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Abstract: It is known that elastic magnetic electron scattering can be used to study the magnetic properties of nuc-
lei and determine the outermost-shell single-particle orbitals. In this study, the magnetic form factors |F M(q)l2 of

odd-4 nuclei calculated with relativistic and non-relativistic models are systematically compared. We use the relativ-
istic mean-field (RMF) and Skyrme Hartree-Fock (SHF) models to generate single-particle wave functions and cal-

culate the IFM(q)I2 values of selected nuclei under relativistic and non-relativistic frameworks, respectively. Geo-

metric factors are introduced through the spherical limit method to consider the influences of deformation, which im-

proves the agreement between the theoretical results and experimental data. It is shown that both the models have the

capability to describe the magnetic form factors in the spherical and deformed cases, and the discrepancies in

|F; M(q)l2 reflect the differences in the descriptions of the single-particle orbital between the two models.
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I. INTRODUCTION

The study of nuclear structure is a field facing great
opportunities and challenges in recent years, and its goal
is to establish a comprehensive microscopic theoretical
framework [1, 2]. To achieve this goal, several physical
models have been proposed, which can be divided into
several different approaches: the ab initio methods [3, 4],
shell model calculation [5], self-consistent mean-field
theory [6, 7], and macroscopic models with quantum
shell corrections [8]. In the past few decades, numerous
nuclear structure theories have extended from stable nuc-
lei to exotic nuclei [9, 10]. Compared with stable nuclei,
there are novel phenomena such as neutron halo, neutron
skin, giant resonance, and super deformation in exotic
nuclei, which pose serious challenges to the nuclear struc-
ture model [11, 12]. Therefore, it is particularly import-
ant to construct a theoretical nuclear structure model to
explain the macroscopic and microscopic phenomena in
both stable and exotic nuclei.

Among a number of nuclear structure models, the
self-consistent mean-field theory is a comprehensive and

successful model that is widely used for studying the nuc-
lear structure for both stable and exotic nuclei [13, 14].
The mean-field model incorporates the effective poten-
tial and the pairing field [6]. There are two main ways to
construct the mean-field model: relativistic and non-re-
lativistic methods. For the relativistic method [15], the in-
teraction between nucleons is transmitted through the
meson fields, while the non-relativistic method [16]
provides the nucleon-nucleon interactions directly. Re-
garding the global properties of the nuclei, the two
classes of mean-field models provide similar descriptions,
and both are consistent with the experimental data, such
as the binding energies and charge radii [17-19].
However, while the global properties can only reflect the
superposition of all nucleons, there are still some differ-
ences between these two models in describing the proper-
ties of the single nucleon. Thus, it is significant to find a
suitable experimental observation to analyze the validity
of the single-particle wave functions obtained with the re-
lativistic and non-relativistic mean-field models.

Electron scattering is an accurate tool to explore the
electromagnetic properties of nuclei, which can help in
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the deep understanding of the nuclear charge and current
distributions [20-22]. For the odd-4 nuclei, because the
angular momentum of all nucleons expect the valence
nucleon is paired, the total angular momentum of these
nucleons is zero, which has no contribution to the mag-
netic properties. Therefore, the magnetic moment of the
odd-A4 nuclei is determined to a great extent by the un-
paired nucleon [23-25]. Compared with elastic Coulomb
electron scattering, which can measure the total nuclear
charge density distributions [26-30], magnetic electron
scattering provides a direct way to explore the properties
of the single nucleon [31-33]. In elastic magnetic elec-
tron scattering, the most important observable is the mag-
netic form factors |Fy(g)|?, which is closely related to the
magnetic moment [34, 35]. In addition, the orbitals of the
valence nucleons can be directly reflected by the magnet-
ic form factors.

In the last few years, there have been several signific-
ant and instructive calculations of the magnetic form
factors within different theoretical frameworks [36-41],
including the relativistic mean-field (RMF) and non-re-
lativistic Skyrme Hartree-Fock (SHF) for both the spher-
ical and deformed cases [42-46]. Because different nucle-
ar structure models provide different descriptions of the
nuclear single-particle properties, it is necessary to per-
form a comparative study on the magnetic scattering pro-
cesses. The results can provide useful information for fur-
ther analyzing the effectiveness of nuclear structure mod-
els.

By comparing the magnetic form factors calculated
using the RMF and SHF models, the aim of this study is
to systematically analyze the properties of single-particle
described by these two models. Both stable and exotic
nuclei, namely, "B, 70, ?’Al, #!Ca, *'Ti, °Co, "In,
and '32Sn, are selected. First, we focus our studies on the
single-particle properties of odd-4 nuclei based on differ-
ent models. For the non-relativistic SHF model, by solv-
ing the Hartree-Fock equations for Skyrme's interaction,
the single-particle wave functions can be obtained. For
the relativistic mean-field model, the four-component
Dirac spinor wave functions can be obtained by solving
the Dirac and Klein-Gordon equations simultaneously.
Second, we construct the theoretical frameworks of non-
relativistic and relativistic magnetic electron scattering.
The spherical limit method is used to calculate |Fy(q),
which provides an efficient tool for describing the elec-
tromagnetic transitions of spherical and deformed cases
in a unified fashion. Third, based on the different types of
wave functions obtained from the RMF and SHF models,
the magnetic form factors of the selected nuclei are ob-
tained and compared with the experimental data. For the
deformed nuclei, geometrical factors are introduced to
consider the influences of deformation on |Fy(q)>. A
clear improvement in the agreement between the theoret-
ical results and experimental data can be observed. To

understand the structure of the exotic region, the magnet-
ic form factors |Fp(g)* of unstable nuclei are also stud-
ied. The differences in the descriptions of the single-
particle orbital between the RMF and SHF models are re-
flected from |Fm(g)?>. In particular, in the high-mo-
mentum transfer, the differences are amplified by the an-
gular momentum-dependent term in the matrix element;
therefore, this region is ideal to study the differences
between the two models.

This paper is organized as follows. In Section II, the
theoretical frameworks of magnetic electron scattering
and deformed formalism are provided. In Section III, the
results and discussions about |Fy(¢)|> for both stable and
exotic nuclei are presented. Finally, Section IV con-
cludes the paper.

II. THEORETICAL FRAMEWORK

In this section, the theoretical frameworks for study-
ing the magnetic form factors |Fp(g)|> of both spherical
and deformed nuclei are presented. First, we discuss mag-
netic electron scattering in the non-relativistic framework.
Then, we further investigate |Fy(g)|> under the relativist-
ic framework. Finally, the influences of the deformation
effect on |Fy(g)|* are considered.

A. The magnetic form factors IFM(q)I2 in the non-
relativistic framework

In the Skyrme Hartree-Fock calculation under spher-
ical symmetry, the single-particle wave function can be
written as [47]

R (r)
r

O;i(7,0,7) =

ky[,j,m(;\.70-)/\/q(7-)’ (1)
where

1
Yijn(F.0) = ) (Izmims | jm) Vi (6.0)xin, (@),

mym

R, is the radial wave function, and y;(7) is the isospin
spinor. The index i represents the set of quantum num-
bers: the angular momentum /, the total angular mo-
mentum j, the magnetic quantum number m, the charge ¢,
and the principal quantum number n. The notation
a ={q,n,l, j} is also introduced for simplicity.

In the plane-wave Born approximation (PWBA) [48],
the cross section of the elastic magnetic electron scatter-
ing can be expressed as

do 1 20 2
= —om|=+tan? 2 ||F , 2
10 O'M(2 an 2)l m(q)| 2
0
@cosy | . )
where oy =| ————| is the Mott cross section. The
2Esin” 3
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total magnetic form factor |[Fm(g)P* can be exprzessed as
the sum of the Lth magnetic form factor |F anag(q)| ,

odd

Fu@P = " [F ). 3)
L=1

With the transverse magnetic multipole operator 7,™¢,
the Lth magnetic form factor is defined as

Y e L e 10 A

We note that in the PWBA framework, the magnetic form
factor in Eq. (4) can be deduced as the Fourier transform
of the transition current density Ji;(r),

F*%(q) = fo Jrr(r)ji(gryrdr. (5)

The transition current density J.,(r) consists of two
parts [49]:

Jr(r) = JZL+J2L' (6)

Jg () =;§[<—1>J‘—”2gz<2L+ DRI+ 1D(2j+1)

><((2L— DI+ 1)1+ 1))”2

4n(L+ 1)
y L j 1/2 L-1 1 L
il L 11
I L-1 1 \Ryn
><(o 0 0) r 2
. L2 (d L+2
Jy () =—i 7 5+T Hsrre1(r)

L+DY2(d L-1
+% (5 - _)/«lsLLl(r)]’ (8)

fs11:(F) =ﬁ(—1)’ui(2l+ 1(2j+1)

L[BRL+D@L +1) 172
¥/
A B 5
I L 1\,
x{ 1;2 1;2 i}(o 0 O)Rnl(r),

©

where R,; is the radial wave function of the valence nuc-
leon in Eq. (1), and L= V2L+ 1. The convective current

J7, is generated by the orbital motion of protons and J;,
is produced by the spin of protons and neutrons.

In this study, R, is calculated using the SHF model
with the SLY4 parameter set [50]. For a neutron, the
Lande factor g, =0 and the magnetic moment
i =—1.913. For a proton, the Lande factor g; = 1 and the
magnetic moment y; =2.793. By substituting Egs. (6) -
(9) into Eq. (5), we can obtain the magnetic form factor in
the non-relativistic framework.

B. The magnetic form factors |F M(q)l2
in the relativistic framework

In the relativistic theory of magnetic electron scatter-
ing, the single-particle wave function of the valence nuc-
leon is expressed as

G = i[G(r)/r]Dn(F) }_[ ilnkm) }
" PO Don® || =Tk
o1,
1nl§]m>
= 1 , (10)
—nl’zjm>

through the selection of this phase factor in Eq. (10), the
upper and lower components G(r) and F(r) are real-val-
ued functions. The angular quantum number x determ-
ines the total and the orbital angular momentum quantum
numbers /, I’ and j,

1
i=Ikl— = 11
J=Ix > (11)
=k, I'=1-1, («k>0),
(12)
Il==k+1), I'=1+1, (k<O0).

In the independent single-particle shell-model, only
the unpaired valence nucleon can contribute to the mag-
netic form factors. The elastic magnetic form factors
squared are expressed as follows:

A L2 f2(q) &

2 _ m(Q) Amagy g \|2
Fu(@)P = =575 ;KJfIITL 2. (13)

In previous studies [51-54], it has been shown that the
neutron densities, spin-orbit densities, and center-of-mass
correction have significant contributions to the nuclear
charge radius. The contribution of the nucleon magnetic
form factor and center-of-mass corrections to |Fy(q)|> are
also taken into account in our studies. The center-of-mass
factor [55] in Eq. (13) is given by f..(q) = exp(g*b?/4A),
where the oscillator parameter b is often considered as
b=AY6 fm . The single-nucleon magnetic form factor
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for protons and neutrons is given by

fon(@) = ————., (14)
(1+724%/12)
with 7, = 0.81 fm.
The multipole operator fEfg is written as [23, 49]
T 5q) = f JuanYi, - Jind’r, (15)

and (J/|T*(q)|lJ;) is the reduced matrix element of the
multipole operator. The vector spherical harmonics Y7, (7)
are defined as

Y4B =D YuaH(XalB| X 14u)ép.

B
11
I+1 1/2
() = =2 (—) @+nej+nx|{ L 1
47T 2 2
joJ
l
f Jilarg (r)(—+— 2d {%
J
X f jL_l(qngz(r)err],
0 l/ l/
_1\/'+1
WZ'L"W=( 2 (E) QU +1)2j+1)x % %
JoJ

><[L(2L+3)]1/2><fdrijL(qr)(% +¥)f2(r)+

X [(L+1)2L—1)]'? xfdrrsz(qr)(dir—L%)fz(r)

1/2
(nkl|=} |Ink) =(—1)”(%) QL+ 1DQ2j+ D[+ D)2 +1)]* x

where g(r) =G(r)/r, and f(r) = F(r)/r. To calculate the
magnetic form factors, we use the RMF model to obtain
the wave functions in the present research. The values of

According to the Wigner-Eckart theorem, the sub-
script 4 of Eq. (15) has been reduced, and we can obtain
the reduced matrix elements

AT (@I = = (g/2M,){nkl| A ||nk)
+(q/2M,) (nkl| A [Ink)
+2(nkl| Q= Ink), (16)

where Q, M, are the electric charge, mass of the nucleon
and A is the anomalous magnetic moment, for proton

Ap =p,—1, and for neutron A, =pu,. The operators X
and X¥ are given by X[(n=M; (-0, Z¥(r)=

—i[ VXM, (D] 0/q, My, (r) = ju(gr)Yy, ().
The integral expressions in Eq. (16) can be written in
the following form

L+1
I L+1 1 oL+
+
! 0 0 0
L
I L-1
[ L-1 1
1 1/2
- X[(L+1)Q2L-1
3 [O 0 O] [( ) )]
i L
(17)
L+1
! L+1 U
1
0 0 0
L
! ' L-1
1 1 !/ L-1 T
-~ 1
2 2 0 0 0
J J L
1
}, (18)
!/ 1 L
L] Z’Llfdz'u()()
| rr g f(r),
2 2 0 0 0 juargnf
J J L

(19)

[
the matrix elements in Eq. (16) mainly come from the
contributions of the upper components of the RMF wave
functions in Eq. (17). The contributions of the lower com-
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ponent in Eq. (18) and the crossed term in Eq. (19) to the
magnetic form factors are minuscule.

C. Deformation correction for |F M(q)l2
In elastic scattering, the initial and final states in Eq.
(4) are consistent. The deformed magnetic multipole form
factors [31, 56, 57] can be expressed as the intrinsic form
factors weighted by the angular momentum correlation
coefficient

F[™8| oo =CKLO | ki) T " + (k= k L2k | kkYF
L L+

(KLO | kk)F, 5, (20)

where F,*° are the transverse multipoles of the collect-
ive rotational current, which are related the the nuclear
rotation model describing the energy band. For different
microscopic and macroscopic models, the expressions for
F,p® can be found in [58]. The single-particle multipoles
¥ g and 7,,,¢ are determined by the single-particle

Lk L2k
wave function of the valence nucleon [44],

Fro® =l T8 1) s (21)
Frioe = <¢k| Ik |¢k> +0k1/2 77'2?3‘%, (22)

where leag is the multipole operator [49], as in Eq. (15).
In addition, ¢; is the time reverse of the wave function of
the odd nucleon.

With the deformed intrinsic wave function ¢; calcu-
lated from the axially deformed mean-field models, the
matrix elements of the magnetic multipole operators in
Eq. (21) and Eq. (22) can be determined. In this study, we
construct the matrix elements under the condition of the
spherical limit, which are evaluated in terms of the over-
laps of the mean-field intrinsic deformed wave functions.
The spherical limit method [59, 60] provides an efficient
tool for describing the electromagnetic transitions of the
spherical and deformed cases in a unified fashion, which
has been proved to be identical to the complete deformed
calculations in Eq. (21) and Eq. (22).

In the spherical limit, the collective magnetic multi-
poles are zero, and the single-particle wave function ¢
involves a single angular momentum component ¢;;. In
this case j=k=J;, and the intrinsic form factors can be
obtained using the Wigner-Eckart theorem,

mag <¢”| Tmag |¢”>

1 #ma;
= GILOT Xl T,11 ), (23)

V2j+1

mag mag, 7
sz <¢JJ|TL2j |¢jj>

(_ )L mag
(J JL2j 1 jiXe il TN ).

«/21 +1 (24)

where ¢; is the single-particle wave function from the
spherical mean-field models.

The F ng|Sph is the magnetic form factor of the spher-
ical case, which is given by Eq. (4) and Eq. (13) for the
non-relativistic and relativistic frameworks, respectively.
Substituting Eq. (23) and Eq. (24) into Eq. (20), we can
obtain the relation between F anangh and F zlagi def?

mag _ L pmag
Fy |def = Fp |sph’ (25)
where the geometric factors n]L. can be expressed as
G=JL2jl1ji’
= (ILO| ) |14+ 60| (26)

(GiLO| jj?

Combining Egs. (21) - (24), it can be seen that
throughout the transformation from the deformed to the
spherical limit, the loss of the favored intrinsic direction
results in the geometric factor njL. in Eq. (26), and the
transition matrix elements are insensitive to the deforma-
tion parameter /.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present the nuclear ground-state
properties, such as the root-mean-square (RMS) charge
radii R¢ [61], the valence nucleon RMS radii Ry, and the
binding energies per nucleon B/A [62], for both stable
and exotic nuclei. ''B, 70, Al, “'Ca, *'Ti, ¥°Co, "In,
and '3Sn are chosen as the candidates. The theoretical
Rc and B/A given in Table 1 are calculated from the
RMF model with the NL-SH parameter set [63] and the
SHF model with the SLY4 parameter set. It can be seen
that both the RMF and SHF models can reproduce the
ground-state properties of the nuclei, which proves the
validity and suitability of these two models in describing
the global properties of nuclei. The validity of the single-
particle wave functions can be further discussed through
IFm(g)l

A. Spherical nuclei

In this part, the magnetic form factors |Fy(g)|> of nuc-
lei (170 and #!Ca) are systematically investigated using
the RMF and SHF models. It can be seen that the 'O and
41Ca nuclei have a single neutron outside the doubly
closed core and are both experimentally measured spher-
ical nuclei. The experimental data [22, 23] of |Fum(q)* are
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Table 1. The RMS charge radii Rc, the valence nucleon RMS radii Ry, and the binding energies per nucleon B/4 of ”B, ]70, 27A1,
41 57 59 115 133
Ca, 'Ti, Co, 'In,and Sn.
_ B/A MeV Rc/fm Ry /fm
Nuclei
SHF RMF Expt. SHF RMF Expt. SHF RMF
'B 7.053 6.874 6.928 2.435 2.404 2.406 2.651 2.522
"o 7.899 7.755 7.751 2723 2.698 2.693 3.409 3.399
Al 8.295 8.127 8.332 3.101 2.995 3.061 3.394 3.267
“ca 8.648 8.535 8.547 3.514 3.450 3.478 4.063 3.996
¥Co 8.780 8.648 8.768 3.789 3.754 3.789 4237 4.123
"In 8.491 8.454 8.517 4615 4.580 4616 5.146 5.080
T 8.404 8.212 8.364 3.688 3.651 - 4821 4.753
~'sn 8315 8.307 8310 4.744 4.726 - 5.810 5.521
also presented for comparison. 10" "
. . 17 . -
Figure 1 shows the comparison results of ''O with 102 (a) 17 0 e M3
I"=5/2*. We use the RMF and SHF models to generate - M5
the single-particle wave functions of the last neutron with o 103} . EMT
the parameters NL-SH, NL3, SLY4, and SLYS5. The mul- G o L
tipole components M1, M3, and M5 of the magnetic form u=10*
factors are presented in Fig. 1(a). It can be seen that the -
first peak of the total form factors is mainly from the con-
tributions of the M1 multipole. In the high-g region,
|[Fm(g)l? are largely determined by the M5 multipole, as .
the values of M1 and M3 rapidly decrease as g becomes RV NLSH
larger. In Fig. 1(b), we present the comparison of |Fy(q)|* 102l (b) 170 - - =RMF NL3
of 70 calculated using the RMF and SHF models, re- —gzi 2&‘5‘
spectively. The experimental data are also included in this o 103} e Bxpt.
figure. It can be seen that the |Fy(g)]® calculated by the %
SHF model are smaller than that obtained with the RMF =107
model overall. The theoretical results of these two mod- 10
els coincide with the experimental data in and medium ¢
regions, but in the high-g region, the theoretical form 108
factors still fall more deeply than the experimental data. , °
There are many RMF and SHF parameter sets, and 10-0_0 0I5 1i0 1:5 2i0 2i5 3-0 35 4.0
different parameter sets provide different theorical res- q (fm™)
2 -
ults. Therefore, we calculate |Fy(g)|* from several para Fig. 1. (color online) (a) The multipole components M1,

metrizations of the RMF and SHF models, and the com-
parison is also presented in Fig. 1(b). It can be seen that
the NL-SH and NL3 [64] parameters lead to very close
|Fm(g)?, and similar results are obtained for the SLY4
and SLY5 [50] parameters. There are two groups of
|Fpm(g)? calculated with different models, which means
that the |Fy(g)|> values are insensitive to the parameters
of the RMF and SHF models. The discrepancies in
|Fp(g)? are mainly caused by the different models rather
than the parametrizations. Therefore, we only show the
results from the NL-SH and SLY4 parameter sets in the
following sections.

In Fig. 1(b), |Fm(g)* calculated by the SHF model are
smaller than those obtained with the RMF model. This is
due to the different descriptions of the single-particle or-
bital in the RMF and SHF models. In the PWBA frame-

M3, and M5 of the magnetic form factors of 0 (" =5/2%)
obtained with the RMF model. (b) The magnetic form factors
of 17O, where the wave functions are obtained from the RMF
and SHF models. The experimental data are obtained from
Ref. [23].

work, the elastic magnetic form factors can be expressed
by the Fourier transformation of the transition current
density directly related to the density distribution of the
valence nucleon. In Fig. 2 we further present the corres-
ponding density distributions of the valence nucleon 70,
which occupies the 1ds,, orbital. From Fig. 2, it can be
seen that the density distributions from the RMF model
are clearly larger than those from the SHF model in most
regions except for the edge part. By performing the Four-
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ier transformation from the coordinate space to the mo-
mentum space, the magnetic form factors calculated by
the RMF model are larger than those of the SHF model,
especially in the high-momentum transfers. This is be-
cause the form factor at large ¢ is mainly determined by
the valence nucleon density distribution at small coordin-
ates in the r space. The differences between the RMF and
SHF models in describing the single-particle orbital lead
to differences in the magnetic form factors.

The valence nucleon RMS radii Ry calculated from
the RMF and SHF models are 3.399 and 3.409 fm, re-
spectively. These results are consistent with the experi-
mental data reported in Ref. [24] and the other theoretic-
al results reported in Refs. [42, 65].

Figure 3 shows the magnetic form factors of *'Ca
with [ =7/2", where the experimental data are taken
from Ref. [22]. It can also be seen that the M1 multipole
determines the first peak in Fig. 3(a). The values of M1,
M3, and M5 decrease with increasing g. In the high-g re-
gion, the total form factors are mainly determined by the
M7 multipole. In Fig. 3(b), it can be seen that the differ-
ences in |Fy(g)* are still mainly in the high-momentum
transfer. To illustrate this problem, we also display the
valence nucleon density distributions of #'Ca in Fig. 4.
Similar to Fig. 2, the density distributions at small co-
ordinates in the r space lead to differences in the form
factors at large coordinates in the p space, which indic-
ates that the RMF and SHF models provide different de-
scriptions of the single-particle orbital.

The valence nucleon RMS radii Ry of the 1f;7/, orbit-
al obtained from the sub-Coulomb transfer reactions are
4.00 = 0.06 fm [66] and 3.89 + 0.12 fm [67]. We obtain
Ry =3.996 fm from the RMF model and Ry =4.063 fm
from the SHF model, which are similar to the experi-
mental results. The agreement between the theoretical

17 ——RMF
80 O 1ds, ---- SHF
@
=
<
a
[sp]
e
70 2 4 6 8

r(fm)
Fig. 2. The density distribution of "0 when the valence nuc-
leon occupies the 1ds;, orbital, where the single-particle wave
functions are calculated using the RMF model with the NL-
SH parameter set and SHF model with the SLY4 parameter
set.

results and experimental data implies the validity of the
RMF and SHF theories in reproducing the magnetic form
factors.

From the calculations of these two selected spherical
nuclei, we found that the |Fy(g)|* from the RMF and SHF

10

1073

a)l?

~=10*
L

10°®

-6 . .
10 0.0 05 1.0

1.5 20 25 30 35

q (fm™)

Fig. 3.  (color online) (a) The multipole components M1,
M3, M5, and M7 of the magnetic form factors of “1Ca
(I =7/27) obtained with the RMF model. (b) The magnetic
form factors of 4lCa, where the wave functions are obtained
from the RMF and SHF models. The experimental data are

obtained from Ref. [22].

—— RMF
---- SHF

YCa 1f,,

r (fm)

The density distributions of *!Ca when the valence

Fig. 4.
nucleon occupies the 1f,, orbital, where the single-particle
wave functions are calculated using the RMF model with the
NL-SH parameter set and SHF model with the SLY4 paramet-
er set.
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models in Sec. II can quite reasonably reproduce the
measured electromagnetic form factors well. Overall, the
|[Fym(g)I> obtained from the SHF model is slightly smaller
than that obtained from the RMF model. In the low-q and
middle-q regions, there are little differences between the
results of the RMF and SHF models, while in the high-g
region, more obvious differences can be seen. The origin
of these differences can be traced back to the effective
nuclear interaction. The self-consistent central potentials
from the RMF model are deeper than those from the SHF
model, which leads to different descriptions of the single-
particle orbital from the RMF and SHF models. The RMF
model provides larger single-particle orbital density dis-
tributions at the center and peak region, so the magnetic
form factors related to density from the RMF model are
also larger than those from the SHF model, especially in
the high-¢q region.

B. Deformed nuclei

In this section, we investigate the |Fy(g)> of de-
formed nuclei ''B, 2’Al, 3°Co, and '""In based on the de-
formed scattering formulas Eqgs. (20) - (26) in Sec. II. The
theoretical |Fy(g)* for the selected nuclei are calculated
from the relativistic RMF and non-relativistic SHF mod-
els. A comparison of the results reflects the differences in
describing the properties of single-particle by the RMF
and SHF models.

In Fig. 5, we present the results of "B with /7 =3/2".
Figure 5(a) and Fig. 5(b) show |Fm(g)]> from both the
spherical and deformed calculations with the RMF mod-
el. M1 and M3 in the spherical descriptions are relatively
large overall, which leads to the final result being larger
than the experimental data. For the nucleus ''B with the
valence nucleon in the 1ps/, state, we should note that the
geometric factors 7757 and 757} are both equal to 0.6 us-
ing Eq. (25). Therefore, in the deformed case, the overall
contributions of the M1 and M3 multipoles decrease due
to geometric factors. Figure 5(c) shows a comparison
between the results of the SHF and RMF models. After
taking the deformation into account, the results of the two
models become smaller, which are more consistent with
the experimental data. However, there are also some dif-
ferences between them. In the high-¢g region, it can be
seen that |Fuy(g)l?> calculated with the SHF model are
smaller than those of the RMF model, which reflects the
differences in the wave functions between the two models.

Figure 6 shows the same results, but for ?’Al with
I"=5/2*. In Fig. 6(a) of the spherical case, all the multi-
poles come into play. In the region ¢ < 1fm™!, the first
peak is mainly determined by the M1 multipole. The
magnetic form factors are filled due to the contribution of
the M3 multipole in the region between the two peaks
1< g < 2fm™"'. In the high-¢ region, the M5 multipole
plays a dominant role. For the deformed calculations
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107 -
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O
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- - SHF Sph.
—— RMF Def.

w10

10°
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7 . .
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Fig. 5. (color online) (a) The magnetic form factors of !
(1 =3/27) divided into the M1 and M3 multipole compon-
ents in the spherical RMF model. (b) The multipole compon-
ents in the deformed case. (c) A comparison between |Fy(q)?
from the RMF and SHF calculations. The experimental data
are obtained from [23].

shown in Fig. 6(b), it can be seen that the agreement
between the theoretical results and the experimental data
is obviously improved, especially in the dip region
1< g < 1.5fm™", which is mainly determined by the M3
multipole. For the nucleus 2’Al, the introduction of the
geometric factor né/:f =0.1190 reduces the contributions
of M3, which can better describe the dip of the experi-
mental data. In Fig. 6(c), |Fm(g)* calculated with the de-
formation calculations based on the RMF and SHF mod-
els are compared, and both are consistent with the experi-
mental data. However, the results of the two models are
also different in that the RMF model results are larger
than those of the SHF model overall, especially in the
high-momentum transfers region. According to Eq. (16),
the differences in the wave functions are amplified with
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Fig. 6. (color online) Same as in Fig. 5, but for YAl

(1" =5/2") decomposed into the M1, M3, and M5 multipole
components. The experimental data are obtained from [23].

the increase of L, and thercfore a more obvious differ-
ence in the magnetic form factors is observed in the high-
momentum transfer region.

Figure 7 shows the results for Co with /¥ =7/2".
Again, in Fig. 7(a) of the spherical case, M1, M3, M5,
and M7 all contribute to the total form factors, and the
overall theoretical results are above the experimental
data. In Fig. 7(b) of the deformed case, due to the geo-
metrical factors 7757 = 0.2121 and 757 = 0.0163, the con-
tributions of the M3 and M5 multipoles are greatly re-
duced, which gives a better description of the downward
trend of the experimental data in the region
0.5< g < 1fm™"'. In Fig. 7(c), we present |[Fy(q)]* calcu-
lated using the RMF and SHF models, and it can be seen
that the results of both the models are in good agreement
with the experimental data. The differences in |Fy(q)?
between the RMF and SHF models are small in the low-g
region but become more obvious in the middle-g and
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107
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E ® Expt.
=10*
w
10°
108%
107
59 - - RMF Sph.
- - SHF Sph.
10?2 (C) Co _ RMF Dot

106

-7 . .
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15 20 25 3.0 35
q (fm™)

Fig. 7.  (color online) Same as in Fig. 5, but for *Co
(17 =7/27) decomposed into the M1, M3, M5, and M7 multi-

pole components. The experimental data are obtained from
[23].

high-¢g regions. However, the results of the RMF model
are still overall larger than those of the SHF model, which
can be attributed to the different descriptions of the
single-particle orbital between the two models.

Finally, Fig. 8 shows the results for ''>In with
I"=9/2*. In Fig. 8(a) of the spherical calculations, every
multipole plays a role, and the curve of the magnetic form
factors is relatively flat with no obvious peak value. M3
and M5 fill the magnetic form factors in the region
0.5< g < 1fm™'. In Fig. 8(b) of the deformed case, the
geometrical factors 7575 =0.2397, 777 =0.0419, and
M55, =0.0019, which greatly reduces the contribution of
M3, M5, and M7 to the total form factors. The deformed
case reproduces the results of three peaks. The M1 multi-
pole determines the two first peaks, while the third peak
is due to the M9 multipole. The roles of M5 and M7 are
negligible owing to the geometrical factors. In Fig. 8(c),
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multipole components. The experimental data are obtained
from [31].
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it can be seen that |Fy(g)]* in the deformed case show
better agreement with the experimental data. For the de-
formed nucleus ''In, the differences in the wave func-
tions calculated with the two models are small, so the dif-
ferences in |Fy(g)]* are not obvious in the entire g region.

In summary, it can be found that with the addition of
geometrical factors, the multipoles of the deformed form
decrease with respect to the spherical ones, which also
helps to improve the consistency of the deformed case
with the experimental data. The corrections introduced by
deformation have a positive effect on the description of
deformed nuclei.

In the studies presented in Sec. III.A and III.B, the
RMF and SHF models are constructed without consider-
ing the pairing interaction. There are various ways to in-
corporate the effects of pairing, such as the BCS or
Bogolybov transformations. It should be mentioned that

the pairing interaction has a slight effect on the valence
nucleon wave functions, but does not change the orbital
of the valence nucleon. Therefore, the influence of the
pairing interaction on |Fy(g)]> is small and can be ig-
nored.

C. Exotic nuclei

In this part, based on the models constructed in Sec.
11, the magnetic form factors |Fy(q)* of exotic nuclei are
studied to understand the structure of exotic nuclei. As-
suming a valence nucleon in different orbitals with the
same angular momentum, the corresponding |Fy(g)|> are
calculated to reveal the relation between Ry and |Fy(q)|.
Besides, |Fy(g)l> from the RMF and SHF models are also
investigated and compared to show the different descrip-
tions of the single-particle oribitals in an exotic region
from different effective interactions.

In Fig. 9, we first display the valence nucleon density
distributions and corresponding Ry of 3'Ti for different
orbitals with the same angular momentum. It is clear that
there are distinct differences between the density distribu-
tions of different orbitals. In general, the single-particle
wave functions and valence nucleon density distributions
are related to the node number. In Fig. 9, there is one
peak for the valence nucleon density distribution of the
1ps,, orbital, but two peaks for those of the 2ps3,, orbital.
With an increase in the node number, the valence nucle-
on RMS radius in the 2ps3,, orbital is considerably larger
than that in 1p3,.

In previous studies, the relation between |Fy(¢)|* and
different angular momenta of the valence nucleon has
been discussed [32]. We further calculate|Fy(g)]> where
two valence nucleons have the same angular momentum
but different valence nucleon RMS radii. In this way, the
relation between Ry and |Fy(g)* can be reflected. In Fig.
10, we present |Fy(g)> of >’Ti for different orbitals with

—— 1p,,, R,=3.285 fm
~== 2Dy, R,=4.753 fm

2 10°
S
=
—10%
S
10°

10

-7 L L .\'\
10 0 2 4 6 8§ 10 12 14
r (fm)
Fig. 9. The valence nucleon density distributions of the

1p3;, orbital and 2ps;, orbital for 57Ti, where the single-
particle wave functions are calculated using the RMF model
with the NL-SH parameter.
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the same angular momentum. It can be seen that with an
increase in Ry, the multipole components decrease more
slowly, which leads to an extension of the total magnetic
form factor. Due to the same angular momentum in Fig.
10(a) and Fig. 10(b), the differences in the total form
factor are solely due to the transition current density,
which is directly related to the valence nucleon RMS
radii.

Different effective interactions may provide different
descriptions in the exotic region. It is also interesting to
compare the magnetic form factors from different interac-
tions for the exotic nuclei. In recent years, the first elec-
tron scattering experiment of '32Xe has been successfully
completed at a self-confining radioactive-isotope ion tar-
get (SCRIT) facility [68]. The ultimate purpose of this
experiment is to complete the electron scattering experi-
ment of the double magic nucleus '*2Sn [69]. It can be
foreseen that the magnetic electron scattering of !'32Sn
will be performed in the near future. Therefore, we chose
1338n as the target nucleus to analyze the differences in
the theoretical magnetic form factor between the RMF
and SHF models.

In Fig. 11 we plot the density distributions of '33Sn
where the valence nucleon occupies the 1hg,, orbital. Due
to the relativistic effects, there are notable discrepancies
in the central potentials and single-particle wave func-

107?
- - - M1
10° S
o~ — 1p3p
G 10 R,=3.285 fm
|-|-§'IO'5
10®
107
10—8 . L
- - - M1
107 -=--M3
o, —2p3p,
T 10 R,=4.753 fm
T
=10
10®
107
100 ~
4 5

q (fm™)

Fig. 10.  (color online) The magnetic form factors of the
1p3» orbital and 2p;3,, orbital for 57Ti, where the single
particle wave functions are calculated using the RMF model
with the NL-SH parameter.

tions for these two models [37]. Based on the single-
particle wave functions obtained from the RMF and SHF
models, we show in Fig. 12 the magnetic form factors of
1338n calculated in the relativistic and non-relativistic
frameworks, respectively. It can be seen that the differ-
ences in |Fy(g)l> mainly occur in the high-momentum
transfer region. The magnetic form factors at large co-
ordinates in the p space mainly depend on the current
density at the small coordinates of the » space. The differ-
ences in |Fy(g)P* in the high-g region indicate that the
single-particle wave functions generated by the RMF and
SHF models are different in the low r region. These res-
ults can provide useful guidance for the electron scatter-
ing experiments of exotic nuclei in the future.

1.6

——RMF
----SHF

333N 1hy,,

- 1.2F

r (fm)
Fig. 11. The density distributions of Sn when the last
neutron occupies the 1hg,, orbital, where the single-particle
wave functions are calculated using the RMF model with the

NL-SH parameter and SHF model with the SLY4 parameter.

—RMF

133
A Sn ----SHF

10—6 X

107

o 1 2 3 4 5
q (fm™)

Fig. 12. The magnetic form factors of "*Sn when the last
neutron occupies the 1lhg,, orbital, where the single-particle
wave functions are calculated using the RMF model with the
NL-SH parameter and SHF model with the SLY4 parameter.
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IV. SUMMARY

In this study, the magnetic form factors |Fy(q)|* of
spherical and deformed cases were investigated systemat-
ically using the RMF and SHF models. The magnetic
form factor is significant for investigating the magnetic
properties of nuclei. In previous studies, the RMF and
SHF models were used to calculate the |Fy(g)” under
spherical symmetry. In this work, we further considered
the deformation of the nuclei and conducted comparative
studies of the magnetic form factors calculated using the
RMF and SHF models, which reflect the differences in
the description of the single-particle orbital between the
two models.

This research is divided into three parts. First, the
single-particle wave functions are obtained with the RMF
and SHF models. Second, the theoretical frameworks of
non-relativistic and relativistic magnetic electron scatter-
ing are constructed, and the spherical limit method is
used to calculate |Fy(g)|>. Third, for the spherical cases,
we calculate the |Fp(g)|> of spherical nuclei (170 and
41Ca) based on the RMF and SHF models. The spherical
results of these two models coincide with the experiment-
al data. For the deformed nuclei (''B, "Al, *Co, and
15In), there are some differences between the
|[Fm(g)l>values obtained with the two spherical models
and the experimental data, especially at the middle-mo-

mentum transfer. Considering the influences of deforma-
tion on |Fu(q)>, geometrical factors are introduced to
modify the spherical results, and a clear improvement in
the agreement between the theoretical results and experi-
mental data is observed. To understand the structure of
the exotic region, the magnetic form factors |Fy(g)]> of
exotic nuclei are also studied.

Different from the charge form factors that reflect the
contributions of all the nucleus, the magnetic form factors
|[Fm(q)l> for 0odd-4 nuclei mainly reflect the properties of
the valence nucleon. These results show the reliability of
the single-particle wave functions generated by the two
models. The |Fum(g)l> values obtained using the SHF
model are smaller than those obtained with the RMF
model, especially in the high-momentum transfers, which
reflects the differences in the descriptions of the wave
functions of the valence nucleons between the two mod-
els. The obvious discrepancies between the two models
that occur in the high-momentum transfer are caused by
the angular momentum-dependent term in the scattering
matrix elements, which amplifies the differences between
the wave functions derived using the two models. Due to
the relativistic effects, the self-consistent central poten-
tials from the RMF model are deeper than those from the
SHF model, which leads to different single-particle orbit-
al descriptions from the RMF and SHF models. The res-
ults of this study can be used to test the validity of mod-
els and can serve as a useful guide for the investigation of
exotic nuclei.
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