix are given by

2
m; +m3 — pi,

m2+m p2
2
2m3
2,,.2_ 2
ms +my = p;3

m3+m p34

1
az as
ae ar
0 alo
—ajo 0
—apr  —ai3
—diz  —di4
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2
— X3X5D34

2 2
- )C3)C5p34 - )C4)C5p4,

2, 2 2
my+my—pis

2, 2 2
my +my = Ppss

2 2 2
m3+m4—p3

2
2m4
m4 +m p4
1

ay  as |
asg ag
ar  ap
aiz  ap

0 ais
-a;s 0 |

2
—X4X5D4,

—ny —n3—n4—ns,

2
—X1X3P1p —

2,2 2
my +ms — py

m2+m p24

2, 2 9
m3y+ms = pay
m4+m p4

2

2m5

= (l+p5)2 —mg.

/10 ST 1,151

2
—X1X4P13 —

(103)

(104)

(105)

(106)

(107)
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Taking B = —1/x¢, and inserting z; into the IBP identities,

Zf[) z,F%x1 X)X g"xZ‘xS“xg"+l}+65= 0, (108)

where ds is given by

65—26“) f AT g F o oy et o (109)

1. Deriving the recurrence relation

Similar to the previous subsections, by expanding the IBP relation, we get

{Cn.+1,nz,n;,n4,nS 1"+ Crny+1,m,— 1,113,115 1727+ Cny+1,ny,n5— 1,14, 1737+ Crny+1,ny,n5,n,— 1,05 174~

+ Cn,+l,n3,n3,n4,n5—l 1+5_ + Cnl,nz+1,n3,n4,n52+ + Cn,—l,n2+l,n3,n4,n5 1_2+ + Cnl,n2+1,n371,n4,n52+3_

+ Cn,,n2+],n3,n4—1,n52+4_ + Cny oy +1,n50,.05-1 2757+ Cn,,nz,n]+],n4,n53+ + Cn—1ny,n5+ 1,ng,0s 173*

+ Cny =105+ 1,n,m5 273"+ Cny iy s+ 1,1~ 1,05 3747+ cn.,112,n1+1,n4,n5—13+57 + Cnl,ng,rtg,nﬁ—l,ns“fr

+ Cny—1,ny,n5,m,+ 1,05 1_4+ + Cnyy—1,n5.n,+ 1,05 2_4+ + Cny iy ns—1,m,+ 1,05 3_4+ + Cn,,nz,n;,,n4+l,n5—l4+5_
+ Cn,,n:,m,m,nﬁl 5+ + Cnl—l,nz,n3,n4,n5+l 1_5+ + Cn,,nz—l,ng,n4,n5+1 2_5+ + Cnl,nz,n371,n4,n5+l 3_5+

et — —
+C’1|»n2~n3s”4_1sn5+14 5 +c”1_]s”2snz»n4»n51 +cn,,n2—l,n3,n4,n52 +C’1|»nz~”3_]s”4sn53

+Cnmmn=1nsd F Cnimnening=15" F Coynynynns }lnl,n:,ns,m,ns +65=0. (110)

We can choose particular values for parameters a, to a5 to ensure the coefficients of the first three line of (110) equal
zero. The solution is

1,7 1,5 -ap | - . .
a =y |A1356l, az = A |A1a56l, a4 = A |A1556l, as = |A16,56l, ae = |A23 56l
pen pen pen pen pen
—ay -~ a) ~ —ay , ~ ~ —ay  ~
a7 =% |A2456], ag = A |A2s56l, ag = A |Az56l, aio= |Aza56l, arn = |A35 56l
pen pen pen pen pen
ay |~ ~ —a)  ~ ~
ap = |Az656l, a3 = |Ass 56, aia = |As6,56l, a15= |As6,56l, (111)
pen pen pen pen

where

A3 Az Az Ay
Ay Agn Ay Ay
As1 Asp As3 Asy
Agt Asx Aez Aws

Apen =

Subsequently, we get

+ —c+ —c+ —c+
{Cnl,nz,nx,m,nerl;rS +Cn— Lo+ 1r 15"+ Cm—Lngnyne 4102757 + Cnymyn=Lngn #1337 5
et - - -
+ C’ll,nz,”3,”4*1,’l5+1;r4 5 C”1715n25n35n4vn5;r1 + C”lvnzfl,"lz,nzz,nsﬁ”z + Cn,,nz,n371,n4,n5;r3

+ Cn1,nz,"3,”4_l,”5;r4 + C”l,nz’n,x,nzz,”s_l;rs + Cn|,”:,”3»”4,”5;r}l/lo;”nnz,”.%a"m”s + 65;" - 0’ (1 12)
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where we define

o+ . . — .
l l/l();”l,"z»n},na,”s = l/lﬂ;nla""lr+l""n5’ l l/lo;”l,”z,”3»n4’”5 = Lgingom=1,ngs (113)

with the coefficients
€0,0,0,0,1 =065;-46> €-1,0,00,1 =11 Q15> €0,-1,00,1 = 12Q25;r, €0,0,-1,0,1 = 13035;-, €0,0,0,-1,1 = 14045,
€-1,00,00 =11 Q16> €0,-1,0,0,0 = 1202, €0,0-1,00 = 13036:r> €0,0,0,-1,0 = 14 Q46;r, €0,0,0,0,-1 = 15056;r»

~ D
00000, =11Q; ) + (D = 6)) Qe — 5 tm O11;r + 12022, + 13033, + 14 Q4ar + 150551, (114)

while the matrix O becomes

' %Apen o 0 0 ailA ailAys|
0 S8 0 0 aldg —aildn
o 1 0 0 %Apen 0 arlAs gl ailAs 5|
Sl 0 0 0 SAw -l —ailAss|
0 0 0 0 %Apen +a)|Asg) ai|As;s|
| O 0 0 0 —ay|Ael %Apen_al|146,5| ]

F. Reducing the §5 term

Similar to the former situation, the d¢., term is given by

65;r :Qll;rdn],—li—l,nz,n3,n4,n5 + Q12;r6n,,Oi—l,n2+1,n3,n4,n5 + Q13;r6n|,Oi—l,nz,n3+l,n4,n5 + Q14;r6n1,Oi—l,nz,ns,n4+l,n5 + Q15;r6n,,Oi—l,nz,ng,m,n5+l
+ Qlé;rén],Oi—l,nz,n3,n4,n5 + Q2];rénz,oin.+1,—1,r13,n4,n5 + Q22;r6nz,—] inl,—l,nz,n],m,ns + Q23;r5n2,0in1,—1,n3+1,n4,n5 + Q24;r6nz,0in.,—1,:13,114+1,r15
+ Q25;r6n2,0in1,—1,n3,n4,n5+1 + Q26;r6n2,0in.,—l,nx,m,n5 + Q31;ré‘n;,Oinl+1,ng,—l,n4,nS Q32;r6n3,0in.,n2+1,—1,n4,nS + Q33;r6n3,—1in],nz,—l,m,n5
+ Q34;r6n3,0in1,nz,—l,n4+l,n5 + Q35;r6n3,0in|,nz,—l,n4,n5+l + Q36;r6n3,0in,,nz,—l,m,ns Q41;r6n4,0in|+l,n2,n3,—l,n5 + Q42;r6n4,0in1,n3+1,n3,—1,n5
+ Q43;r6n4,0in1,nz,n3+1,—1,n5 + Q44;r6n4,71in,,n:,n;,—l,n5 + Q45;r6n4,0in1,nz,n;,,fl,nerl + Q46;r5n4,0in,,n:,nj,—l,n5 + QSI;r6n5,0inl+l,nz,n3,n4,—l
+ Q52;r5n5,0in1,n2+],n3,n4,—] + Q53;r6n5,0in.,nz,n3+],n4,—1 + Q54;r6n5,0in1,n2,n3,n4+1,—1 + Q55;r5n5,—l in,,nz,nl,m,—] + Q56;r6115,0inl,nz,n3,n4,n5-

(115)
G. Example: /5(1,1,1,1,2)
Setting n; = ny = n3 = ng = ns = 0, we get the IBP recurrence relation (other coefficients are all zero)
€0,0,0.0.1£1,:0,0,0.0.1 F €0,0.0,0,0£4,:0,0.0,0,0 + 95:00000 = O, (116)

where 65;00000 = 65;r|n,:nz:n3:n4:n5:0-
Comparing them with our scalar basis, we have the result

Is(1,1,1,1,2) =c5,505(1, 1, 1,1, 1) + ¢550111144(0, 1, 1, 1, 1) + ¢551011145(1,0, 1, 1, 1)
+csori01145(1,1,0,1,1) + es51110145(1,1,1,0,1) + ¢s51111005(1,1,1,1,0)
+c552011145(2,0,1,1,1) + c552101145(2,1,0,1,1) + ¢552110145(2,1,1,0, 1)
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+cs5o0111005(2,1,1,1,0) + ¢550211145(0,2, 1,1, 1) + ¢5512011 15(1,2,0, 1, 1)
+c¢s51210145(1,2,1,0, 1) + e551211005(1, 2, 1, 1,0) + ¢550121115(0, 1,2, 1, 1)
+cs551021145(1,0,2,1, 1) + 5511201 15(1, 1,2,0, 1) + c5551121015(1, 1,2, 1,0)
+csso0112145(0,1,1,2, 1) + ¢551012115(1,0, 1,2, 1) + ¢551102115(1, 1,0, 2, 1)
+cs5o1112005(1,1,1,2,0) + ¢5550111245(0, 1,1, 1,2) + ¢551011245(1,0, 1, 1,2)

+cso1101205(1,1,0,1,2) + e551110245(1, 1, 1,0,2), (117)
with the coefficients
(D —6)c0,00,0,0 (D-6)(5-D)Q16; (D-6)(5—-D)02:;
C55 =————————, C5-501111 = > C554;10111 = )
€0,0,0,0,1 €0,0,0,0,1 €0,0,0,0,1
(D-6)(5-D)Q36:; (D =6)(5—=D)Qs6.r (D-6)(5—-D)0s6;r
C5-54;11011 = > C554:11101 = > C554:11110 = ,
€0,0,0,0,1 €0,0,0,0,1 €0,0,0,0,1
(D-6)0s1., (D-6)Q31., (D-6)041r (D-6)0s1.,
C550011] =————————, C5521011 = ————————, C552110l = ————————, (5520110 = —————,
€0,0,0,0,1 €0,0,0,0,1 €0,0,0,0,1 €0,0,0,0,1
(D - 6)QlZ;r (D - 6)Q32;r (D - 6) Q42;r (D - 6) Q52;r
C5502111 =———————, (5512011 = ———————, (5512101 = ————————, (5512110 = ————————,
€0,0,0,0,1 €0,0,0,0,1 €0,0,0,0,1 €0,0,0,0,1
(D - 6)QlS;r (D - 6)Q23;r (D - 6)Q43;r (D - 6)Q53;r
5501211 =———————, C5510211 = ————————, C5511201 = ————————, C55[1210= ——————,
€0,0,0,0,1 €0,0,0,0,1 €0,0,0,0,1 €0,0,0,0,1
(D-6)014. (D—6)024., (D-6)Q34, (D -6)Q0s4.r
5501121 =———————, C5510121 = ——————, C5511021 = ————————, C55111200= ——————,
€0,0,0,0,1 €0,0,0,0,1 €0,0,0,0,1 €0,0,0,0,1
(D-6)015, (D-6)Q0>s., (D -6)Qss;, (D —6)Qys;,
C5501112 =———————, C5510112 = ————————, C551102 = ————————, C551112= ————————.
€0,0,0,0,1 €0,0,0,0,1 €0,0,0,0,1 €0,0,0,0,1 (118)
The final step is to reduce the coefficients of the general boxes to the scalar basis.

After this reduction, we obtain the final solution.

I5(1,1,1,1,2) =c5,515(1,1,1,1,1) + ¢5_,4.115(0, 1,1, 1, 1) + ¢5_,4.515(1,0, 1,1, 1) + ¢5_4.315(1,1,0,1,1)

tsmuals(1,1,1,0, 1) 4 ¢5_4.505(1, 1, 1,1,0) + ¢53.1315(0,0, 1,1, 1)+ ¢53,1315(0, 1,0, 1,1)

+ 553731500, 1,1,0,1) 4+ ¢5_,3.4575(0, 1,1, 1,0) 4 ¢5_,3.5315(1,0,0, 1, 1) 4+ ¢5_,3.535(1,0, 1,0, 1)
+533505(1,0, 1, 1,005 3,33 15(1,1,0,0, 1) + 53,35 15(1, 1,0, 1,0) + ¢5_,3.3515(1, 1, 1,0,0)
+¢5-2:0,0,15(1,1,0,0,0) + 520, 15(1,0,1,0,0) + 5525, p, I5(1,0,0,1,0) + €5 2.5, p, I5(1,0,0,0, 1)
+¢5-2:0,0.15(0,1,1,0,0) + 520, 15(0,1,0,1,0) + €5-2:5..15(0,1,0,0, 1) + €525, 15(0,0, 1, 1,0)
+¢52:0.0.05(0,0,1,0, 1) + €552:5,0.15(0,0,0, 1, 1)+ ¢5, 1.5, 15(1,0,0,0,0) + ¢35 1.5, 15(0, 1,0,0,0)

+ C5_,1;D3I5(0,0, 1,0,0) + C5_)1;D415(0,0,0, 1,0) +C5_,1;D515(0,0,0,0, 1), (119)

with the coefficients given in the attached Mathematica notebook. Now, all coefficients are complete.

IV. ANALYTIC RESULTS OF THE COEFFI-
CIENTS

The analytic results are provided in the Mathematica
notebooks, which are publicly available at https://github.
com/Wanghongbin123/oneloop_parametric.

V. SUMMARY AND FURTHER DISCUSSION

In this paper, we consider one-loop scalar integrals in

the parametric representation given by Chen. However, in
the recurrence relation, there are typically several terms
that we do not want as well as terms with dimensional
shifting in general, which makes calculations difficult and
inefficient. In Chen's later paper [2], he used a method
based on non-commutative algebra to cancel the dimen-
sion shift. Unlike other methods, the one-loop case in-
volves a straightforward method in which linear equation
systems are solved to simplify the IBP recurrence rela-
tion in the parametric representation. Benefiting from the
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fact that F'is a homogeneous function of x; with a degree
of two in the one-loop situation, we can solve x; using
OF [0x; with several free parameters. Then, combining all
the IBP identities with a particular factor z; and choosing
particular values for the free parameters, we succeed in
canceling the dimension shift and terms with higher total
power. As a complement to the tadpole coefficients of the
reduction explored within our previous paper, we calcu-
late several examples and provide an analytic result of the
reduction.

For further research, there are several factors to be
considered. In our calculations, the constructed coeffi-
cients z; are not polynomial since they have a denominat-
or with the form x’ ; therefore, we cannot directly use

the technique of syzygy. Moreover, the application of
Chen's method to a higher loop is definitely another fu-
ture research direction. For this case, the homogeneous
function F(x) is of degree L+ 1, where L is the number of
loops. For the high loop case, we should consider how to
construct the coefficients z; efficiently and find a relation
similar to (37) to cancel the terms we do not need. Fi-
nally, the sub-topologies are entirely decided by the
boundary term in the parametric representation, which
may lead to simplification of calculation.
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