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Abstract: In this  work,  we attempt to construct  the Lax connections of -deformed integrable field theories in
two different ways. With reasonable assumptions, we make an ansatz and find the Lax pairs in the -deformed af-
fine Toda theories and the principal chiral model by solving the Lax equations directly. This method is straightfor-
ward, but it may be difficult to apply for general models. We then make use of a dynamic coordinate transformation
to read the Lax connection in the deformed theory from the undeformed one. We find that once the inverse of the
transformation  is  available,  the  Lax  connection  can  be  read  easily.  We show the  construction  explicitly  for  a  few
classes of scalar models and find consistency with those determined using the first method.
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I.  INTRODUCTION

TT̄The -deformation of  two-dimensional  field  theor-
ies [1, 2] has recently attracted much attention. It is a type
of  solvable  irrelevant  deformation and induces  a  flow in
the  space  of  field  theories  that  satisfies  the  differential
equation 

∂tL(t) = det
(
T (t)
µν

)
, (1)

T (t)
µν TT̄ =

−π2detT (t)
µν

TT̄

where  is  the  stress-energy  tensor  and 
.  A  remarkable  property  of  this  flow  is  that  it

preserves integrability if  the undeformed theory is integ-
rable. In the original paper [1], the preservation of integ-
rability  under  a -deformation  or  its  generations  has
been  supported  by  showing  that  the  infinite  conserved
charges of the undeformed theory are still  conserved un-
der  the  flow.  Another  piece  of  evidence  for  integrability
arises from the fact that the S-matrix in the deformed the-
ory is only modified by adding a CDD-like factor [1, 3].
A word of caution is that the solvability of the deformed
theories does not rely on integrability crucially, and it can
be  understood  from  various  aspects  [4-9].  Nevertheless,

integrability  may  provide  additional  convenient  handles
on the theory.

TT̄
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It is well-known that integrability can be described in
other  frameworks,  such  as  the  Lax  pair  formulation  and
the  Bäcklund  transformation  formulation.  In  particular,
the existence of the Lax connection is usually taken as a
hallmark  of  classical  integrability,  and  it  also  paves  the
way to quantization [10]. However the Lax connection is
notoriously difficult to find. Most of the time, it requires
the  art  of  guessing  and  trial  and  error.  In  this  work,  we
will  derive the Lax connections of  several -deformed
integrable  theories  with  two  different  methods.  The  first
method is rather straightforward. We start from a reason-
able ansatz  and  find  the  connection  by  imposing  equa-
tions of motion and solving the Lax equation. This meth-
od  is  suggestive  but  can  be  limited  to  specific  models.
The  second  method  is  more  systematic,  and  it  relies  on
the fact that the -deformation can be realized as a dy-
namic  coordinate  transformation  [9].  It  is  reminiscent  of
the  method  for  deriving  the  Lax  connections  of -de-
formed superstring theory [11]. This similarity is also ex-
pected,  considering  the  fact  that  the  holographic -de-
formation  [12],  also  known  as  the  single  trace -de-
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formation, as well as the  deformations, can be related to a TsT
deformation [13-15]. The difference is that the single trace

-deformation is a field redefinition, while the -de-
formation of field theories involves a change of coordin-
ates.

TT̄
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The  paper  is  organized  as  follows.  In  Sect.  II  and
Sect.  III,  we  derive  the  Lax  connection  of  (affine)  Toda
field theories and the principle chiral model directly with
a reasonable  ansatz.  In  Sect.  IV,  we  first  review the  dy-
namic coordinate transformation approach of -deform-
ation,  after  which  we  reproduce  the  results  obtained  in
Sects. II  and  III,  and  we  finally  derive  the  Lax  connec-
tion  for  a -deformed  non-relativistic  non-linear
Schrödinger theory. In Sect. V, we provide conclusions. 

TT̄II.  -DEFORMED (AFFINE) TODA FIELD
THEORIES

TT̄

T T̄

In  this  section,  we  consider  the  (affine)  Toda  field
theories  and  their -deformations.  The  integrability  of
(affine) Toda field theories can be studied from the point
of view of the Lax connections. As examples of N scalar
theories,  the -deformed  Lagrangians  of  these  models
have been derived in [16]. Here, we derive the deformed
Lax connections with some reasonable ansatz. 

A.    Undeformed theories
The  Lagrangian  of  a  rank-r affine  Toda  field  theory

(for a review on Toda field theory, see [17]) is given by 

L(0) ≡ ∂ϕ⃗ · ∂̄ϕ⃗+V (2)

with 

V = −m2

β2

r∑
i=0

nieβα⃗i·ϕ⃗, (3)

ϕ⃗

{ni} {α⃗i, i =
1, · · · ,r}

α⃗0 = −
∑r

i niα⃗i

i = 0

H⃗ = {Ha, a = 1,2, · · · ,r}
{Eα⃗i
,E−α⃗i

, i = 0,1, · · ·r}

where  is  a  vector  field of r components, the set  of  in-
teger  number  characterizes  the  theory, 

 are positive simple roots of the underlying Lie al-
gebra,  and .  If  in  the  summation  the  term

 is omitted, then the theory reduces to the conformal
Tada field  theory.  The  generators  of  the  Cartan  subal-
gebra ,  and  the  simple  roots

 satisfy  the  standard  commutation
relations 

Ha,Hb = 0, H⃗,E±α⃗i
= ±α⃗iE±α⃗i

,

Eα⃗i
,E−α⃗ j

= δi j
2α⃗ j · H⃗
|α⃗ j|2

,

Eα⃗i
,Eα⃗ j
=

{
Nα⃗i+α⃗ j

Eα⃗i+α⃗ j
, if α⃗i+α⃗ j is a root,

0, if α⃗i+α⃗ j is not a root. (4)

The equations of motion are simply given by 

2∂∂̄ϕ⃗− δV
δϕ⃗
= 0, (5)

and the Lax connections are
 

L = −β
2
∂ϕ⃗ · H⃗−λ

r∑
i=0

mieβα⃗i·ϕ⃗/2Eα⃗i
,

L̄ =
β

2
∂̄ϕ⃗ · H⃗+ 1

λ

r∑
i=0

mieβα⃗i·ϕ⃗/2E−α⃗i
, (6)

λ ∈ C m2
i =

1
4 |α⃗i|2m2niwhere  is the spectral parameter and .

For a classical integrable system, the equations of motion
are equivalent to the Lax equation
 

∂L̄− ∂̄L−L, L̄ = 0. (7)

For later convenience, we introduce two new combin-
ations
 

E+ =
r∑

i=0

mieβα⃗i·ϕ⃗/2Eα⃗i
,

E− =
r∑

i=0

mieβα⃗i·ϕ⃗/2E−α⃗i
(8)

satisfying
 

[E+,E−] =− β
2
∇⃗V · H⃗,[

H⃗,E±
]
=± 2
β
∇⃗E±, (9)

∇⃗ f
δ f

δϕ⃗
where  denotes . Then, the Lax connections (6) can

be rewritten as
 

L =− β
2
∂ϕ⃗ · H⃗−λE+, L̄ =

β

2
∂̄ϕ⃗ · H⃗+ 1

λ
E−. (10)

 

TT̄B.    -deformed theories

TT̄The -deformed Lagrangian of an N-scalar theory is
[16, 18]
 

L(t) =
V

1− tV
+

1
2t(1− tV)

(ΩT −1), (11)

where
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ΩT =
√

1+Y +Z, Y = 4t(1− tV)
(
∂ϕ⃗ · ∂̄ϕ⃗

)
,

Z =−4t2(1− tV)2
(
∂ϕ⃗ ·∂ϕ⃗

) (
∂̄ϕ⃗ · ∂̄ϕ⃗

)
−

(
∂ϕ⃗ · ∂̄ϕ⃗

)2
. (12)

The equations of motion are given by 

A⃗e ≡ ∂µ
δL(t)

δ∂µϕ⃗
− δL

(t)

δϕ⃗
= 0. (13)

Substituting (11) and (12) into (13), one can obtain 

A⃗e =

{
1
ΩT

[∂̄ϕ⃗−2t(1− tV)(∂ϕ⃗(∂̄ϕ⃗ · ∂̄ϕ⃗)− ∂̄ϕ⃗(∂ϕ⃗ · ∂̄ϕ⃗))]
}

+ ∂̄

{
1
ΩT

[∂ϕ⃗−2t(1− tV)(∂̄ϕ⃗(∂ϕ⃗ ·∂ϕ⃗)−∂ϕ⃗(∂ϕ⃗ · ∂̄ϕ⃗))]
}

− ∇⃗V
4ΩT (1− tV)2

[
(ΩT +1)2−Z

]
.

(14)

Given  these  equations  of  motions,  we  propose  a  simple
ansatz for the Lax connection: 

L =− β
2

a⃗1 · H⃗−λb1E++
1
λ

c1E−,

L̄ =
β

2
a⃗2 · H⃗−λb2E++

1
λ

c2E−, (15)

a⃗1,b1,c1, a⃗2,b2,c2 ϕ⃗

Eα⃗
A⃗H ,A′+,A

′
−,

H⃗ E+ E−
A⃗H ,A′+,A

′
−,

∇E±
Eα⃗

∇E±

where  are  the  functions  of  and  their
derivatives  and  will  be  determined  by  imposing  the  Lax
equation and the equations of  motion.  Notice that  in our
ansatz (15), the Lax connection depends uniformly on the
simple roots . Plugging (15) into (7) directly gives rise
to a set of linear differential equations  corres-
ponding to the components , , and , respectively.
In  principle,  should  vanish  separately.
However,  because  terms  such  as  are  not  uniformly
dependent  on  the  simple  roots ,  we  require  that  the
coefficients of terms such as  vanish separately. Con-
sequently, we obtain five sets of linear equations 

A⃗H ≡ ∂a⃗2+ ∂̄a⃗1−∇⃗V(b1c2−b2c1) = 0,

A+ ≡ −∂b2+ ∂̄b1 = 0,

A− ≡ ∂c2− ∂̄c1 = 0,

A⃗p+ ≡ −∂ϕ⃗b2+ ∂̄ϕ⃗b1− (a⃗1b2+ a⃗2b1) = 0,

A⃗p− ≡ ∂ϕ⃗c2− ∂̄ϕ⃗c1− (a⃗1c2+ a⃗2c1) = 0.

(16)

To solve  these  equations,  we  make  another  assump-
tion that they can be written as linear combinations of the
equations of motion, i.e., 

A⃗H = fH A⃗e, A+ = f⃗+ · A⃗e, A− = f⃗− · A⃗e,

A⃗p+ = fp+A⃗e, A⃗p− = fp−A⃗e. (17)

fH , f⃗+, f⃗−, fp+, fp−

To ensure  the  equivalence  between the  Lax equation
(16) and the equations of motion (13), there should be no
common  zero  of . Indeed,  we  are  mak-
ing quite strong assumptions here, but we will show that a
consistent solution does exist.

For the undeformed theory, by (10), one can find that 

fH = 1, fp+ = 0, fp− = 0, (18)

f⃗+, f⃗−and there are no  terms. We assume that (18) is still
true for the deformed theory and observe that if we take 

f⃗+ = −t∂̄ϕ⃗, (19)

then 

f⃗+ · A⃗e = −∂
[

t
ΩT

(
∂̄ϕ⃗ · ∂̄ϕ⃗

)]
+ ∂̄

[
(ΩT +1)2−Z
4ΩT (1− tV)

]
(20)

suggesting that we can identify 

b1 =
(ΩT +1)2−Z
4ΩT (1− tV)

, b2 =
t
ΩT

(
∂̄ϕ⃗ · ∂̄ϕ⃗

)
(21)

f⃗− = −t∂ϕ⃗, c1 c2

up to some constants, which can be fixed to be zero after
considering  other  equations.  Similarly,  by  taking

 we can determine  and 
 

c1 =
t
ΩT

(
∂ϕ⃗ ·∂ϕ⃗

)
, c2 =

(ΩT +1)2−Z
4ΩT (1− tV)

. (22)

f⃗H A⃗eFinally, from , we fix all the remaining functions in
our ansatz 

a⃗1 =
1
ΩT

[
∂ϕ⃗−2t(1− tV)

(
∂̄ϕ⃗

(
∂ϕ⃗ ·∂ϕ⃗

)
−∂ϕ⃗

(
∂ϕ⃗ · ∂̄ϕ⃗

))]
,

a⃗2 =
1
ΩT

[
∂̄ϕ⃗−2t(1− tV)

(
∂ϕ⃗

(
∂̄ϕ⃗ · ∂̄ϕ⃗

)
− ∂̄ϕ⃗

(
∂ϕ⃗ · ∂̄ϕ⃗

))]
. (23)

Plugging (21), (22), and (23) into (16), one can check that
(16) is indeed equivalent to the equations of motion (13).

TT̄To  summarize,  the  Lax  connections  of  the -de-
formed (affine)  Toda  field  theories  are  of  the  forms  ex-
pressed  in  (15),  with  the  functions  being  given  by  (21),
(22),  and  (23).  We  want  to  stress  that  after  we  assume
(18)  and  (19),  the  solutions  can  be  determined  directly,
without solving any other equations. 
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C.    Examples

sl2

To compare with the existing results in the literature,
let  us  consider  some  specific  examples.  The  first  one  is
the Liouville field theory, which corresponds to the Toda
field theory of  Lie algebra with parameters 

β =
1
2
, m0 = 0, m1 = −

√
µ

2
. (24)

The undeformed Lagrangian is 

L(0) = ∂ϕ∂̄ϕ−µeϕ. (25)

TT̄The -deformed  Liouville  field  theory  was  studied  in
[19],  where  infinite  conserved  currents  were  constructed
from  some  ansatz  without  using  the  Lax  connection.
From the discussion in the last subsection, we can present
the deformed Lax connections explicitly 

L =− 1
4
∂ϕ

ΩT
H+
√
µλBeϕ/2Eα1

−
√
µ

λ
(∂ϕ)2Ceϕ/2E−α1

,

L̄ =
1
4
∂̄ϕ

ΩT
H−
√
µ

λ
Beϕ/2E−α1

+
√
µλ(∂̄ϕ)2Ceϕ/2Eα1

, (26)

where 

B =
(ΩT +1)2

8ΩT (1− tV)
, C =

t
2ΩT
,

ΩT =

√
1+4t(1− tV)

(
∂ϕ∂̄ϕ

)
. (27)

sl2Let the generators of  Lie algebra be 

H =
(

1 0
0 −1

)
, Eα1

=

(
0 1
0 0

)
, E−α1

=

(
0 0
1 0

)
, (28)

t→ 0then,  if  we  take  the  undeforming  limit, ,  the  Lax
connections become 

L =


−1

4
∂ϕ

√
µλ

2
eϕ/2

0
1
4
∂ϕ

 , L̄ =


1
4
∂̄ϕ 0

−
√
µ

2λ
eϕ/2 −1

4
∂̄ϕ

 ,
(29)

which are the Lax connections of the Liouville field the-
ory.

sl2
Our  next  example  is  the  sine-Gordon  model,  which

corresponds to the affine Toda field of affine  algebra

with parameters
 

β =
i
2
, m0 = m1 = −

i
2
, n0 = n1 = 1,α0 = −2, α1 = 2. (30)

The undeformed Lagrangian is given by
 

L(0) = ∂ϕ∂̄ϕ−2cosϕ. (31)

By setting
 

Eα0
= E−α1

, E−α0
= Eα1

, (32)

we find that the deformed Lax connections are
 

L =− i
4
∂ϕ

ΩT
H+

(
iλBeiϕ/2+

1
iλ

(∂ϕ)2Ce−iϕ/2
)

Eα1

+

(
iλBe−iϕ/2+

1
iλ

(∂ϕ)2Ceiϕ/2
)

E−α1
,

L̄ =
i
4
∂̄ϕ

ΩT
H+

(
1
iλ

Be−iϕ/2+ iλ(∂̄ϕ)2Ceiϕ/2
)

Eα1

+

(
1
iλ

Beiϕ/2+ iλ(∂̄ϕ)2Ce−iϕ/2
)

E−α1
, (33)

t→ 0
which  are  the  same as  those  found  in  [18]. In  the  unde-
forming  limit, ,  the  Lax  connections  reduce  to  the
Lax connections of the sine-Gordon model
 

L =


− i

4
∂ϕ

iλ
2

eiϕ/2

iλ
2

e−iϕ/2 i
4
∂ϕ

 , L̄ =


i
4
∂̄ϕ

1
2iλ

e−iϕ/2

1
2iλ

eiϕ/2 − i
4
∂̄ϕ

 .
(34)

 

III.  PRINCIPAL CHIRAL MODEL

TT̄
In this section, we consider the principal chiral model

(PCM), which is an integrable sigma model. The -de-
formed Lagrangian of PCM has been obtained in [16, 18].
We will use a strategy similar to that used in the previous
section to derive the deformed Lax connection.
 

A.    Undeformed theory
The PCM is a field theory whose field takes values in

some Lie group manifold. Its action is 1)
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gµν = diag(1,1) (x0, x1)
ϵ0,1 = −ϵ1,0 = 1

1) In the section, we consider the theory in the flat space and take the Euclidean signature, that is, . The coordinate is  and the Levi-Civita
symbol is .
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S 0 =

∫
dx2gµνTr

(
g−1∂µgg−1∂νg

)
, g ∈G. (35)

GL ×GR

Usually, the Lie group is chosen to be semisimple, but we
will leave it to be arbitrary because our focus is on integ-
rability.  The  model  has  symmetry  group .  The
equation of motion of the PCM is simply 

∂µ
(
g−1∂µg

)
= 0, (36)

which is equivalent to the current conservation equation 

∂µ jµ = 0, jµ ≡ g−1∂µg. (37)

jµ GRHere,  is the conserved current corresponding to the 
symmetry. In addition to (37), the conserved current also
satisfies the flatness condition: 

∂0 j1−∂1 j0 = −[ j0, j1]. (38)

Equations  (37)  and  (38)  are  equivalent  to  the  Lax
equation with the Lax connections 

L0 =;− 1
λ2+1

(λ j1+ j0), L1 = −
1
λ2+1

(−λ j0+ j1), (39)

λ ∈ Cwhere  is the spectral parameter. 

TT̄B.    -deformed theory
TT̄The -deformed Lagrangian of the PCM is given by

[16] 

L(t)
PCM =

1
2t

(−1+ΩP) , (40)

where

ΩP =

√
1+4tTr

(
g−1∂µgg−1∂µg

)
+8t2ϵµνϵρσTr

(
g−1∂µgg−1∂ρg

)
Tr

(
g−1∂νgg−1∂σg

)
=

√
1+4tTr

(
jµ jµ

)
+8t2ϵµνϵρσTr

(
jµ jρ

)
Tr ( jν jσ). (41)

AePCM = 0The  equation  of  motion, ,  can  also  be  cast
into the form of a conservation law: 

AePCM ≡ ∂µ
δL(t)

PCM

δ∂µϕ⃗
−
δL(t)

PCM

δϕ⃗
= 2(∂µJµ)g−1. (42)

JµHere, the conserved current  is defined as 

Jµ =
1
ΩP

(
jµ+4tϵµνϵρσ jρTr ( jν jσ)

)
, (43)

which satisfies the following useful identities 

[J0, J1] =[ j0, j1],

[J0, j0] =
1
ΩP

4tTr ( j0 j1) [ j0, j1],

[J0, j1] =
1
ΩP

(1+4tTr ( j1 j1)) [ j0, j1],

[J1, j0] =− 1
ΩP

(1+4tTr ( j0 j0)) [ j0, j1],

[J1, j1] =− 1
ΩP

4tTr ( j0 j1) [ j0, j1]. (44)

jµ

jµ

Note that the current  still satisfies the flatness con-
dition (38),  so  a  reasonable  ansatz  for  the  Lax  connec-
tions could be that they are the linear combination of the
new conserved current (43) and : 

L0 =a0J1+b0 j0+ c0 j1,

L1 =a1J0+b1 j0+ c1 j1, (45)

a0,a1,b0,b1,c0,c1where  are  constants  to  be  determined.
Again, we  assume  that  the  Lax  equation  is  linearly  de-
pendent on the equation of motion: 

ALPCM ≡ ∂0L1−∂1L0− [L0,L1],
ALPCM = AePCM · fPCM.

(46)

ALPCM AePCM

For the  undeformed  theory,  using  (39)  and  the  defini-
tions of  and , we obtain 

fPCM =
1
2
λ

λ2+1
g. (47)

Assuming that (47) is still  true in the deformed case,
we end up with 

ALPCM =
λ

λ2+1
∂µJµ. (48)

Plugging  (45)  into  (46)  and  matching  it  with  (48),  we
have 

a0 = −a1 = −
λ

λ2+1
, b0 = c1 = −

1
λ2+1

, b1 = c0 = 0,

(49)
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∂0 j1−∂1 j0 = −[ j0, j1].where we have used the identity, 
TT̄In summary, the Lax connection of the -deformed

PCM is given by 

L0 = −
1
λ2+1

(λJ1+ j0), L1 = −
1
λ2+1

(−λJ0+ j1), (50)

Jµwhere  has been defined by (43).  This result  is expec-
ted considering the identities (44). Given the Lax connec-
tion,  we  can  define  the  monodromy  matrix  as  the
holonomy along a constant time slice 

M(x0;λ) = Pexp
(∫ ∞

−∞
dx1 L1(x0, x1,λ)

)
. (51)

The  set  of  (non-local)  infinite  conserved  charges  can  be
generated by  expanding  the  monodromy matrix  with  re-
spect to the spectral parameter as 

M(λ) =exp

 ∞∑
n=1

Qn

λn

 = 1+
1
λ

∫ +∞

−∞
dx1J0

− 1
λ2

∫ +∞

−∞
dx1 j1−

∫ +∞

−∞
dx1

∫ x1

−∞
dy1J0(x)J0(y)


+O

(
1
λ3

)
.

(52)

TT̄
For  the  undeformed  PCM,  these  non-local  charges

span  the  classical  Yangian  algebra  [20].  Under  the -
deformation,  the  algebra  becomes  deformed  in  a  very
complicated way. 

IV.  LAX CONNECTIONS FROM DYNAMIC CO-
ORDINATE TRANSFORMATION

TT̄

T T̄
T T̄

The solvability of the -deformation can be under-
stood in  various  ways.  From the  point  of  view of  integ-
rability1),  the  most  transparent  approach  is  to  realize  the

-deformation as a dynamic coordinate transformation.
As shown in [3, 9, 21], the  deformation can be inter-
preted as  a  space-time  deformation.  In  Euclidean  signa-
ture, the  deformed  and  undeformed  space-time  are  re-
lated via  the  following (state  dependent  or  dynamic)  co-
ordinate transformation 

dxµ =
(
δ
µ
ν+ t T̃ µν(y)

)
dyν, y = (y1,y2), (53)

 

dyµ =
(
δ
µ
ν+ t (T̃ (τ))µν(x)

)
dxν, x = (x1, x2), (54)

T̃ µν = −ϵµρϵσνT
ρ
σ (T̃ (τ))µν = −ϵµρϵσν (T τ)

ρ
σ

T = T (0) T (τ)

y x

with  and ,  where
 and  are  the  undeformed  and  deformed

stress-energy tensors in the coordinates  and , respect-
ively. Using this map, we can obtain the solutions of the
deformed equation of motion as
 

ϕ(τ)(x) = ϕ(0)(y(x)). (55)

In addition to the solutions of the equation of motion,
the  deformed  conserved  currents  can  also  be  obtained
from  the  undeformed  ones  using  the  above  coordinate
transformations  [21]. First,  let  us  switch  to  complex  co-
ordinates, defined by
 

z = x1+ ix2, z̄ = x1− ix2, (56)
 

w = y1+ iy2, w̄ = y1− iy2. (57)

wStarting from the 1-forms in the  coordinates
 

Jk =Tk+1(w)dw+Θk−1(w)dw̄,

J̄k =T̄k+1(w)dw̄+Θ̄k−1(w)dw, (58)

Tk+1 Θk−1where , ,  and  their  complex  conjugates  are  the
higher  conserved currents  of  underformed theory.  Under
the change of coordinates, we have
 (

dw
dw̄

)
=JT

(
dz
dz̄

)
, J =

(
∂w ∂w̄
∂̄w ∂̄w̄

)
. (59)

∂ ∂̄

z̄
where  and  denote the derivative with respect to z and
, respectively. Now, the Jacobian is of the form

 

J = 1
∆(w)

(
1+2tΘ0(w) −2tT2(w)
−2tT̄2(w) 1+2tΘ̄0(w)

)
(60)

with
 

∆(w) = (1+2tΘ0(w))(1+2tΘ̄0(w))−4t2T2(w)T̄2(w). (61)

z
Substituting (59) and (60) into (58), one can read off the
components of the currents in  coordinates:

Tk+1(z, t) =
Tk+1(w(z))+2t(Tk+1(w(z))Θ0(w(z))−Θk−1(w(z))T2(w(z)))

∆(w(z))
, (62)
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Θk−1(z, t) =
Θk−1(w(z))+2t(Θk−1(w(z))Θ̄0(w(z))−Tk+1(w(z))T̄2(w(z)))

∆(w(z))
. (63)

In  a  similar  way,  we can read the Lax connection of
the deformed  model.  If  the  Lax  connection  of  the  unde-
formed model is 

L(w, w̄) =Ldw+ L̄dw̄, (64)

one can expect the deformed Lax pair should be given by 

L =L(z, z̄)dz+ L̄(z, z̄)dz̄

=L(w, w̄)
(
∂w
∂z

dz+
∂w
∂z̄

dz̄
)

+ L̄(w, w̄)
(
∂w̄
∂z

dz+
∂w̄
∂z̄

dz̄
)
,

which leads to the transformation law for the Lax connec-
tions: 

L(z, t)

=
Lw(w(z))+2t(Lw(w(z))Θ0(w(z))−Lw̄(w(z))T2(w(z)))

∆(w(z))
,

L̄(z, t)

=
Lw̄(w(z))+2t(Lw̄(w(z))Θ̄0(w(z))−Lw(w(z))T̄2(w(z)))

∆(w(z))
.

(65)

In the following, we will verify the above relations in
a  free  scalar  theory  and  the  sine-Gordon  model,  whose
deformed  Lax  pairs  are  explicitly  given  in  the  literature
[18].  Moreover,  we  will  attempt  to  reproduce  the  Lax
connections  of  affine  Toda  field  theory  and  the  PCM,
which we found in previous sections. 

A.    Free scalar
Consider the free scalar with the Lagrangian 

L(w) = ∂wϕ∂w̄ϕ. (66)

The model is integrable with the trivial Lax pair 

Lw = ∂wϕ, Lw̄ = −∂w̄ϕ (67)

such that the Lax equation 

∂w̄Lw−∂wLw̄ = 2∂w∂w̄ϕ = 0 (68)

coincides with the equation of motion. The stress-energy
tensor is simply 

T2(w) = −1
2

(∂wϕ)2, Θ0(w) = 0,

∆ = 1−4t2T2(w)T̄2(w), (69)

which leads to the following transformation 

∂wϕ = ∂ϕ−
1
4τ

(
−1+ΩT

∂̄ϕ

)2

∂̄ϕ, (70)

 

∂w̄ϕ = ∂̄ϕ−
1
4t

(
−1+ΩT

∂ϕ

)2

∂ϕ, (71)

ΩT =
√

1+4t∂ϕ∂̄ϕ.with  Therefore,  the  deformed  Lax
connection is given by 

L(z, τ) =
∂wϕ(w(z))+2t∂w̄ϕ(w(z))T2(w(z))

1−4t2T2(w(z))T̄2(w(z))
=
∂ϕ

ΩT
,

(72)
 

L̄(z, τ) =
−∂w̄ϕ(w(z))−2t∂wϕ(w(z))T̄2(w(z))

1−4t2T2(w(z))T̄2(w(z))
= − ∂̄ϕ
ΩT
.

(73)

TT̄
Indeed, the Lax equation matches the equation of motion
of the -deformed free scalar: 

∂

(
∂̄ϕ

ΩT

)
+ ∂̄

(
∂ϕ

ΩT

)
= 0. (74)

 

B.    Sine-Gordon model
TT̄

w

Next, we turn to the -deformed sine-Gordon mod-
el, whose Lax pair has been given in [18]. As a first step,
we need to find the Jacobian (60), which is determined by
the stress-energy tensor in  space-time. The Lagrangian
of the  sine-Gordon  model  is  given  by  adding  the  poten-
tial1) 

V = 4sin2
(
ϕ

2

)
(75)

to the free scalar Lagrangian (66). From the standard pro-
cedure,  one  can  find  the  expression  of  the  stress-energy

TT̄Lax connections in -deformed integrable field theories Chin. Phys. C 45, 093112 (2021)
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tensor 

T2(w) = −1
2

(∂wϕ)2, T̄2(w) = −1
2

(∂w̄ϕ)2,

Θ0(w) = −2sin2
(
ϕ

2

)
, (76)

which leads to the following transformations 

∂wϕ =
−1+ΩT

2t∂̄ϕ
, ∂w̄ϕ =

−1+ΩT

2t∂ϕ
,

ΩT =

√
1+4t(1− tV)∂ϕ∂̄ϕ. (77)

Recall that the undeformed Lax connection is 

Lw = −
i
4
∂wϕH+

λ

2
ei ϕ

2 E++
λ

2
e−i ϕ

2 E−, (78)

 

Lw̄ =
i
4
∂w̄ϕH+

1
2λ

e−i ϕ
2 E++

1
2λ

ei ϕ
2 E−. (79)

The deformed Lax connection  can  be  expanded with  re-
spect to these three generators as 

L(z, t) =L0H+L+E++L−E−,

L̄(z, τ) =L̄0H+ L̄+E++ L̄−E−. (80)

From  transformation  (65),  we  have  the  deformed  Lax
connections 

L0 =− i∂ϕ
4ΩT
, L̄0 =

i∂̄ϕ
4ΩT
,

L+ =e−i ϕ
2

λ

(∂ϕ)2t
2ΩT

+λei ϕ
2

(ΩT +1)2

8ΩT (1− tV)
,

L̄+ =λei ϕ
2
(∂̄ϕ)2t
2ΩT

+
e−i ϕ

2

λ

(ΩT +1)2

8ΩT (1− tV)
,

L− =ei ϕ
2

λ

(∂ϕ)2t
2ΩT

+λe−i ϕ
2

(ΩT +1)2

8ΩT (1− tV)
,

L̄− =λe−i ϕ
2
(∂̄ϕ)2t
2ΩT

+
ei ϕ

2

λ

(ΩT +1)2

8ΩT (1− tV)
, (81)

which coincide with those found in [18]. 

C.    Liouville field theory
The Lagrangian of the classical Liouville field theory

is 

L(w) = ∂wϕ∂w̄ϕ−µeϕ, V = −µeϕ (82)

with the Lax connection 

Lw =−∂wϕH+2λ
√
µe

ϕ

2 E+,

Lw̄ =∂w̄ϕH− 1
2λ
√
µe

ϕ

2 E−. (83)

The field  transformation  is  also  given  by  (77).  Decom-
posing the Lax connection as (80), we again find 

L0 =− ∂ϕ
ΩT
, L̄0 =

∂̄ϕ

ΩT
,

L+ =
λ
√
µe

ϕ

2 (1+ΩT )2

2ΩT (1− tV)
, L̄+ =

2tλ
√
µ(∂̄ϕ)2

ΩT
,

L− =−
t
√
µe

ϕ

2 (∂ϕ)2

2λΩT
, L̄− = −

√
µe

ϕ

2 (1+ΩT )2

8λΩT (1− tV)
. (84)

These  differ  from  the  ones  in  (25)  up  to  numerical
factors because of the different conventions.

With these  deformed  Lax  connections,  one  can  de-
rive  infinite  conserved  charges.  Conversely,  the  (anti)-
holomorphic currents are simply given by taking powers
of the modified traceless stress-energy tensor 

T2n =
(
(∂wϕ)2−2∂2

wϕ
)n
, T̄2n =

(
(∂̄wϕ)2−2∂̄2

wϕ
)n
. (85)

From (77) and (62), one can read the deformed currents 

T2n(z) = −ΩT + (2t(1− tV)∂ϕ∂̄ϕ+1)
2ΩT (1−τV)

T2n(w(z)),

Θ2n(z) =
t(∂̄ϕ)2

ΩT
T2n(w(z)). (86)

The  explicit  expressions  of  these  currents  have  been
derived in [19] using a different method. 

D.    N bosonic scalars with arbitrary potential
To  construct  the  deformed  Lax  connections  for  the

(affine)  Toda  field  theories,  let  us  first  consider N free
scalars with arbitrary potential [16, 18] 

LN =

N∑
i

∂wϕi∂w̄ϕi+V(ϕi). (87)

From the relationships 

∂x1

∂y1 = 1+ tT 2
2(y),

∂x2

∂y2 = 1+ tT 1
1(y),

∂x1

∂y2 =
∂x2

∂y1 − = −tT 1
2(y), (88)
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we can compute the inverse of the Jacobian 

J−1
N =

(
∂wz ∂wz̄
∂w̄z ∂w̄z̄

)
=

 1− tV −t
∑
i

(∂wϕi)2

−t
∑
i

(∂w̄ϕi)2 1− tV

 . (89)

∂wϕi ∂w̄ϕi

The  main  technical  difficulty  of  this  method  is  to  solve
 and  from (

∂wϕi
∂w̄ϕi

)
=J−1

N

(
∂ϕi
∂̄ϕi

)
(90)

∂ϕi ∂̄ϕiin  terms of  and .  For  this  particular  example,  we
find the following solution 

∂wϕi =
1
2t

∂̄ϕi(−1+ΩT )+ t̃
∂B
∂∂ϕi

K̄
, (91)

 

∂w̄ϕ =
1
2t

∂ϕi(−1+ΩT )+ t̃
∂B
∂∂̄ϕi

K
, (92)

with 

t̃ = t(1− tV), ΩT =
√

1+4t̃(L(0)− t̃B), (93)
 

L(0) =

N∑
i=1

∂ϕi∂̄ϕi, K =
N∑
i

(∂ϕi)2, K̄ =
N∑
i

(∂̄ϕi)2, (94)

 

B =
N∑

i=1

(∂ϕi)2
N∑

j=1

(∂̄ϕ j)2−
 N∑

i=1

∂ϕi∂̄ϕi


2

. (95)

The stress-energy tensor is given by 

Kw =

N∑
i

(∂wϕi)2, K̄w̄ =

N∑
i

(∂w̄ϕi)2, (96)

 

T2 = −
1
2

Kw, T̄2 = −
1
2

K̄w̄, Θ0 = −
1
2

V. (97)

Therefore, the deformed Lax connection is directly given
by (65) 

L = (1−τV)Lw+τKwLw̄

(1−τV)2−τ2KwK̄w̄
, (98)

 

L̄ = (1−τV)Lw̄+τK̄w̄Lw

(1−τV)2−τ2KwK̄w̄
. (99)

Kw K̄w̄ K̄
Using the identities (90), we can find the relations among

, , K, and  

Kw = (1−τV)2K +τ2K2
wK̄ −2τKw(1−τV)L(0), (100)

 

K̄w̄ = (1−τV)2K̄ +τ2K2
w̄K −2τK̄w̄(1−τV)L(0). (101)

These are quadratic equations, whose solutions are1)
 

Kw =
2t̃L(0)+1−ΩT

2t2K̄
, K̄w̄ =

2t̃L(0)+1−ΩT

2τ2K
, (102)

where we used the identity 

B = KK̄ −L(0)L(0). (103)

Substituting (102) into (98) gives 

L = −ΩT + (2t̃L(0)+1)
2ΩT (1− tV)

Lw−
tK
ΩT
Lw̄, (104)

 

L̄ = −ΩT + (2t̃L(0)+1)
2ΩT (1− tV)

Lw̄−
tK̄
ΩT
Lw. (105)

For the affine Toda theories,  whose Lax connections
are known, it is straightforward to read the deformed Lax
connection  from (105).  They  turn  out  to  match  the  ones
we  derived  previously  in  Section  II.B.  Furthermore,  we
can use the relations to derive the deformed Lax connec-
tion of the PCM if we make the following identification 

jµ = jiµTi, jiµ ≡ ∂µϕi, (106)

Ti
Tr(TiT j) = δi j

where  are  the  generators  of  the  Lie  algebra  with  the
Killing metric . 

E.    Nonlinear Schrödinger model
TT̄

T T̄

As  our  last  example,  let  us  consider  the -de-
formed nonlinear  Schrödinger  model,  which is  a  non-re-
lativistic  complex  field  theory.  The -deformed Lag-
rangian was recently derived in [22-24]. Here, we derive
the deformed Lax connection from the dynamic coordin-
ate transformation.

For the undeformed model, the Lagrangian is 

LNS(y1,y2) =
i
2

(
q̄∂y1

q−q∂y1
q̄
)
−
∂y2

q∂y2
q̄

2m
−g|qq̄|2, (107)

TT̄Lax connections in -deformed integrable field theories Chin. Phys. C 45, 093112 (2021)
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which has the following equations of motion 

−i∂y1
q =

1
2m
∂2

y2
q−2gq2q̄, i∂y1

q̄ =
1

2m
∂2

y2
q̄−2gqq̄2, (108)

and the stress-energy tensor 

Ty2y2
= − 1

m
∂y2

q∂y2
q̄−LNS (y1,y2), (109)

 

Ty2y1
= − 1

2m

(
∂y2

q̄∂y1
q+∂y2

q∂y1
q̄
)
, (110)

 

Ty1y2
=

i
2

(
q̄∂y2

q−q∂y2
q̄
)
, (111)

 

Ty1y1
=

i
2

(
q̄∂y1

q−q∂y1
q̄
)
−LNS(y1,y2). (112)

The corresponding Lax connection is 

Uy2
= −iλσ3+ i

√
2gmQ, (113)

 

Vy1
= − iλ2

m
σ3+ i

√
2g
m
λQ+

√
g

2m
∂y2

Qσ3+ igQ2σ3,

(114)

where 

σ3 =

(
1 0
0 −1

)
, Q =

(
0 q
−q̄ 0

)
. (115)

Solving (88),  one  can  find  the  following  rules  of  trans-
formation [24]: 

∂y1
q =

2m(B−S )∂x1
q̄+2t̃ĀC

2tĀ2
, ∂y2

q =
2m(B−S )

2tĀ
,

∂y1
q̄ =

2m(B−S )∂x1
q−2t̃AC

2tA2 , ∂y2
q̄ =

2m(B−S )
2tA

, (116)

where we have defined 

t̃ = t(1+ tV), C = ∂x2
q̄∂x1

q−∂x1
q̄∂x2

q, (117)
 

B = 1+
it
2

(q̄∂x1
q−q∂x1

q̄), S =

√
B2− 2t̃

m
AĀ, (118)

 

A = ∂x2
q+

it
2

qC, Ā = ∂x2
q̄+

it
2

q̄C. (119)

Substituting  (108)  and  (116)  into  (65),  and  after  some
manipulation, we end up with the final results for the de-
formed Lax connection (

Vx1

Ux2

)
=

(
J11 J12
J21 J22

)(
Vy1

Uy2

)
, (120)

where 

J11 =
tB(B+S )

2S t̃
, J12 = −

t(A∂x1
q̄+ Ā∂x1

q)
2mS

,

J21 =
it2(B+S )(q̄∂x2

q−q∂x2
q̄)

4S t̃
, (121)

 

J22 =
2tAĀ

2mS (B−S )
− t(A∂x2

q̄+ Ā∂x2
q)

2mS
. (122)

 

V.  CONCLUSION

TT̄
In  this  work,  we  constructed  the  Lax  connections  of

several -deformed  integrable  models  in  two  different
ways and found a consistent  picture.  The first  method is
based  on  a  proper  ansatz,  which  assumes  that  the  Lax
equation is linearly dependent on the equation of motion.
In the discussion, we also assumed that some proportion-
al functions or parameters are invariant under the deform-
ation.  We  obtained  the  Lax  connections  for  the  affine
Toda theories and the principal chiral model.  This meth-
od is suggestive, but its potential is not clear to us.

TT̄
The  other  method  relies  on  a  dynamic  coordinate

transformation  between  the -deformed  theory  and  its
predecessor. This method is systematic, but it may be dif-
ficult to implement in some models because of the com-
plexity  of  the  dynamic  coordinate  transformation.  We
showed  the  power  of  the  coordinate  transformation  in
several models, including the free scalar theory, sine-Gor-
don  model,  Liouville  field  theory, N-scalar  theory,  and
non-linear Schrödinger model.

TT̄

T T̄

We want to stress that  the dynamic coordinate trans-
formation is not a diffeomorphism. Because the coordin-
ate transformation depends on the dynamic fields, the in-
verse of the transformation cannot be obtained in a closed
form. Actually,  we  attempted  to  derive  the  Lax  connec-
tion of the -deformed KdV equation. In this case, the
coordinate transformation depends on higher order deriv-
atives, so the closed form of the inverse of the transform-
ation is unlikely to exist. It is interesting to investigate the
effectiveness  of  the  coordinate  transformation  in  other
models,  for  example,  fermionic ones [25].  In addition to
the two methods discussed in this work, it would be inter-
esting to study the Lax connection from other aspects re-
garding -deformation, e.g., from the light–cone gauge
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approach in [7].
Given  the  explicit  form of  the  Lax  connection,  there

are various  applications.  The  first  one  involves  the  con-
struction  of  infinite  conserved  charges,  as  we  show  for
the  PCM.  Expression  (52)  indicates  that  the  conserved
charges become deformed in a very complicated way, and
it  would  be  very  interesting  to  study  how  the  algebra  is
deformed.  The  other  application  involves  constructing

TT̄

solitonic  surfaces,  following  [9].  Most  importantly,  we
hope  our  construction  of  the  Lax  connection  can  shed
light on the quantization of the -deformation. 
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