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Abstract: The internal structures of J©€ =177,(0,1,2)"* charmonium-like hybrids are investigated under lattice
QCD in the quenched approximation. We define the Bethe-Salpeter wave function (®,(r)) in the Coulomb gauge as
the matrix element of a spatially extended hybrid-like operator (¢cg) between the vacuum and n-th state for each
JPC with r being the spatial separation between a localized #c component and the chromomagnetic strength tensor.
These wave functions exhibit some similarities for states with the aforementioned different quantum numbers, and
their r-behaviors (no node for the ground states and one node for the first excited states) imply that » can be a mean-
ingful dynamical variable for these states. Additionally, the mass splittings of the ground states and first excited
states of charmonium-like hybrids in these channels are obtained for the first time to be approximately 1.2-1.4 GeV.
These results do not support the flux-tube description of heavy-quarkonium-like hybrids in the Born-Oppenheimer
approximation. In contrast, a charmonium-like hybrid can be viewed as a “color halo” charmonium for which a relat-
ively localized color octet ¢c is surrounded by gluonic degrees of freedom, which can readily decay into a charmoni-
um state along with one or more light hadrons. The color halo picture is compatible with the decay properties of
Y(4260) and suggests LHCb and Bellell to search for (0,1,2)~* charmonium-like hybrids in x0.1.27 and J/yw(¢)
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final states.
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I. INTRODUCTION

In the constituent quark model, mesons are inter-
preted as quark-antiquark (gg) bound states. However,
since gluons are also fundamental degrees of freedom in
quantum chromodynamics (QCD), they are expected to
build hadrons either by themselves, such as glueballs, or
create hybrids with quarks. Glueballs and hybrids are
exotic hadron states that have been searched for a long
time through experiments. For hybrid mesons (denoted
by QQg) involving a heavy quark-antiquark pair QQ, an
interesting phenomenological description is the flux-tube
picture in the leading Born-Oppenheimer approximation
[1, 2], in which the gluonic excitations are considered as
fast degrees of freedom, which concentrate along the QQ
axis and result in an instantaneous confining potential
that obeys the cylindrical symmetry along the QQ axis
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and the reflection symmetry with respect to the Q0 mid-
point. These gluonic excitations provide effective poten-
tials between the Q0 pair, which are frequently labeled
as Aj in analogy with diatomic molecules, where
A=0,1,2,--- is the magnitude of the angular momentum
of the gluon state projecting to the axis and is convention-
ally denoted by X,II, A, respectively; n==+ is the CP
quantum number of the gluon state, and e = + is the re-
flection quantum number of the gluon state with respect
to a plane perpendicular to the axis at the midpoint of the
axis. Based on this description, many phenomenological
studies have been conducted on QQg hybrids through a
gluon-excitation picture [3, 4] or by solving the non-re-
lativistic Schrodinger equations of QQ systems with this
type of potential [5, 6].

0Qg hybrids, particularly charmonium-like hybrids
(ccg), have also been extensively investigated in lattice
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QCD [7-15]. A recent lattice calculation [16] demon-
strated the existence of a {177,(0,1,2)""} charmonium-
like supermultiplet with nearly degenerate masses of ap-
proximately 4.2-4.4 GeV, which overlaps strongly to ccg
type operators. These states may have similar internal dy-
namics, while the different quantum numbers are due to
the different couplings of the spin states of the ¢c and
chromomagnetic excitation (J”=1*%). In the Born-Op-
penheimer potential picture, this supermultiplet can be as-
signed to IT}(1P) states since they are the lowest in mass.
The properties of this supermultiplet have practical in-
terest for current experimental and theoretical studies of
XYZ particles (see Ref. [17] for a review). Among the
XYZ particles, Y(4260) (or ¢(4230) as named by PDG
2018 [18]) can have the possible assignment of a vector
charmonium-like hybrid [19] and can be a member of the
abovementioned supermultiplet owing to its strange pro-
duction and decay properties, as well as its mass adjacent
to that of the 17" charmonium-like state predicted by pre-
vious phenomenological and lattice QCD studies. In addi-
tion to its mass, a quenched lattice calculation also pre-
dicted the leptonic decay width of the vector charmoni-
um-like hybrid to be approximately smaller than 40 eV
[20], which explains to some extent the absence of
Y(4260) (if a hybrid) in the R-value scan of e*e™ annihila-
tion processes; this was compatible with the estimate
from its isospin symmetric decays [21, 22]. Therefore, a
joint theoretical study of this multiplet is necessary to un-
derstand the experimental observations relevant to
Y(4260) and predict the properties of other members to be
searched, particularly the state of the exotic 1=+ quantum
number.

In this work, we investigated the internal structure of
the {177,(0,1,2)~"} charmonium-like hybrid supermul-
tiplet under lattice QCD. As an exploratory study, we ad-
opted the quenched approximation, in which at least the
1~ hybrid is well-defined. By constructing spatially ex-
tended operators for hybrids, we extracted their Bethe-
Salpeter (BS) wave functions through the corresponding
correlation functions calculated in the Coulomb gauge.

II. FORMALISM

We generated gauge configurations on two anisotrop-
ic lattices using the tadpole improved gauge action [23,
24]. The aspect ratio is set to & = as/a, =5, where a; and
a, are the spatial and temporal lattice spacings, respect-
ively. The much finer lattice in the temporal direction en-
ables us to address heavy particles on relatively coarse
lattices. The configuration parameters are listed in Table 1,
where the values of a, are determined using rj'=
410(20) MeV. For the charm quark, we use the tadpole
improved clover action for anisotropic lattices [25], and
the bare charm quark mass is determined by the physical

mass of J/y, my, =3.097 GeV. As will be addressed in

Table 1.
coupling (B), anisotropy (¢), lattice spacing (ay), lattice size,
and number of measurements are listed.

Input parameters for the calculation. Values for the

B é: as/fm Las/fm L3 xT Nconf
2.4 5 0.222(2) 3.55 163 % 160 500
2.8 5 0.138(1) 331 243 %192 200

the following sections, we use spatially extended operat-
ors to calculate the relevant correlation functions; there-
fore, the configurations are first fixed to the Coulomb
gauge through the standard gauge fixing procedure [26]
in lattice QCD studies before the quark propagators are
computed.

In this study, we extracted the spectrum and BS func-
tions of charmonium-like c¢g hybrids with quantum num-
bers of {177,(0,1,2)"*}. For a particular quantum number,
the state-of-art technique in extracting excited states in
lattice QCD is the variational method (VM) based on an
operator set {O,(t),a=1,2,...,M} of M different operat-
ors. The procedure of VM is outlined as follows: First,
the correlation matrix Cop(f) = (00(t)0[§(0)> is calculated
on a gauge ensemble. Second, the generalized eigenvalue
problem

Cap(t+tp)vy" = A" (D) Copltp)vg" (1)
can be solved to derive the eigenvector v’ correspond-
ing to the m-th eigenvalue A””(r). We can obtain an op-
timized operator O™ (r) = v 0,(t) that couples mostly to
the m-th state of the given quantum number. The key as-
pect of VM is that the operators O, in the operator set are
as different as possible from each other in the sense that
they couple to each state in the spectrum differently, such
that the linear combination O"(¢) =vf§”)0(,(t) produces
almost distinct operators for different m values. There-
fore, smeared quark and gluon fields are conventionally
adopted in constructing operators O, using the conjec-
ture that the operators with different smearing sizes satis-
fy the requirement. VM has been extensively and suc-
cessfully applied in the precise determination of energy
levels in lattice QCD studies. However, VM is not suit-
able for the derivation of hadron decay constants and
form factors, which are frequently defined through the
matrix elements of local operators between physical
states.

The BS wave function is defined by the matrix ele-
ment of a spatially extended operator (O(r)) between ava-
cuum and a hadron state, i.e., ®,(r) ~ (Q|O(r)|n), where r
reflects the internal spatial coordinates of a hadron. The
effect of O(r) on the vacuum state |Q) is

i -
OMM—;MW

@O (I ~ Y @I, (2)
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which implies that the BS wave function ®,(r) actually
controls the coupling of the operator O(r) to the state |n).
Therefore, if the » behaviors of ®,,(r) are different for dif-
ferent states |n), then O(r) can be considered a different
operator for different » values. In contrast, the correlation
function of O(r,t) and some other source operator Os(0)
has the following spectral expression:

C(r,1) = (QIOr, N0} (0)|2)

1 —m,t
= Zn: W(QIO(F)IHXHIO}IQ)e "

= Z O (r)e™, 3

where m,, is the mass of the n-th state and the r-independ-
ent factors are absorbed into ®,(r) in the last equality.
Since the m, spectrum is common for different » values,
if N, correlation functions (C(r,1)) with different » values
are calculated, then in proper time windows
(t € [fmin,fmax)), the m, and ®@,(r) values for
n=1,2,...,N, can be determined by fitting these correla-
tion functions simultaneously with the function form in
Eq. (3) involving N,, mass terms. Specifically, if the time
wWindow [Zmin,#max] 18 uniform for all values of » and there
are N, time points in this window, there will be N, xN;
data points for the N, + N, X N,, parameters to be fitted.
Thus, the number of the degrees of freedom can be suffi-
ciently large if N, is significantly larger than N,,.

We adopted the above strategy to study the spectrum
and BS wave functions of {177,(0,1,2)""} charmonium-
like hybrids. The operator prototypes for these states are
selected to be the traditional ¢l'c o B type:

00; (0= > & tyyic (DB (x. ),
X

0.1 = Z & (x, 1yyic”(x, DB (X, Déie
X

0h.(1= ) &, 0yic (%, DB (. Dlei e,

X

ok (= Z &, 1)yysc’(x, HBL (x, 1), @)

X

where a,b=1,2,3 are color indices, By is the chromo-
magnetic field strength, and the summation over x guar-
antees the operator to couple to a state in its rest frame.
We can easily observe that the quark-bilinear operators,
¢yic and cysc, are a spin triplet and singlet, respectively,
in the non-relativistic approximation. Note that the spa-
tial symmetry of the lattice is described by the octahedral
group, O, whose irreducible representations are
R=A{,A,,E, T, and T, and whose dimensions d(R) are
1, 1, 2, 3, and 3, respectively. Group O is a subgroup of
SU(2) such that the subduced representation of SU(2)

with respect to O is generally reducible. Table 2 shows
the reduction of the subduced representation of S U(2) up
to J=4. For instance, the scalar and pseudoscalar with
J =0 states are represented by A;, and tensor states with
J =2 are reduced to the direct sum of E and T,, i.e.
(J=2)] O=E@&T,. Although the operators on the right-
hand side of Eq. (4) are the representations
RPC = AT, T[*,T;*, and T~ of the lattice symmetry
group, respectively, they have the same forms as the 07,
17*, 27*, and 17~ operators in the continuum limit.
Therefore, we do not distinguish them from each other
under the assumption that the lattice discretization ef-
fects are small. To investigate the inner structure of the
charmonium-like states through BS wave functions, we
introduce two types of spatially extended operators based
on the operator prototypes in Eq. (4). Type-I operators are
constructed by splitting the ¢l'c component from the
chromomagnetic field strength operator B using a spatial
separation 7:

0P (r,1 = Di Z ex, Ol re(x,0) o Bx+1,0),  (5)

" x Irl=r

where D(r) is the number of r values that satisfy |r| =r,
Ik is the gamma matrix appearing in the operator proto-
type Og in Eq. (4) with R=(0,1,2)"* and 17—, and the
symbol “o” indicates the proper color summation and
specific combination of the spatial indexes. Type-II oper-
ators are obtained by assuming a spatial separation
between ¢ and ¢, with B being at the same point as c:

Ogl)(r, = DL Z c(x+r,Nlre(x, 1) o B(X, 1) +c.c.  (6)

" x.Irl=r

where “c.c.” is the complex conjugate of the first term
that is required to guarantee the correct parity and charge
conjugate quantum numbers.

These two types of operators are not gauge invariant;
therefore, the correlation functions involving these oper-
ators should be calculated in a fixed gauge. In practice,
we operate in the Coulomb gauge and calculate the fol-
lowing correlation functions for each quantum number

(R):

Cr(r,1) = (Or(r,1+ 10 (7)), (7)

Table 2. Reduction of subduced representations of SU(2)
with respect to octahedral group O up to J = 4.
R Aq Ay E T T,
d(R) 1 1 2 3 3
J 0,4 3 2,4,5 1,3,4 2,3,4
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where O;W)(T) is a wall-source operator defined on the
time-slice 7 for R as

O;W)(T) = Z c(y, Tl re(z, 7)o B(z,7) +C.c. ®)
y.Z

In the data analysis stage, these correlation functions
are parameterized to the function form of Eq. (3), based
on which masses m, and BS wave functions, ®,(r) are
derived simultaneously through a correlated joint fit to
the lattice data of Cg(r,1) at different values of » and ¢.

III. RESULTS USING TYPE-I OPERATORS

In this section, we present the results of the spectrum
and BS wave functions of {177,(0,1,2)"*} states using
type-I operators (Og)(r, f)), where r is the spatial separa-
tion between the ¢¢ and B components. In each channel,
the Coulomb wall-source correlation functions Cg(r,t) are
modeled as

Cr(r,1) = Ni D U0R 1+ 0 (1)

= > ol re™, ©)

where 7 is the source time slice and N, = 10 is the num-
ber of sources on each configuration, and the spatial in-
dexes of operators are summed implicitly in 17~ and
(0,1,2)~" channels. For each quantum number, since m,
is the same for different » values, we perform simultan-
eous multi-exponential fits to Cg(r,f) using a correlated
minimal-y? fit method with the jackknife covariance mat-
rix, which results in the parameters m, and d)ELI)(r) dir-
ectly.

A. 177 states and 2™ states

Since JPC€ = 17" is prohibited for g mesons, the 17+
hidden-charm states must be hybrid-like states in the
quenched approximation. Based on the aforementioned
numerical strategy, we performed the data fitting using
the model in Eq. (9) to Cg(r,) functions with r € [0, ryax]
(n=3,rmax = 0.89 fm for =24 and n = 3,ry =0.74 fm
for §=2.8). In the simultaneous fitting procedure, the
correlations of data points at different » and ¢ values were
considered by calculating their jackknife covariance mat-
rix. The key point is that the sink operator with different »
values couples differently to different states; thus, it has
different spectral weights (®{(r)). We fixed the upper
limit of the fitting window (fmax/a; = 19 for both B =2.4
and 8=2.8) and let the lower bound (#yi,) vary. The fit
results of m,, at different r.,;, values on the two lattices are
listed in Table 3, where the masses are converted to the
values in physical units using the lattice spacings in

Table 3.
tmin and the x? per degree of freedom of each fit. The mass
values are converted to physical units using the lattice spa-
cings listed in Table 1.

Fitted masses m,,n=1,2,3 of 1~* states at different

tmin/ay Xz/dof m/GeV my/GeV m3/GeV

p=24 5 0.94 4.300(12) 5.35(18) 6.79(59)
4 0.82 4.300(08) 5.48(09) 7.35(35)

3 0.79 4.297(07) 5.42(06) 6.99(13)

2 1.03 4.309(05) 5.59(03) 7.35(07)

1 2.39 4.334(03) 5.74(02) 7.64(03)

B=28 8 1.17 4.270(17) 5.72(10) 7.80(61)
7 1.31 4.267(14) 5.52(09) 7.70(28)

6 1.15 4.281(11) 5.56(06) 7.57(18)

5 1.37 4.289(08) 5.66(04) 7.68(11)

4 1.52 4.308(07) 5.76(03) 7.84(07)

Table 1; tha table also lists the y? values per degree of
freedom (y?/dof). As shown, the fitted masses are very
stable and insensitive to #y;,. Additionally, the masses of
the lowest two states exhibit slight finite a, effects. Fig-
ure 1 shows the fitted masses m, (in physical units) of the
lowest three states versus fmin, Where the colored bands
are the averaged mass values weighted with the reciproc-
als of the error squared at different values of #y;;.

The (I)Ef)(r) functions can be derived simultaneously
for the three lowest states. Table 4 shows the results at
tmin/a; =2 for =24 and ty,/a, =5 for B=2.8, where
the fitted parameters have smaller statistical errors and
acceptable y?/dof values (see Table 3). After the normal-
ization using (DE,I)(O), (DE,I)(r) on the two lattices are shown
in the lower panel of Fig. 1, where r is in physical units
(converted from a; listed in Table 1). The data points are
connected by straight lines to guide the eyes. The radial
behaviors of CDﬁ,”(r) are very clear: CD(ll)(r) has no radial
node, (D(ZI)(r) has one node, and ¢>(3’)(r) has two nodes.

JPC€ =27* is permitted for conventional g mesons.
The mass of the lowest 27* charmonium (termed 7.,) is
estimated to be approximately 3.8 GeV since it belongs to
the 1D multiplet {27+,(1,2,3)"}, whose 17~ member is
¥(3770) and 27~ member y¥,(3823) was observed by
Belle [27] and BESIII [28]. Recently, LHCb also ob-
served a candidate ¢3(3842) for the 37~ charmonium
[29]. Their masses comply with the prediction of lattice
QCD studies [16]. In addition to 7, lattice QCD studies
observed a higher 27" state with a mass of approxim-
ately 4.4 GeV, which couples almost exclusively to ccg
operators [16, 30]. This is also true in this paper. The 2=*
correlation functions Cg(r,f) using the operators O§,+(r, 13}
in Eq. (4), and the data analysis is the same as for 1+,
The mass spectrum and BS wave functions (Table 5 and
Fig. 2) are very similar to those of 1= states.
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Fig. 1. (color online) Mass spectrum and BS wave func-
tions ®P(r) of 1-* states. The upper panel shows the masses

of the lowest three states fitted at different values of #i,. The
lower panel shows ®P(+) of these states (normalized by
oP0)). The open and filled circles are the results at
tmin/ar = 2(8=2.4) and tyin/a, = 5(8 = 2.8), respectively. We can
observe that the finite lattice spacing effect is small. The val-
ues of m, and r are converted to physical units using the lat-
tice spacings listed in Table 1.
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Fig. 2.  (color online) Spectrum (upper panel) and BS wave
functions (lower panel) of the 2~* states. The layout is similar
to Fig. 1.

B. 0" and 17~ states

The scenario for 0~ and 17~ channels is more com-

plicated. The ground states in the two channels are n,. and
J/y, with the ¢c pair being in the spin singlet and spin

Table 4. BS wave functions (1)5,”(r),n =1,2,3 of 177 states at ¢, /a; =2 for =2.4 and tyn/a; =5 for g=2.8.

g=24 B=28

rlas () ) o (r) rlas () () (1)
0.000 41.71(54) 47.51(95) 15.0(1.3) 0.000 44.79(1.06) 104.0(3.6) 72.9(5.1)
1.000 23.62(28) 17.32(37) -2.03(42) 1.000 33.51(77) 65.7(2.0) 22.3(3.4)
1414 13.97(15) 3.41(28) -3.66(21) 1414 25.73(56) 40.2(1.2) -3.1(2.3)
1732 8.41(08) -231(25) ~1.42(24) 1732 20.08(43) 23.0(0.8) ~14.1(1.6)
2.000 4.92(04) -4.49(22) -1.28(26) 2.000 16.03(33) 12.1(0.7) ~15.4(1.2)
2.236 2.78(02) -4.83(17) 0.35(22) 2.236 12.68(25) 3.9(0.7) ~15.5(1.1)
2.449 1.46(02) —4.13(13) 1.43(18) 2.449 10.10(19) -1.5(0.7) ~13.0(1.0)
2.828 0.03(01) ~2.88(08) 132(12) 3.000 5.10(09) ~7.9(0.6) -3.6(1.0)
3.000 -0.31(01) -2.03(05) 1.28(09) 3.317 3.15(05) -8.5(0.5) 1.2(0.9)
3.162 -0.58(01) ~1.75(06) 1.08(09) 3.606 1.82(03) -8.0(0.4) 3.9(0.8)
3.317 -0.65(01) ~1.09(04) 0.97(06) 4123 0.28(02) -5.5(0.2) 4.8(0.6)
3.464 -0.63(01) ~0.43(05) 0.61(08) 4583 -0.38(02) -3.5(0.1) 4.6(0.4)
3.606 -0.68(01) -0.49(04) 0.58(06) 4.899 -0.59(02) -2.3(0.1) 3.8(0.3)
3.742 ~0.65(01) -0.15(03) 0.40(05) 5.385 -0.72(02) ~0.8(0.1) 1.9(0.2)
4.000 -0.70(02) -0.05(07) 0.09(11)
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Table 5.
tmin values and y? per degree of freedom of each fit. The mass
values are converted to the physical units using the lattice spa-
cings listed in Table 1.

Fitted masses m,,n=1,2,3 of 27+ states at different

tmin/ar  x?/dof  m/GeV  my/GeV  m3/GeV

B=24 5 0.86 4.408(13)  5.59(15)  7.11(64)
4 0.88 4.407(10)  5.54(10)  7.08(28)

3 0.92 4.388(10)  5.40(06)  6.85(10)

2 1.04 4.407(06)  5.58(03)  7.34(06)

1 223 4.441(04)  5.78(01)  7.64(03)

B=28 8 1.64 434336)  5.61(21)  7.01(42)
7 1.75 4384(19)  5.66(11)  7.62(31)

6 1.48 4389(12)  5.79(06)  7.93(18)

5 1.81 4387(11)  5.77(04)  7.64(09)

4 1.86 4.432(08)  5.88(03)  8.03(06)

triplet, respectively. In contrast, recalling that the ¢c com-
ponent of the hybrid operators defined in Eq. (4) for 07

Table 6.

and 17~ are in spin triplet and spin singlet, respectively,
we expect that the couplings of these operators to conven-
tional ¢c states will be suppressed to an extent owing to
the spin-flipping of charm quarks. Despite this type of
suppression, we observe that the lowest lying convention-
al ¢c states contribute significantly to the two-point func-
tions in Eq. (7). We perform three-mass-term and four-
mass-term fits to the correlation functions of 0" and 17~
channels and address the fit results in the following.

For the three-mass-term fits in both channels, we fix
the upper bound #y,x of the time window [fmin,fmax] and
vary the ty;, to monitor the stability of the fit. For =24,
fmax 1S S€t tO fmax/a; = 24, and tmin/a; varies from 9 to 13.
For B=2.8 with 1,,,x being fixed at tyax/a; =39, tmin/a;
varies from 15 to 19. The fitted masses m, and CDS,')(O)
(n=1,2,3) are listed in Table 6, where the minimal-y>per
degree of freedom (y?/dof) values are also indicated for
all values of 7,;,. The masses are converted into values
with physical units using a; in Table 1. We observe that
the fits are all acceptable and stable in these fit ranges
with reasonable y?/dof values. The masses of the lowest

Fitted masses m,,n=1,2,3 of 17~ states at different #,,;, values on the two lattices, where the mass values are converted into

physical units using the lattice spacings listed in Table 1. The y?/dof value of each fit is provided to indicate the fitting quality. The

(Df,”(r) values at r = 0 are also listed.

tmin /s x2/dof my /GeV my/GeV m3/GeV 2{(0) 2 (0) 2 (0)
B=24

0 13 1.19 2.985(6) 3.75(26) 4.67(30) 6.87(28) -5.3(3.5) 37(21)
12 1.00 2.985(4) 3.76(20) 4.61(19) 6.88(22) -5.5(2.8) 33(10)

11 0.91 2.987(6) 3.65(17) 4.54(12) 7.00(30) ~4.5(1.5) 26(05)

10 0.83 2.985(4) 3.78(13) 4.48(10) 6.90(18) -6.8(2.6) 29(04)

9 0.78 2.979(3) 3.95(09) 4.62(10) 6.66(10) ~7.9(2.4) 37(03)

1 13 121 3.092(13) 3.66(30) 4.73(26) 6.94(72) -3.8(1.5) 38(21)
12 1.07 3.092(8) 3.82(28) 4.44(19) 6.88(43) ~7.8(7.1) 30(10)

11 1.05 3.094(12) 3.67(25) 4.43(11) 7.04(67) -5.02.2) 23(05)

10 1.01 3.097(10) 3.73(20) 4.34(10) 7.14(54) ~7.6(4.0) 25(05)

9 0.86 3.082(4) 4.09(13) 4.53(13) 6.44(14) ~12.6(8.8) 39(08)

p=28

0 19 0.79 3.029(14) 3.70(36) 4.45(28) 16.2(1.7) —14(11) 32(22)
18 0.68 3.032(15) 3.67(30) 4.41(26) 16.7(1.9) ~15(09) 33(17)

17 0.69 3.036(15) 3.59(20) 4.55(18) 17.12.0) ~12(03) 34(11)

16 0.66 3.028(17) 3.54(22) 4.71(18) 16.4(2.1) -9(01) 30(10)

15 0.70 3.006(03) 4.10(09) 5.07(28) 14.2(2) ~14(05) 70(19)

1 19 0.73 3.118(16) 3.73(34) 4.64(33) 14.5(1.8) -9.8(5.0) 34(22)
18 0.66 3.125(15) 3.63(19) 4.92(28) 15.3(1.9) -8.7(1.8) 55(27)

17 0.62 3.119(12) 3.71(18) 4.82(22) 14.6(1.2) -8.9(1.9) 46(15)

16 0.66 3.116(19) 3.67(25) 4.70(19) 14.5(2.0) ~7.9(1.5) 33(10)

15 0.68 3.093(03) 4.44(21) 4.92(48) 12.5(0.2) -26(50) 75(33)
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two states, namely m; and my, are in good agreement
with those of 1S charmonia (. and J/y) and 2§ charmo-
nia (n.(2S) and ¥(25)), respectively, while mjs is close to
the ground state masses in 17+ and 27* channels. In con-
trast, the spectral weight magnitude of the third state, i.e.,
(Dgl)(O), is seemingly larger than those of the lowest two
states. If the third state is dominated by the charmonium-
like hybrid, this type of differences in the spectral weight
magnitudes corresponds with our previous expectation
that the couplings of hybrid-like operators to convention-
al charmonia are suppressed owing to the spin-flipping
effect. Here, we provide a qualitative interpretation of the
negative sign of (D(zl)(O). As introduced in Sec. 11, the cor-
relation functions, Cg(r,t), are calculated using the wall-
source operator in Eq. (8), which can be expressed as

> e(X)I'gre’(X +5) with ¢’ being a "dressed" charm quark
X.,s

field (Bc), such that its matrix between the vacuum and a
charmonium(-like) state H in its rest frame can be qualit-
atively expressed as

OIOW|HY ~ V3 f 4ns*drop(s), (10)

where V3 is the spatial volume and ¢y (s) is the BS wave
function of H with respect to the distance (s) between the
charm and anti-charm quark. If A is a 2§ charmonium

state, we expect that ¢4(s) has a radial node (this is actu-
ally observed; see below) such that the integral in the
above equation will result in a negative sign (note that the
integrand is enlarged by the factor s for a large s).

Figure 3 shows the (DE,,I)(V) (n=1,2,3) values ob-
tained at ty,/a, =10 for B=2.4 and at ty;,/a, =16 for
B =2.8, respectively. The BS wave functions are normal-
ized as ®(0) = 1. In the figure, the left-hand panels are
for 07" states and the right ones for 17~ states. The fig-
ures have two features: First, the »-dependences of o
are similar for 0" and 17~ states; second, CD(II)(r) and
CD(21)(r) behave almost the same with respect to » and are
clearly different from ®;(r). Since the lowest two states
correspond to the 1S and 2S charmonia, the similarity of
(I)(ll) (r) and (I)(QI)(r) implies that the distance r between the
c¢ component and the gluonic component is not a charac-
teristic dynamical variable for conventional charmonia.
This is in contrast with the scenario of 17+ states in that
the first excited state has one radial node. These observa-
tions can be understood as follows: According to the
parameterization of Cg(r,f) in Eq. (9), the contribution of
higher states almost vanish in large time regions; thus, the
states appearing at large ¢ values are most likely the 1§
and 2S charmonia that are the lowest states in the 0~*
and 17~ channels.

We now discuss the results of the four-mass-term fits.

1.4 = grd(B=24) O 2nd(B=2.4) 1.4 - grd(B=24) O- 2nd(B=2.4)
. - 1st(B=2.4) 1] - 1st(B=2.4)
1.0 1.0
S S
= 0.84 =~ 0.8
zc zc
o )
= 0.61 = 06
= =
.:é: 0.4 595 0.4
0.2 02
0.0 0.0
-0.24 -0.2
0.0 02 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 08 1.0
r/fm r/fm
1.4 & grd(B=2.8) @ 2nd(B=28) 1.41 & grd(3=2.8) @ 2nd(B=28)
1st(B=2.8 1st(B=2.8
12 & 1st(B=28) 10 - 1sB=28)
1.04
S s -+ S -
s 08 0 Sc 1
o )
= 06 =
= =
Se: 0.4 Set
0.24
0.0 fmmmmmmmmmm - TR A K gungeg === 0.0 fmmmmmmmmm e e A gungegecg -
—0.21 T T T T T —0.2 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
r/fm r/fm
Fig. 3. (color online) ® () functions for 0~* (left-hand panels) and 1=~ states (right-hand panels), which are derived from the three-

mass-term fits. The upper two panels are the results at fyin/a; = 10 for g=2.4, and the lower ones are the results at fyn/a, = 16 for

L=28.
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To incorporate the data points in the small ¢ region, we
add the fourth mass term in the fit model. Table 7 shows
the fit results. We observe that the four-mass-term model
closely fits the data for ty;,/a; beginning from #yin/a, = 1
for B=2.4 and tyi,/a; =2 for B=2.8. The ground state
masses are compatible with the 1S charmonia (5, for 0~*
and J/y for 177) but are slightly lower than the results of
the three-mass-term fits. The masses of the second low-
est states (my) are approximately 4.4 GeV and signific-
antly higher than the expected 2§ charmonium masses.
The masses of the third and fourth states (m3 and my) are
close to those of the second and third states in the 1=
and 27* channels (see Table 3 and 5). For the BS wave
functions at the origin, r =0, CD(II)(O) is very stable with
respect to the varying tyn/a, but slightly smaller than the
three-mass-term fit results (this may be due to the smal-
ler fitted masses m;), whereas CD(;)(O) changes dramatic-
ally. Because there are a few conventional charmonium
states at approximately 4 GeV, e.g., ¥(3686), ¢(4040),
Y(4415) etc., and a would-be charmonium-like hybrid
state in the 17~ channel, the second state may be an ad-
mixture of these states, such that its fitted spectral weight
®,(r) is very sensitive to the fit window. In contrast to
CD(Z’ )(O), (D(31 )(0) and CDE( )(0) are stable for different fits and

are larger than (D(ll)(O), which implies that the third and
fourth states contribute significantly to the correlation
function Cg(r,t) in the small ¢ region despite their high
masses. The BS wave functions obtained from four-mass-
term fits are plotted in Fig. 4, where the plots in the first
row are results for #yin/a, =3 for 8 =2.4 and the plots in
the second row are those for fmin/a; = 5. First, the ®,(r)
values of 0" and 17~ states are similar. Second, the
@ (r) values of the two lattices (8 =2.4 and 8 = 2.8) ex-
hibit a slight finite a; dependence. The r-behavior of
(I)(ll) (r) is very similar to that of the three-mass-term fits.
As indicated above, the second state may be an admix-
ture of multiple states of conventional nS charmonia and
the possible hybrid state; we do not consider the fD(zI)(r)
values to be significant. CI)(SI)(r) and (I)il)(r) have similar
features to (D(ZI)(r) and CDg’)(r) in 17" and 27 channels.

C. Joint discussion of 17~ and (0,1,2)"* states

Until now, we have provided a detailed description of
the fitting procedures and fitted results of the correlation
functions involving the c¢¢—g operators in the 17~ and
(0,1,2)"* channels. The results of the 17" and 2~ states
are solid and have slight ambiguities. The scenario for

Table 7. Fitted masses m,,n=1,2,3,4 of 0~* and 1~ states at different ¢,,;, values on the two lattices, where the mass values are con-

verted into physical units using the lattice spacings listed in Table 1. The y?/dof value of each fit is provided to indicate the fitting qual-
ity. d)ElI)(r) values at r = 0 are also listed.

Imin/dy ¥2/dof m; /GeV my/GeV m3/GeV my/GeV 2"(0) L) 2 (0) (0
f=24

0+ 4 1.11 2.953(5) 4.41(8) 4.97(21) 8.4(1.3) 5.89(11) 0.9(6.8) 33(4) 24(14)
3 1.13 2.950(3) 4.37(5) 5.07(11) 7.7(0.4) 5.83(7) 3.6(2.6) 31(1) 132)

2 1.45 2.944(2) 439(2) 531(5) 8.0(0.2) 5.69(4) 8.3(8) 29.6(5) 9.2(7)

1 1.98 2.939(2) 4.45(1) 5.52(3) 8.2(0.1) 5.60(3) 12.1(4) 28.0(3) 6.8(3)

1- 4 1.23 3.054(6) 4.40(8) 5.04(23) 7.8(0.9) 5.66(15) 54(5.2) 28(3) 19(8)
3 1.23 3.051(5) 4.33(6) 5.08(13) 7.2(0.3) 5.59(11) 5.6(2.6) 28(1) 132)

2 1.46 3.046(3) 439(2) 5.35(5) 7.8(0.2) 5.48(06) 10.2(8) 27.4(6) 9.2(8)

1 1.73 3.040(2) 4.45(1) 5.59(3) 8.1(0.1) 5.37(04) 14.1(4) 26.2(3) 6.6(3)

B=28

0+ 6 1.06 2.981(4) 4.26(7) 5.35(11) 8.8(0.8) 12.92) -3.8(2.4) 63(3) 47(16)
5 0.77 2.988(4) 4.30(7) 5.23(9) 8.5(0.4) 13.2(2) ~7.9(3.0) 63(3) 50(5)

4 0.79 2.976(4) 4.39(6) 5.40(7) 8.3(0.3) 12.6(2) ~1.92.3) 61(2) 40(2)

3 0.84 2.9713) 4.62(3) 5.58(6) 8.9(0.1) 12.4(1) 3.4(2.1) 61(1) 39(2)

2 1.28 2.958(3) 4.53(2) 5.84(4) 9.0(0.1) 11.9(1) 9.7(0.9) 62(1) 30(1)

1- 6 0.90 3.074(5) 4.28(7) 5.40(13) 8.7(0.7) 11.6(2) ~0.1(2.6) 61(3) 46(14)
5 0.79 3.080(5) 4.35(7) 5.32(9) 8.7(0.4) 11.92) -2.7(3.0) 61(2) 52(6)

4 0.75 3.067(6) 4.43(6) 5.45(8) 8.2(0.2) 11.32) 3.1(2.5) 57(2) 413)

3 0.76 3.064(4) 4.60(4) 5.64(6) 8.7(0.1) 11.2(1) 8.8(1.7) 56(1) 39(2)

2 1.27 3.039(5) 4.52(2) 6.03(4) 9.0(0.1) 10.4(1) 16.1(0.8) 59(1) 27(1)
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(color online) BS wave functions @ (r)'s for 0~+ (left panels) and 1=~ states (right panels) derived from the four-mass-term

fits. The upper two panels are the results at ty,;,/a, =3 for g =2.4, and the lower ones are the results at ty;,/a, =5 for g=2.8. tI)(z”(r) is

unstable for different 1,;, values and has very large errors due to the mixing among the conventional and hybrid states nearby. The r-
behaviors of (D;I)(r) and (Df()(r) are stable for different 1, values and are similar to those of d)(z')(r) and (1)(31)(,) of (1,2)7* states (see Fig.

1 and Fig. 2).

0~* and 17~ channels is slightly complicated since both
conventional charmonia and possible charmonium-like
hybrids contribute to correlation functions. In the three-
mass-term fits for both channels, at larger 7, values of
the fit window, the ground states are stable with masses
consistent with those of J/y and 7., the second states
have masses of approximately 3.7 GeV, and the third
states have masses of approximately 4.5 GeV with larger
spectral weights. We consider the lowest two states to be
the 1S and 2§ conventional charmonia and tentatively
assign the third state in each channel to be the corres-
ponding ground state charmonium-like hybrid. In the
four-mass-term fits with smaller ¢y, values, for each
channel, while the lowest state does not change signific-
antly, the mass of the second state varies slightly, and the
corresponding wave function changes dramatically. This
can be attributed to the interplay of conventional nS char-
monia and the ground state hybrid. The third state is relat-
ively stable with varying #,, and has a mass close to
those of the second states in (1,2)~" channels; therefore,
we consider it to be the first excited hybrid state in the
corresponding channel. The r-dependence of the BS wave
functions reinforces the above assignments: the wave
functions of the three states in the three-mass-term fit
have no nodes in the r-direction, and those of the third
and fourth states in the four-mass-term fit have one and

two nodes, respectively.

The fitted mass spectrum is shown in Table 8, in
which the values are averages of the two lattices. After
singling out the states that correspond to the convention-
al ¢c states in 0~ and 17~ channels, the masses of the
states whose BS wave functions have the same number of
nodes are listed in the same row for all four channels. We
observe that the masses of the 0-node and 1-node states
are nearly degenerate (we do not consider the masses of
the 2-node states to be significant since they may contain
much contamination from higher states). The BS wave
functions of the 0-node states (except for the states cor-
responding the conventional charmonia in 0™* and 17~
channels) and 1-node states in the four channels are plot-
ted in Fig. 5 (the upper panel for 8 =2.4 and the lower
one for B =2.8). The striking observation is that the wave
functions of different channels almost fall onto each other.

IV. RESULTS USING TYPE-II OPERATORS

As a self-consistent check, another type of BS wave
function ((I)S,")(r)) of the 177,(0,1,2)"* charmonium-like
states is explored by implementing type-II operators
Ogl)(r, 1)) defined in Eq. (6), where r is the spatial separa-
tion between the charm quark field ¢ and ¢B component.
The corresponding correlation functions are expressed as

093111-9



Yunheng Ma, Wei Sun, Ying Chen ef al.

Chin. Phys. C 45, 093111 (2021)

Table 8. Mass spectrum of the 17 and (0,1,2)"* states. The
lowest three masses in the 17~ and 0~* channels are from the
three-mass-term fits. The other two masses in the two chan-
nels are the masses of the third and fourth states, respectively,
from the four-mass-term fits. Except for masses of the lowest
two states in 17~ and 0+ channels, which correspond to con-
ventional charmonia, other masses are arranged in each row
by the number of nodes (#node) of the BS wave functions of
related states. The values are averages of the two lattices and
are converted into physical units using the lattice spacings lis-
ted in Table 1.

#mode  m(177)/GeV  m(0™*)/GeV  m(17")/GeV  m(27*)/GeV
0 3.109(5) 3.010(4) - -
0 3.703(82) 3.672(76) - -
0 4.591(69) 4.551(63) 4.309(2) 4.419(3)
1 5.460(31) 5.393(28) 5.693(12) 5.779(12)
2 8.226(99) 8.286(109) 7.661(31) 7.708(29)

! ¥
Crr.t) = 5 Z<0}{’)(r,z+r)0;w) ()

= > o (e, (1n)
n

The data fitting strategy is the same as that for type-I op-
erators and will not be repeated here. We directly present
the results (this part of the calculation was conducted
only on the 8 = 2.4 lattice).

A. 0 " and 17~ states

Let us begin with the results of the 0-" and 17~ chan-
nels. The results of m, and (fol) from the two-mass-term,
three-mass-term, and four-mass-term fits in the 0+ chan-
nel, for which the masses are converted into values with
physical units, are presented; the y?/dof of each fit is also
presented to indicate the fit quality. The results in the 17~
channel are similar, which can be checked by comparing
Table 9 and Table 10; therefore, we omit these to save
space.

When fmin/a; > 15, the Cg(r,1) functions can be fitted
using two mass terms with reasonable y?/dof values, as
shown in the first five rows in Table 9. The fitted masses
are stable versus fy;, and approximately m; ~2.987(1)
GeV and my ~ 3.654(23) GeV at fmin/a; = 17, which are
consistent with those of 7.(1S) and 7.(2S). The wave
functions @f,”)(r) of 07" and 17~ states are shown in Fig.
6, where (I),(,”)(r) is normalized using (DE,H)(O) =1.1It1is in-
teresting to observe that CD(II [)(r) has no node in the r-dir-
ection, whereas d);”)(r) has one radial node. This type of
r-behaviors is in qualitative agreement with the expecta-
tion of the non-relativistic quark model and can be under-
stood as follows. First, we assume the non-relativistic ap-
proximation is reasonable for charm quark systems to a

oY(r)/oW(0)

0.0 02 04 056 038 1.0

r/fm
1.2
| - 1"*tgrd @ 1°7F 1st
101 W - 27t grd & 277 1st
\N —&—- 0~* grd 0~ * 1st
0.81 \\ & 1~ grd & 177 1st
S -
Sc 067 R B =28
A4
=
= 041
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©
0.2
B e T
-0.2 : ; ; ; ;
0.0 0.2 0.4 0.6 0.8 1.0
r/ffm
Fig. S. (color online) BS wave functions (normalized

by®(0)) of the 1=~ and (0,1,2)~* multiplets with masses of
approximately 4.3-4.5 GeV (0 node) and 5.4-5.7 GeV (one
node). The upper and lower panels are for =2.4 and g=2.8
lattices, respectively. We observe that the BS wave functions
of the states in each multiplet almost fall onto each other.

certain extent. Since operator Oge”)(r, t) has a spatial struc-
ture in that the charm field ¢ is spatially separated from
block ¢B by distance », and the BS wave function is
defined by @ (r) oc(QOY"(r)Iny, ®"(r) canbe inter-
preted as the probability amplitude of annihilating an
anti-charm quark at the origin by ¢ and annihilating a
charm quark at » by ¢B in the state |n). In other words,
block ¢B can be considered to be a dressed charm quark
field belonging to the fundamental representation of the
color SU(3) group. Thus, (fo”(r) qualitatively reflects
the non-relativistic wave functions of the corresponding
cc state and thereby has the expected nodal structure.
When #,,;, decreases to the range 7a, < tyn < 114, the
third mass term is required in the fit function to describe
the lattice data of Cz(r,#). The results of the three-mass-
term fits are tabulated in the middle part of Table 9,
where the y?/dof values manifest the good quality of the
fits in these time range. The mass values (in physical
units) of my,myp,m3 almost do not change with respect to
the change in #y,, and (Df,")(r =0)'s are also very stable.
The values of m; and m, are consistent with the result of
the two-mass-term fits and are compatible with the
masses of n.(18) and 1.(2S). m3 is approximately 4.6(1)
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Table 9.

The fitted masses of 0=+ states at different 7., values through the two-mass-term (top part), three-mass-term (middle part),

and the four-mass-term fits to the correlation functions involving type-II operators. The mass values are converted into physical units

using the lattice spacings listed in Table 1. The y2/dof of each fit is provided to indicate the fitting quality. ®{”(r) values at r=0 are

also listed.

tin/ A x2/dof mi/GeV my/GeV m3/GeV ma/GeV "0 O " (0) IO)

20 0.51 2.988(1) 3.709(37) - - 14.0(0.1) -10.0(1.0) - -

19 0.55 2.987(1) 3.703(33) - - 13.9(0.1) -8.3(0.8) - -

18 0.58 2.987(1) 3.667(27) - - 13.9(0.1) —6.8(0.5) - -

17 0.59 2.987(1) 3.655(23) - - 13.9(0.1) —6.4(0.4) - -

16 0.56 2.985(1) 3.687(19) - - 13.7(0.1) -5.6(0.3) - -

11 0.99 2.988(4) 3.678(63) 4.49(19) - 14.0(0.4) -102) 50(11) -

10 0.89 2.987(3) 3.714(43) 4.58(13) - 13.9(0.3) -10(2) 59(8) -

9 0.76 2.986(3) 3.719(35) 4.66(10) - 13.9(0.3) -102) 65(6) -

8 0.83 2.996(5) 3.586(41) 4.57(5) - 14.8(0.5) -10(1) 58(3) -

7 0.98 2.980(3) 3.678(24) 4.88(5) - 13.4(0.2) -5(1) 73(2) -

4 1.06 2.926(7) 3.956(49) 5.43(47) 5.93(48) 10.5(3) 10(3) 94(112) —24(119)
3 0.99 2.936(7) 3.924(38) 5.03(11) 6.44(9) 11.0(3) 5(3) 58(3) 24(6)
2 227 2.928(5) 3.966(20) 5.15(6) 6.88(5) 10.7(2) 8(2) 61(1) 23(2)

Table 10. Fitted masses of 17~ states at different #,;, values through the two-mass-term (top part), the three-mass-term (middle part),
and four-mass-term fits to the correlation functions involving type-Il operators. The mass values are converted into physical units us-
ing the lattice spacings listed in Table 1. The y?/dof of each fit is provided to indicate the fitting quality. ®{”(+) values at r =0 are also

listed.
tmin/ s x2/dof my /GeV my/GeV m3/GeV my/GeV 20 L O) "(0) )
20 0.53 3.090(1) 3.763(49) - - 13.6(0.1) -8.0(1.1) - -
19 0.57 3.090(1) 3.717(43) - - 13.6(0.1) —6.4(0.7) - -
18 0.60 3.089(1) 3.716(36) - - 13.40.1) ~5.0(0.5) - -
17 0.60 3.088(1) 3.704(30) - - 13.4(0.1) ~4.6(0.4) - -
16 0.56 3.086(1) 3.746(26) - - 13.1(0.1) -3.6(0.4) - -
11 0.86 3.096(8) 3.731(92) 4.37(20) - 14.1(0.9) -13(5) 47(7) -
10 0.80 3.097(7) 3.694(65) 4.47(12) - 14.3(0.7) -11(3) 51(5) -
9 0.74 3.092(5) 3.733(45) 4.65(10) - 13.7(0.5) -3(2) 62(5) -
8 0.77 3.099(7) 3.649(48) 4.63(6) - 14.4(0.7) -9(2) 60(2) -
7 0.96 3.078(4) 3.732(28) 4.93(5) - 12.6(0.3) -3(1) 73(3) -
4 1.05 3.018(9) 4.018(54) 5.37(40) 5.97(41) 9.7(0.4) 13(4) 70(49) 1(55)
3 1.04 3.024(8) 4.028(38) 5.13(14) 6.36(11) 10.0(0.3) 113) 53(4) 24(7)
2 1.91 3.020(6) 4.049(22) 5.22(7) 6.87(5) 9.8(0.2) 13(2) 57(1) 22(3)

GeV, which is close to the result of the three-mass-term
fits to the correlation functions of the Type-I operator
(see Table 6). Note that the values of CDE,”)(O) are approx-
imately twice as large as those of ®{”(0) in Table 6 for
0~* states. This is expected since Ogl)(r =0,0)=
ZOg)(r =0,7) according to the definitions in Eq. (5) and
(6). In contrast, |<D(3”)(0)| is several times larger than
(D(l")(O) and <I>(2")(0), as is expected as ccg operators
couple more to hybrid states than conventional c¢ states

since the ¢¢ component in the 0~* ¢¢g operator is in spin-
triplet. The wave functions (Df,”)(r), n=1,2,3 of 0-* and
17~ states are shown in Fig. 7, where (I)ﬁl”)(r) is normal-
ized using CDELH)(O) = 1. We observe that the r-behaviors of
CD(IH)(r) and (I>(2H)(r) are similar to those from the two-
mass-term fits, whereas (13(3”)(r) has no radial nodes.
Thus, the lowest two states can be identified to be 7.(15)
and 7.(2S5), while the third state is significantly higher
and cannot be the purely 7.(3S) state but is likely domin-
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Fig. 6. (color online) Two-mass-term fit results of ®{"(r)

(normalized using ®{”(0)=1) of 0~* (upper panel) and 1~
(lower panel) states using type-II sink operators. The x-axis is
the separation between the ¢B and ¢ components. The fits are
performed with fin/a, = 17 and tyax/a, = 39 with x?/dof being
0.59 and 0.60 for 0-* and 17~ channels, respectively.

ated by the would-be lowest hybrid charmonium state.

If fmin decreases further to fmi./a; =2,3,4, then the
correlation functions in 07* and 17~ channels can be fit-
ted by four mass terms with y?/dof being 2.27, 0.99, and
1.06 for 0~*, and 1.91, 1.04, and 1.05 for 17~. The fitted
masses and @V D(0) of 0=+ states are listed at the bottom
part of Table 9. Although the mass m, of the lowest state
is compatible with (actually slightly smaller than) the
n.(18) state, my and ms are clearly different from those
of the two-mass-term and three-mass-term fits. (DE,")(r)
functions obtained at #,;,/a; =3 are shown in Fig. 8. The
r-behaviors of these states are very strange and have no
radial nodes; therefore, no physical information can be in-
ferred yet. The reason for this observation may be that, in
the small ¢ range, many states significantly contribute to
the correlation functions, including the conventional and
possible charmonium-like hybrids, such that the fitted
second and third states might be an admixture of them.
This scenario is similar to that of the four-mass-term fits
for the type-I operator.

B. 1 " and 27 states

Since the quantum number 1~ is exotic, the spec-
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Fig. 7. (color online) Three-mass-term fit results of o)

(normalized using ®{"(0)=1) of 0=* (upper panel) and 1~
(lower panel) states using the type-II sink operators. The x-ax-
is is the separation between ¢B and ¢ components. The fits are
performed with t,/a, =9 and tya/a, = 24 with the y?/dof are
0.76 and 0.74, respectively for 0~* and 17~ channels.

trum of this channel is much simpler than those of 0~*
and 17" channels. As mentioned earlier, the hybrid-like
operators might couple with hybrid states predominantly
in the 27" channel although it is permitted for conven-
tional D-wave charmonia. Therefore, similar to the scen-
ario of type-I operators, the Cg(r,7) functions can be ad-
equately described by the function form of three mass
terms in the time window beginning from the very early
time slices. The fitted results for different t,;,/a; values
(tmax/a, 1s fixed at 19) in these two channels are tabu-
lated in Table 11. The y?/dofvalues of these fits are ap-
proximately 1 or smaller and illustrate the goodness of
the fits. We observe that the masses of the three states in
each channel are in very close agreement with those of
type-1 operators (see Table 3 and Table 5). This is ex-
actly expected since the spectrum is independent of the
operators for the same quantum number. The ®”(r)
functions at r=0 are approximately twice as large as
those of type-I operators owing to the factor of two in the
definition of the type-II operator at r = 0.

The BS wave functions <I>,(1”)(r) can be derived pre-
cisely and the results at ty,/a; =3 are plotted in Fig. 9
(the upper panel for 17" and the lower one for 27*). The
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Table 11.

Fitted masses m,,n=1,2,3 of 1=* and 2~ states at different #,,;, vlaues at 8= 2.4, where the mass values are converted into

physical units using the lattice spacings listed in Table 1. The y?/dof of each fit is provided to indicate the fitting quality. The @{”(r)

functions at r = 0 are also listed.

17+
tnin/ s ¥2/dof my /GeV my/GeV m3/GeV @\ (0) o{"(0) 2" (0)
5 0.494 4.288(16) 5.29(16) 6.21(25) 76.3(4.4) 70(22) 47(27)
4 0.489 4.287(9) 5.37(6) 6.86(16) 76.3(2.2) 86(8) 43(12)
3 0.799 4.290(8) 5.34(4) 6.72(7) 76.6(1.8) 81(5) 47(6)
2 1.598 4.310(5) 5.53(2) 7.10(4) 82.7(1.0) 90(2) 35(3)
27+
5 0.720 4.364(29) 5.20(21) 6.09(20) 60.5(7.3) 66(22) 55(28)
4 0.592 4.390(11) 5.48(7) 6.98(18) 68.1(2.4) 92(9) 37(14)
3 0.812 4.399(10) 5.42(5) 6.72(8) 69.2(2.1) 79(5) 50(6)
2 1.488 4.414(7) 5.56(3) 7.14(4) 73.4(1.2) 88(2) 40(3)
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Fig. 8. (color online) Four-mass-term fit results of D) Fig. 9. (color online) Three-mass-term fit results of D)

(normalized using ®?(0)=1) of 0~ (upper panel) and 1~
(lower panel) states using type-II sink operators. The x-axis is
the separation between ¢B and ¢ components. The fits are per-
formed with fyin/a; =3 and tmax/a, = 15 with the y2/dof values
0f'0.99 and 1.04 for 0-* and 1=~ channels, respectively.

r-behaviors are strikingly different from those of the
type-I operator and there are no nodes in the » direction at
all. A tentative interpretation of this difference is that, if a
charmonium-like hybrid can be considered a ¢—c—g
three-body system, then its internal motion can be de-

(normalized using ®{"(0)=1) of 1-* (upper panel) and 2-+
(lower panel) states using the type-II sink operators. The x-ax-
is is the separation between ¢B and ¢ components. The results
are obtained using fmin/ar = 3.

scribed through the Jacobi variables (o, 1), where p is the
relative displacement between ¢ and ¢, and A is the dis-
placement between the gluonic degree of freedom from
the center of mass of c¢. Thus the BS wave function from
the type-I operators reflect the internal motion with re-
spect to A, and ®"(r) signals the projection of the full
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wave function ¢(p,1) onto the r-direction. In contrast to
the BS wave function derived from the type-I operators,
the r-behavior of ®” () does not exhibit the typical fea-
ture of radial excitations, and the separation » of ¢ and ¢B
components is a less meaningful variable for the pattern

of excited hybrid states.

V. DISCUSSION

In the previous sections, we presented the spectrum
and BS wave functions for 177,(0,1,2)"" states by fitting
the correlation functions of type-1 and type-II hybrid-like
operators. The results are summarized as follows:

e The spectrum is independent of the operators, as
expected. If we exclude the lowest two states in 0=+ and
17~ channels, which correspond to the 1S and 2S con-
ventional charmonia, all the four channels contain states
that nearly degenerate in mass at approximately 4.4 and
5.6 GeV, respectively, which can be tentatively assigned
to be the ground and first excited charmonium-like hy-
brid supermultiplet, respectively. Note that the mass split-
ting between the ground state and first excited state is ap-
proximately 1.2 GeV. This is in contrast to the 1§ —2S
mass splitting of conventional charmonia, which is ap-
proximately 0.6 GeV.

e The BS wave functions derived from type-I operat-
ors have a clear physical meaning. In all the four chan-
nels, the BS wave functions of the states at approxim-
ately 4.4 GeV have almost the same behavior with re-
spect to r, the spatial distance between the c¢ component
and gluonic component B of type-I operators. The r beha-
vior of the BS wave functions of the states at approxim-
ately 5.6 GeV are also very similar and each of them has
a clear radial node at almost the same . This implies that
the 177,(0,1,2)* hybrids have the same internal dynam-
ics while the different couplings of the spin of ¢¢ and the
spin of gluonic degrees of freedom result in different
quantum numbers. In other words, this » is a meaningful
dynamical variable for charmonium-like hybrids.

e For the states in these four channels, we also obtain
the BS wave functions dJE,I ! )(r) which are defined through
type-11 operators Ogm(r, t), with » here being the spatial
distance between the charm quark field ¢ and ¢B com-
ponent. In 0™" and 17~ channels, the lowest two states in
each channel have masses compatible with those of the
1S and 2S charmonia, and the r-behaviors of their BS
wave functions Og”)(r, 1) have the similar feature of the
non-relativistic Schrédinger wave functions of c¢ sys-
tems in nS states. However, for higher states in the four
channels, no radial nodes are observed in (fo”(r). If these
higher states are tentatively assigned to be hybrids, this
observation might imply that the » here is less meaning-

ful to describe the internal motion of hybrid than the dis-
tance between the c¢¢ component and chromomagnetic
field strength B.

These results can be interpreted as follows. Since a
charm quark is heavy and if the relativistic effect is not
important, the o”(r) function defined through a type-I
operator may be considered the approximation of the ra-
dial wave function of a charmonium-like hybrid state to
some extent. Thus, d)ﬁl[)(r) implies that the color octet cc
pair resumes a center-of-mass motion recoiling against
some additional degrees of freedom, which are necessar-
ily gluonic in the quenched approximation. We can con-
sider the gluonic degree of freedom to be a "constituent”
gluon in the chromomagnetic mode, which functions as a
color octet source and provides a potential in the non-re-
lativistic picture. A more conceptually reasonable picture
is considering the charmonium-like hybrids as a color
octet cc pair dressed by a color halo composed of gluons.
In both scenarios, the binding mechanism is the strong in-
teraction between color octets. Previous lattice studies
demonstrated that for a pair of static color charge and
anti-charge, their interacting potential is the Cornell type
[31],

Vp(r) = Vo,D—a—DJrO'DV, (12)
r

where the subscript D indicates the color S U(3) repres-
entation of the charge, and ap and o are proportional to
the eigenvalue Cp of the second-order Casimir operator
in the D representation. This is called “Casimir scaling.”
The static potential of a heavy quark-antiquark pair is fre-
quently expressed as Vyo(r) = Vo —4ay/3r+or, where the
string tension o is proportional to Cp =4/3. Therefore,
for the color octet charge in the adjoint representation 4
of the color SU@B) with C4=3, we obtain oy =
Cy/Cpo =90 /4. If the excitation of a ground state hy-
brid is primarily along the direction from the center-of-
mass of the c¢¢ to the gluonic degree of freedom, as is
manifested by the wave function ®,(r), then the quantum
number JC will not change and the excitation energy
will be larger than that of the charmonium system since
oa is 2.25 times larger. Although we cannot yet derive
the precise relation of the excitation energy to o4, this
may explain qualitatively that the mass splitting (approx-
imately 1.2 GeV) of the ground state and first excited
state hybrids is larger than the 1S —2S mass splitting (ap-
proximately 0.6 GeV) of charmonium. We observe that
the “color halo ” picture can be also applied to the
strangeonium-like hybrids [32].

The color halo picture we propose is clearly concep-
tually different from the flux-tube picture of the hybrid
involving a heavy quark-anti-quark pair QQ based on the
Born-Oppenheimer approximation [1, 2, 5, 6, 33]. In the
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Born-Oppenheimer approximation, the gluonic degrees of
freedom are considered to be light and fast and distrib-
uted along the displacement of the quark-antiquark pair,
whose non-trivial representation along with the spin of
the gluonic degrees of freedom indicates the specific
quantum number of the potential and subsequently the
JPC of the hybrid. In contrast, the Q0 is bound by an ef-
fective potential induced by the excitation of gluonic de-
grees of freedom. If the QQ pair can be considered static
color sources, the excited gluonic degrees of freedom
obey the cylinder symmetry along the QQ axis, which
result in an excited static potential denoted by A¢, where
A=0,1,2,... is the projected total angular momentum of
gluons with respect to the QQ axis and is labeled as
3 ILA for A=0,1,2 etc., p represents the combined par-
ity (P) and the charge conjugate (C) of gluon excitations
with n=g,u for P®C = =+, respectively, and € is the P
parity of the glue state. Therefore, the quantum number of
a QQ state with this type of potential is

P= E(—I)L+A+1,CZUE(_I)L+S+A, (13)

where L=Ly5+J, with Ly, is the orbital angular mo-
mentum of QQ with respect to the midpoint of the Q0
axis, and J, is the total angular momentum of gluons.
The conventional Cornell-type potential between the Q0O
pair is indicated by the ground X potential; thus, the P
and C quantum number reproduce the conventional
quantum number. The lowest 17~ and (0,1,2)~* hybrid
supermultiplet is associated with the IT}(L = 1) potential
such that the radial Shrodinger equation can be expressed
explicitly as

d2
ﬁu(r) +2u[E = Ve (r)Ju(r) = 0, (14)

where r is the distance between O and Q, u is the re-
duced mass of the QQ pair, and u(r) is related to the radi-
al wave function ¢(r) by u(r) = r¢(r). The effective poten-
tial (Veg) 1S

(L2 )
Verr = Vg (r) + TQr% (15)
where(iéQ_>=L(L+1)—2A2+<J”§> and (J2)=2.The ei-
genvalues of E are independent of the total spin (S) of the
Q0 pair and thereby result in the 1 and (0,1,2)™" super-
multiplet. When the parameters of V,, areset phe-
nomenologically or from the lattice QCD results, the
Shrodinger equation in Eq. (14) can be solved and the
mass spectrum can be obtained. In Ref. [5], the mass

splitting between the lowest IT} multiplet and its first ra-
dial excitation was determined to be approximately 350

MeV for charmonium-like hybrids and 207 MeV for bot-
tomium-like hybrids, which are significantly smaller than
the 1.2 GeV obtained in this paper. Moreover, the wave
function with respect to the distance between the QQ pair
should behave like a P-wave one, which is clearly differ-
ent from the behaviors of the wave functions (fol)(r). In
other words, our results do not support the flux-tube de-
scription of heavy-quarkonium-like hybrids in the Born-
Oppenheimer approximation. Note that although the in-
terpretation of the wave functions can be debatable, the
pattern of the spectrum should be solid and model-inde-
pendent since it is derived directly from the lattice QCD
calculation.

The color halo picture can have physical con-
sequences. Based on the discussion above, the c¢¢ pair and
gluonic component are bound through the potential of
color octets. This binding can be easily broken by the ex-
citation of gluons such that the ¢¢ component is neutral-
ized in color and is emitted as a conventional charmoni-
um, while the gluonic component is hadronized into light
hadrons. That is, the decay modes of a charmonium state
plus light hadrons can be important for the decay of a
charmonium-like hybrid. This decay property seems com-
patible with the decay pattern of Y(4260) (now named
W(4230) aka Y(4230) by the PDG), which is occasionally
assigned to be a candidate for the 17~ charmonium-like
hybrid. Y(4260) was first observed in the invariant mass
spectrum of J/yn*z~. Over the past several years, BE-
SIII has observed structures at the center of mass of 4.22-
4.23 GeV of the final states J/ynr, yow, henm, y(3686)nn
in e*e” annihilations [22], which can be the previous
Y(4260) if they emanate from the same state. The cross
sections of these processes are comparable at the peak po-
sitions and can be understood by the hybrid assignment of
Y(4260). Note that the ¢c pair in the 17~ hybrid is a spin
singlet, the decay modes involving A, and 7. should be
preferable to those involving J/y,x.o and ¥ (3686) owing
to the suppression of the spin flipping of charm quarks.
However, the h.n*n~ decay mode, in which A, and n*n~
are in relative P-wave, is suppressed by the centrifugal
potential barrier in contrast to the other channels in which
the charmonium and light hadrons are in S-wave. The two
effects compensate and result in comparable cross sec-
tions. In contrast, the 17~ states Y(4360) and Y(4660), if
they do exist, are disfavored to be the radial excitations of
17~ charmonium hybrids, since their masses are signific-
antly lower than the predicted value in this work.

The (0,1,2)~* charmonium-like hybrids can be also
searched for in the decay modes involving a charmonium
state, among which the final state y.o,,7 may be import-
ant, since no suppression occurs from the spin-flipping of
heavy quarks and the centrifugal potential barriers. The
disadvantage of these modes is that  only has a small
fraction of the flavor singlet component, but the QCD an-
omaly may enhance its production to some extent if it
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couples to two gluons. Other modes, such as J/yw and
J/y¢ (in P-wave), are worth considering as they are sim-
ilar to the J/yn*n~ and y.w decay modes of the 17
scenario. Since these states are heavy and cannot be ob-
served directly in the e*e™ annihilation, Bellell and LH-
Cb may implement a mission to search for them in B
meson decays.

VI. SUMMARY

The internal structures of the J”¢=1"",(0,1,2)""
charmonium-like hybrids are investigated for the first
time through their BS wave functions from lattice QCD
in the quenched approximation, where the wave func-
tions <I>§,[)(r) are defined by the state-to-vacuum matrix
elements of spatially extended hybrid-like operators
(type-1 operators) with the color octet ¢c component sep-
arated from the chromomagnetic operator by a spatial dis-
tance r. After singling out the conventional ¢c states in
the 0~ and 17~ channels, we confirmed the existence of
a 17 and (0,1,2)~*" supermultiplet of nearly degenerate
masses of approximately 4.3-4.6 GeV and similar BS
wave functions ®;(r) without nodes in the r direction.

The first excited hybrid states also comprise a supermul-
tiplet with masses of approximately 5.7 GeV, and their
BS wave functions ®,(r) are almost the same and have
one node. We verified these results using type-1I operat-
ors that the charm quark field ¢ is separated from the ¢B
component by a spatial distance. While the spectra from
the two types of operators are consistent with each other,
the wave functions (fo D(r) do not have a nodal structure
with respect to the distance between ¢ and ¢B. These ob-
servations imply that » can be a significant dynamical
variable for charmonium-like hybrids. The spectrum and
information from the wave functions obtained in this
study do not support the flux-tube description of heavy
quarkonium-like hybrids in the Born-Oppenheimer ap-
proximation. Instead, we propose a “color-halo” scenario
for the internal structure of the charmonium-like hybrids
in which a relatively compact color octet ¢c pair is sur-
rounded by gluonic degrees of freedom. Thus, the decay
modes of a charmonium plus light hadrons are important
for charmonium-like hybrids. Finally, we advocate for
LHCb and Bellell to search for these charmonium-like
hybrids in B decays. Specifically, (0,1,2)™* hybrids can
be searched for in y.,121 and J/yw(p) systems.
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