Chinese Physics C  Vol. 45, No. 8 (2021) 085101

Hawking radiation received at infinity in higher dimensional
Reissner-Nordstrom black hole spacetimes®

2,34

Kai Lin(bk14)"*"  Wei-Liang Qian(%% T B) Xilong Fan(3ti% )" Bin Wang( i)’  Elcio Abdalla’

'Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences,
Wuhan 430074, China
*Escola de Engenharia de Lorena, Universidade de Sdo Paulo, 12602-810, Lorena, SP, Brazil
*Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
*Faculadade de Engenharia de Guaratingueta, Universidade Estadual Paulista, Guaratingueta, SP, Brazil
*School of Physics and Technology, Wuhan University, Wuhan 430072, China
“Instituto de Fisica, Universidade de Sdo Paulo, Sdo Paulo, Brazil

Abstract: In this study, we investigate the Hawking radiation in higher dimensional Reissner-Nordstrom black
holes as received by an observer located at infinity. The frequency-dependent transmission rates, which deform the
thermal radiation emitted in the vicinity of the black hole horizon, are evaluated numerically. In addition to those in
four-dimensional spacetime, the calculations are extended to higher dimensional Reissner-Nordstrdm metrics, and
the results are observed to be sensitive to the spacetime dimension to an extent. Generally, we observe that the trans-
mission coefficient practically vanishes when the frequency of the emitted particle approaches zero. It increases with
frequency and eventually saturates to a certain value. For four-dimensional spacetime, the above result is demon-
strated to be mostly independent of the metric's parameter and the orbital quantum number of the particle, when the
location of the event horizon, rj;, and the product of the charges of the black hole and the particle gQ are known.
However, for higher-dimensional scenarios, the convergence becomes more gradual. Moreover, the difference
between states with different orbital quantum numbers is observed to be more significant. As the magnitude of the
product of charges gQ becomes more significant, the transmission coefficient exceeds 1. In other words, the result-
ant spectral flux is amplified, which results in an accelerated process of black hole evaporation. The relationship of

the calculated outgoing transmission coefficient with existing results on the greybody factor is discussed.
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I. INTRODUCTION

The four laws of black hole mechanics were initially
proposed [1] as mere analogies to the four laws of ther-
modynamics. The notion of the Bekenstein-Hawking en-
tropy [2-4] provided insights into the microscopic de-
grees of freedom of black holes. It has an important func-
tion in the holographic principle [5, 6] and the AdS/CFT
correspondence [7, 8]. From a different perspective,
Hawking's approach [9, 10] indicates that black holes
emit radiation according to a thermal spectrum, which
demonstrates consistency with Bekenstein's results. Wil-
czek et al. [11, 12] further considered the effect of self-
interaction correction to the metric. By employing a semi-
classical approximation [12], the related physical process
is interpreted as a particle traversing the horizon from in-
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side while moving inward. Mathematically, the interpret-
ation is closely related to the relevant contribution in-
volving only a small interval bounded by the initial and
final radii in the immediate vicinity of the horizon [12].
Therefore, the tunneling rate is calculated with respect to
the position of the horizon.

The above semi-classical method introduced by Wil-
czek has incited many subsequent studies (see, e.g., Refs.
[13, 14]). Furthermore, it has inspired other approaches
[15-18]. Angheben et al. proposed [16] a method of eval-
uating the imaginary part of the action via the Hamilton-
Jacobi equation, which is an extension of the approach by
Srinivasan and Padmanabhan [15]. The method can be
applied to static metrics, which might be singular at the
horizon. Moreover, the proposed procedure is independ-
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ent of any particular selection of spatial coordinates.
However, the formal solution of the Hamilton-Jacobi
equation partly relies on the symmetries of a specific met-
ric. Moreover, as the particle's self-gravitation is ignored,
the resultant particle emission rate considers only the
leading term linear in energy. The method has been ex-
amined in the context of a broader class of spacetimes, as
well as different types of fields, where consistent results
are obtained [17, 19-21].

The particle emission occurring at the horizon of a
black hole experiences an effective potential during its
course to the spatial infinity. In other words, the resultant
spectral flux received by an observer at infinity is further
deformed by a frequency-dependent transmission coeffi-
cient, y(w). To be specific, for an observer located at in-
finity, the expectation value for the number of a particu-
lar particle species of frequency w is

(n(w)) = % : (1)

where £ is the inverse of Hawking temperature, and the
plus (minus) sign is for fermions (bosons). Here,

2
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is the greybody factor [22], where 7~ and 7 are the amp-
litudes of the transmission and incident waves, respect-
ively. However, in literature, the latter is usually defined
in the context of an incoming wave from infinity with a
known frequency w, interpreted as the probability of it
reaching the horizon of the black hole. Nonetheless, it can
be demonstrated [23] that the above probability coin-
cides with that of an outgoing wave in the mode w to es-
cape to infinity through the effective potential of the
black hole. Therefore, Wilczek's perspective of Hawking
radiation measures the tunneling probability the barrier
penetration governed by the black hole metric. In asymp-
totically flat spacetimes, it is directly associated with the
S-matrix element.

At small frequencies, analytical results on the grey-
body factor can be obtained using the perturbative ap-
proach [24]. In contrast, for frequencies with a large ima-
ginary part, the monodromy method [25] has been util-
ized [23, 26]. Estimations on the bound of the greybody
factor have also been conducted [27]. However, gener-
ally, as the forms of the effective potentials are rather
complicated, the exact solution for a particular metric is
not straightforward. As a result, numerical approaches are
usually used.

This study involves an attempt to numerically invest-
igate the Hawking radiation and the frequency-dependent
transmission coefficient in Reissner-Nordstrom black
hole spacetimes. The remainder of the paper is organized

as follows. In Section 1I, we briefly review the Hawking
radiation on the horizon of a black hole. The frequency-
dependent transmission coefficient is obtained numeric-
ally for various types of fields in Section III. Additional
discussions and concluding remarks are provided in the
final section.

II. TUNNELING RADIATION BY THE
SEMI-CLASSICAL APPROACH

In this section, we briefly review the Hawking radi-
ation at the horizon of a Reissner-Nordstrom black hole
in terms of the Hamilton-Jacobi method [16]. The back-
ground n dimensional metric and electromagnetic poten-
tial are expressed as

2
a5 =~ fnd + 2 1 2o,

1)
dA =A,(r)dt, 3)
where
fopo Sn=D/)M  4r(n- 1)/2)Q*r2G=n
O (n=2)a=I2p3 T (n=2)(n - 3)nn=/2
or’ . . . .
and A, = ——. dQ,_, is a n—2 dimensional unit sphere.

B-n)’
M and Q are tgle mass and charge of the black hole, re-
spectively. The event horizon r, and inner horizon
r; = bry, satisfy the relationship

(n=n"I2A+ ")
EEECEN DI

and

0= "3 (n—2)a"I2 50 5
2[(n-3)/2) "

As a semi-classical approximation, the dynamics of
particles with various spin satisfy the Hamilton-Jacobi
equation [15, 16, 19-21], namely,

(85 as
#(gwma)(ge o )rr=o o

where m and ¢ are the mass and charge of a particle, re-

spectively. For a static four-dimensional metric, we may
seek a solution in the form

S = —wt+RP)+Y (0,0, ). (5)

By substituting the specific forms of the metric and
electromagnetical potential into the above equation, we
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obtain the following radial equation after separating the
variables:

1 , A
—?(a)+qA,)2+fR2+m2=ﬁ, (6)

where 1 is a constant. Therefore, near the event horizon,
we obtain

szdr V(w=wy)? = f(r)m? - 2/r2)

f)
R fd_O' 2 V(W= wp)? = f/(r)(r —rp)(m? = /%)
o 17 (ra) ’
where
dr  2+r—n

wyp=-qQ/ry,. o= =

- WC Vf/(rh)

is the leading contribution of the invariant distance. The
integral is calculated by deforming the contour to avoid
the singularity at the horizon, which picks up half a
residue:

2n(w — wp)

IS =0R=——7"-—"+—.
f'(rn)

(7

Note that the result is invariant with respect to time
recalibration and spatial diffeomorphism [16]. Sub-
sequently, the quantum tunneling rate from horizon is ex-
pressed as

I“:exp(—zss)=exp(—4n“”_wh) (8)

S ()

and the Hawking temperature at the horizon is

L) o

Here, the Hawking radiation is purely thermal.

In the following, we evaluate the function of the ef-
fective potential on the resultant spectral flux, as the
emitted particle further penetrates the barrier toward an
observer at spatial infinity.

III. FREQUENCY-DEPENDENT TRANSMISSION
COEFFICIENT IN REISSNER-NORDSTROM
SPACETIME
For a non-rotating metric, the equation of motion of

various fields can be usually simplified using the method
of separation of variables, and the radial part of the result-

ant field equation is

2

¥
m2+«w+¢mﬁ—vun=0. (10)

The above equation is a Schrodinger-type one, where
re = f dr/f is the tortoise coordinate, and V, which is the
effective potential, is governed by the specific spacetime
and particle state. For asymptotically flat spacetimes,
V(r—ry) =0 and V(r — o) = V,,; therefore, the solu-

tions assume the following asymptotic forms at the hori-
zon and infinity [22]:

Re~kn- + Telku p — py,
Y~ . I an
T ek + Ae™ k" — oo,

The equation of motion implies that the Wronskians

W(r — ) == 2iky (1R — |T1),
W(r — o0) =2ikeo (1T > - 1117, (12)

are conserved; thus, we obtain the following relationship:

k
7P - AP = —k—H(mF —17P). (13)

For the scenario in this paper, the incident wave propag-
ates outward with amplitude 7, and we also require that

A=0. (14)

For a massless scalar field, the relevant effective poten-
tial in the Reissner-Nordstrdom spacetime can be derived
from the Klein Gordon equation, which is

n-2 , (m-4Hn-2)
Il+n-1)+ 2 rf’ + 1

V= fl, @95

A
2
where [ is the orbital quantum number of the particle
state.

Here, the problem is reduced to that of the one-di-
mensional barrier penetration. To obtain the transmission
coefficient, we resort to solving Eq. (10) numerically
with the boundary conditions Egs. (11) and (14).

In this study, we use an approach based on numerical
integration. We have provided the technical details of the
numerical scheme in the appendix, and the results are
shown in Figs. 1-6.

Figs. 1-4 show the resultant transmission coefficient
as a function of the frequcency, |§|2 vs. o, for a mass-
less scalar field. The calculations are performed by vary-
ing the parameter of the metric b and the orbital quantum
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Fig. 1.
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(color online) Calculated transmission coefficient

ent values of b. The calculations are performed with r, =1, g0 = é, and /=0.

Fig. 2.

0.15} . . /4 010p i i
| 3+ 1dimensional case ’ 4 + 1dimensional case /
- / Approximate Solution /
r Approximate Solution 2 R N bot/a /
[-—-—- b=1/4 7 0.08 - ; 1
[ |- b=1/2
0.10-
« L |- b=34 ~ 0.6 ]
= L =
g [/=0 &
Lrp=1 0.04 :
0.05-
1gQ=0
t 0.02 1
L e
0.00 b=~ 0.00 E
0.02 0.04
w w
0005/ 541 dimensional case 1 0.00030] ) ] "
[ Sl 6 + 1 dimensional case 7
r Approximate Solution ks I/
0.004F |-————- b=1/4 ',',;' 4 0.00025+ Approximate Solution A
oo b=112 ,f,.t' ——————— b=1/4 /'/
L b= J = /
L b=3/4 /I' 0.00020F | " b=1/2 Y ]
~_ 0.003F pi 1 L bean /’
al [ /=0 ,;;v" - 4
I F 7 = 0.00015F /=0 / b
P orh=1 P &
2 # ] rh=1 Vs
[ =0 K 0.00010 | ]
P d P qQ=0 J
0.001} 7 S
r PR 0.00005 - ~ 1
[ e -
[ _———/ e
0.000E—"" s L4 0.00000 k=TT ‘ ‘ -
0.15 0.20 0.25 0.30 0.15 0.20 0.25 0.30
w w

the low frequency limit obtained in Refs. [23, 28].

(color online) Same as Fig. 1 but for the low frequency region w < 7, and wr, < 1.
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Fig. 3. (color online) Same as Fig. 1 for different values of /. The calculations are performed with r, =1, g0 = £, and b= .

number /. We observe that the transmission coefficient
monotonically increases with increasing frequency. As
shown in Fig. 2, the values are in agreement with univer-
sal analytic results [23, 28] in the low frequency region
w < Ty, and wr, < 1, as it increases from zero where the
frequency vanishes. The physical interpretation is that at
very low frequencies, the size of the wavelength is signi-
ficantly larger than that of a black hole. Therefore an in-
cident wave from infinity is virtually unaffected by the
presence of the latter. In contrast, the transmission coeffi-
cient eventually saturates to a certain value at the limit of
high frequency. In Fig. 4, the obtained results are also
compared against the lower bound estimated in Ref. [27].
As shown in Figs. 1 and 3, for four dimensions, we ob-
serve that resultant transmission coefficients all converge
to the same curve for given r, and ¢Q values and differ-
ent values of b and /. However, for higher-dimensional
scenarios, the convergence becomes more gradual.
Moreover, the difference between states with different b
and / becomes more significant.

In Figs. 5 and 6, we investigate the transmission coef-
ficient as a function of the product of the charge of the
particle and the black hole ¢gQ. For all the scenarios, the
transmission rate is observed to be a monotonically de-
creasing function of ¢Q. The dependence is mostly linear
for the given b value and for /= 0. For larger / values, the
curves exhibit twisted characteristics, and in the four-di-
mensional scenario, they are observed to converge even-

0851

w
1

tually. In particular, for ¢Q <0, as the magnitude be-
comes more significant, the transmission coefficient fur-
ther increases and eventually exceeds 1. In other words,
the resultant spectral flux is amplified by the effective po-
tential. This characterisitc is reminiscent of the superradi-
ance [29], which occurs when the frequency is less than a
particular value related to the charge of the black hole. By
comparing the results for different spacetime dimensions,
we observe that the difference between states with differ-
ent b and / becomes more pronounced for higher dimen-
sional spacetimes. The slope of the monotonical depend-
ence decreases as [ increases, and it becomes more evid-
ent as the dimension of spacetime increases. For example,
for the 5+1 and 6+ 1 metrics, the transmission coeffi-
cient of /=0 increases mostly linearly with decreasing
qQ, except that the slope for 5+ 1 is larger. However, the
corresponding slopes for the scenarios with [=1,2,3 are
much less significant compared with the former.

IV. CONCLUDING REMARKS

In summary, we have studied the Hawking radiation
in the Reissner-Nordstrom black hole spacetime for an
observer located at infinity. We have evaluated the fre-
quency-dependent transmission coefficient after discuss-
ing the thermal radiation emitted in the vicinity of the ho-
rizon. We have observed that the transmission coeffi-
cients approaches zero as the frequency of the emitted

01-5
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Fig. 4.

Same as Fig. 1 for different values of b and / in (3+1) dimensional spacetime. The calculations are performed with r, = 1 and

g0 =0. The calculated results (indicated by solid curves) are compared with the low boundary (indicated by dotted curves) obtained in

Ref. [27].

particle vanishes. It is a monotonically increasing func-
tion of the frequency and saturates when the frequency is
more significant. In four-dimensional spacetime, this fea-
ture is demonstrated to be mostly independent of the
parameters for particular r, and gQ values. For higher-di-
mensional spacetimes, the difference between states with
different b and / becomes more pronounced. In particular,
we observe that the transmission coefficient exceeds 1
when ¢gQ <0 and the magnitude becomes sufficiently
large. This indicates that the spectral flux is further amp-
lified during the course of traversing the curved space-
time.

APPENDIX: AN ADAPTED METHOD FOR
NUMERICAL INTEGRATION

This method was initially used to calculate superradi-
ance [22]. For this study, it can be readily adapted for the
numerical calculations. The code is implemented in terms
of the Mathematica notebook. For the aims of this paper,
we introduce the following adaptations. First, we rewrite
the radial equation using the coordinate transform

-
x:l——h, such that x=1 as r - o and x=0 as r=ry.
r

By expanding the function at x =0 and x =1, we can nu-

085101-6



Hawking radiation received at infinity in higher dimensional Reissner-Nordstrém black... Chin. Phys. C 45, 085101 (2021)

2.0\ q 15 M 4 . . q
; ; + 1 dimensional case
\\ 3+ 1dimensional case S
~N S
150 \\ 1 S
L N i
I = O \\\ 10 ."u
Tl =1 \ 15 /=0
E 1.0 N c
= w=1 N S 0 op=1
\\ 05r w=1
0.5+ b=1/4 N il
b=t \\ b=1/4
\\ ———b=1/2
rrrrr b=3/4 N
% 1 | | b=3/4
0.0k ‘ ‘ ~4 0.0k : ‘ g
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
qQ qQ
1.2 : ; ‘ ‘
[, : ; 0.30[-. ] ] ]
Lol 5+ 1dimensional case ] 6 + 1 dimensional case
BN 025 T, 1
o8l N 1 N
[ el T 0.20f S 1
— [ /= \\\ \."*.. P \\\\ .
‘3 06j 0 \\\ hO T N 0150 ‘\\\ '*..\ ]
ll rh = 1 \\\\ . tl ’ I= O \\*\ ~.'~~.
0.4: W= \\\\\ ~..\~\ ] otok rh - 1 \\\\\\: ........ ) ]
b b=1/4 S w=1 Ssaol
0.2F | poap 1 o005F p—v ]
o[- b=3i4 -~ b=112
0.0k ‘ ‘ 4 000k L% ‘ J
-1.0 -0.5 0.0 0.5 1.0 -10 -05 0.0 05 1.0
qQ aQ

Fig. 5. (color online) Calculated transmission coefficient |§|2 for a massless scalar field as a function of ¢Q for different values of b.
The calculations are performed with r, =1, w=1, and [ =0.

S I 1 s — - \ i
=0 "\_  3+1dimensional case 1 4 +1dimensional case
N, 1 N
. 1 ~ . 000035
15l \Q‘\\ b=0.25 1 . " 000030
LN =1 1 ~ " 0.00025
LN h= 1 1.0f . *, 0.00020 i
N ~ - i _ N '0.00015
<\‘l: \_\ \,:\ w=1 ‘;‘\_‘ rm=1 \\ 6:0010
RN - o
g o1or 1 I = N w=1 . 0.00005
A N B *
\ N - ]
N =3
\ ~ N
05- \ 3 N ] .
\ "‘ \\ \\\
\ k AN Ssao
* ~ . \\\ S
0.0L ‘ it SIS U P T ST ——
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
aQ aQ
1.0r 5+ 1 dimensional case ] \
— ] 6 + 1 dimensional case
0.8F b=0.25] 0201 b =025 ]
=1 w=11 - 1
i 1 oasf th= 1
~ 06 1=0 Ha 1=0
5[ T 107 -~ -I=1 i =1 -
E LT =2 g b el 0010 i3
04l 10 =3 [ 00p [ - 1
[ e 105 ] FECTERN (ol S
e . s T
02r 35705 05 1o ] el I, e S ~
[T ] 0 o5 00 05 |10
U e St R O ] B e e ittt
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
aQ qQ
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merically integrate the Schrodinger-type equation from
the region near x =0 to that near x = 1. The code's effi-

ciency lies in its significant accuracy of the numerical im-
plementation for integration in Mathematica.
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