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Abstract: A scheme to solve the Hamiltonian in the interacting boson-fermion model in terms of the SU(3) coup-

ling basis is introduced, through which the effects of an odd particle on shape phase transitions (SPTs) in odd-4 nuc-
lei are examined by comparing the critical behaviors of some selected quantities in odd-even and even-even systems.
The results indicate that the spherical to prolate (U(5)-SU(3)) SPT and spherical to y-soft (U(5)-O(6)) SPT may
clearly occur in the odd-even system with the SPT signatures revealed by various quantities including the excitation
energies, energy ratio, B(E2) ratio, quadrupole moments, and one-particle-transfer spectroscopic intensities. In par-

ticular, the results indicate that the spherical to prolate SPT in the odd-even system can even be strengthened by the

effects of the odd particle with the large fluctuations of the quadrupole deformations appearing near the critical

point.
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I. INTRODUCTION

Quantum phase transitions (QPTs) in nuclei have at-
tracted much interest over the past two decades [1-14].
Such QPTs are not of the usual thermodynamic type but
are related to changes in the ground state shapes of nuc-
lei, and hence termed "shape phase transitions (SPTs)." In
theory, the interacting boson model (IBM) [15] may be
the most frequently used framework to study the SPTs in
even-even nuclei [2]. Recently, considerable interest has
been devoted to the SPTs in odd-4 nuclei [16-39]. A the-
oretical tool to describe odd-4 nuclei is the interacting
boson-fermion model (IBFM) [40], in which an odd-4
nucleus can be approximately considered as an odd-even
system with an even-even core (bosons) and unpaired
particles (fermions). The SPTs in odd-even systems can
be explored as the QPTs between two different dynamic-
al symmetry limits of the boson core, as the ground state
shape of the system is assumed to be primarily determ-
ined by core deformation. Two approaches of addressing
SPTs in the IBFM framework exist: the analysis of the
ground state potential surfaces and the direct quantum
computation of order parameters [14]. A classical analys-
is of the ground deformations in the spherical to prolate
and spherical to y-soft SPTs was recently conducted [34]
in the IBFM framework using the coherent state method
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[40], and the main conclusion was that the single particle
(odd particle) can influence different types of SPTs dif-
ferently [24-26]. However, the ground state deformation
cannot be directly observed in experiments. A more prac-
tical method of studying SPT is to perform a quantal ana-
lysis of the observables that are sensitive to the ground
state deformations. Such types of quantities can be ac-
cordingly considered to be the effective order parameters
to identify the SPTs in experiments [14]. To calculate ob-
servables, the IBFM Hamiltonian must be numerically
solved in a transitional scenario. The frequently used IB-
FM code is “ODDA” developed by Scholten [41], with
the wave functions expanded in terms of the weak-coup-
ling U(5) basis [40]. Since the IBFM [40] as the standard
model for odd-4 nuclei can provide a very convenient
frame to study SPTs, developing an alternative scheme to
solve the model Hamiltonian would be interesting and
also expected.

This paper has two aspects. First, we introduce the di-
agonalization scheme of the IBFM Hamiltonian in terms
of the weak-coupling SU(3) basis with the SU(3) part
constructed using the Draayer-Akiyama algorithm [42,
43]. Second, we study the effects of an odd particle on the
SPTs in odd-even systems using the proposed diagonaliz-
ation scheme. Two types of SPTs are emphasized in this
paper, i.e., the spherical to prolate SPT and spherical to
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v-soft SPT. The remainder of the article is arranged as
follows. In Sec. II, the IBFM Hamiltonian and diagonal-
ization scheme are introduced, through which the func-
tions of different boson-fermion interactions in the IBFM
are examined. Sec. III is devoted to studying the effects
of'an odd particle on two types of SPTs. Finally, a sum-
mary is provided in Sec. IV.

II. MODEL

A. IBFM Hamiltonian

The IBFM Hamiltonian can be generally expressed as
[40]

PIZﬁB+ﬁF+VBF, (1)

where Hp represents the IBM Hamiltonian describing the
boson core, A is the single particle Hamiltonian describ-
ing the unpaired fermions (odd particles), and Vgr repres-
ents the boson-fermion interaction. If only the mean-field
part is considered, the single particle Hamiltonian can be
expressed as

szzsjﬁj, (2)

J

where ¢; represents the single-particle energies of the
spherical orbit j and

Aj=—2j+ 1(aj><a,-)<0> (3)

with @;,, = (1) aj_p, is the fermion number operator.
In this paper, only one unpaired fermion confined in a
single-j orbit is considered for simplicity. This means that
Hg will only contribute a constant for the excitation ener-
gies. For the IBM Hamiltonian, we apply the consistent-
Q form [44]

[:IB =8dﬁd+KQ)]g'Q)]g, (4)
where the the d-boson number operator is defined as
g = V5t xd)© 5)

with d, =(-1)"d_,, and the quadrupole operator is
defined as

Of =(d's+5"d)? +x(d xd)® (6)

with y € [-V7/2, 0]. There are three typical dynamical
symmetries (DSs) included in the IBM, namely U(5),

0(6), and SU(3). We can prove that the Hamiltonian Hg
is in the U(5) DS when « =0; it is in the O(6) DS when
&g4=0 and y =0; it is in the SU(3) DS when &, =0 and
x =—V7/2. The three DSs in the IBM corresponding to
three typical collective modes (or collective shapes) in-
cluding the spherical vibrator (U(5)), axial rotor (SU(3)),
and y-soft rotor (O(6)). The frequently used boson-fermi-
on interaction can be expressed as [45]

Vpp = VAION 4 y2UAD | yEXC, (7)
which contains the monopole term
VMON = A i, ()
the quadrupole term
Vee =T 0 g ©)
with
gr = @} xa)® (10)
and the exchange term

VERC = AV2Zj+T1: 1@ xa)? x@xa) 10 :, (1)

where (: ...:) denotes normal ordering [40]. The interac-
tion strengthes A;, I', and A in the boson-fermion interac-
tion can in principle be calculated from the fermion-fer-
mion dynamics [45] and semi-microscopically connected
with the Bardeen-Cooper-Schrieffer (BCS) occupation
probabilities [46], but here they are applied as the ad-
justable parameters.

B. Diagonalization scheme

To obtain the eigenvalues and eigenfunctions, we di-
agonalize the IBFM Hamiltonian in terms of the weak
coupling SU(3) basis:

IN(A, )X (Lj)I M)

= > LMy, jmIMDINQFLMD|jmp), (1)
M, ,m;

where N is the total boson number, (4,4) characterizes the
SU(3) irreducible representation, and y denotes the addi-
tional quantum number to distinguish the different states
with the same (A,u) and L. In Eq. (12), L, j, J represent
the angular momentum for the boson core, odd particle,
and entire system, with the corresponding third compon-
ents denoted by M;, m;, and M, respectively. The SU(3)
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coupling basis can be characterized by the group chain

(U©)>SUB)>S0(3))8SU(2)>SU,(2)>S0,(2) >
N o Qwy L J My
(13)

where the additional quantum number y also labels the
multiplicity of L in an SU(3) representation (4,u). Note
that the complete group symmetry for the fermion part
with single j should replace S U ;(2) with

UQRj+1)2SUQRj+1)DSPRj+1)DSU;2)  (14)

particularly for the multi-fermion situation because the n?
operators (a' sz)’; with k=0, 1,---,n=2j can generate
the maximal group symmetry U(2;j+ 1) [40]. If only one
fermion is considered, as in this scenario, the nontrivial
sub-symmetry is only SU;(2).

In the diagonalization, the matrix elements of each
term involved in the Hamiltonian (1) can be derived us-
ing the SU(3) algebraic technique. Here, we use the core-
particle coupling term

M, = (d*xd)z-(ajixaj)z, (15)

which corresponds to part of the quadrupole boson-fermi-
on interaction in Eq. (9), as an example to decsribe the
derivation of the Hamiltonian matrix under the SU(3)
coupling basis. Using the Wigner-Eckart theorem, the
matrix element can be derived as

(@' (L' j)J' M)| M |a(Lj)IM;)
=67 6um, (- @ L || (d" xd)* || aL)
{1 E banaxari
==567 6, (-1 ZL:{ LZL%LZ" }
x{ JLLJ ; }<o/L' ld" Il e’ L”Xa”’L” | d || aL),  (16)

where the abbreviation a = N(A,u)y is used. Clearly, the
final results will be determined by the reduced elements
of the boson operator under the SU(3) basis. The d-boson
operators can be further expressed as the SU(3) irredu-

cible tensors, T)((AL*;)JL In particular, it is expressed as [47]
t 200 5 02
dy =A%), d,=Bs). (17)

Subsequently, the double-barred reduced matrix ele-

ments contained in Eq. (16) can be further expanded as

@L " || L")
= V2L + 1 (INY, 1) AP | [N = 1127, 1))
X (VYL 52,001,211 (7, 1) L) (18)

and

(@’L”||d|l L)
= V2L + 1 ([N = 11 1) I BO2) [l IN1(A, 1))
X ()WL 50,2)1,2 | (4, ), LY (19)

for which the triple-barred matrix elements were analytic-
ally obtained in [47] and the isoscalar SU(3) wigner coef-
ficients (;||) can be calculated using the algorithm
provided in [42, 43]. Similar derivations can be applied to
all the other terms in the IBFM Hamiltonian. Accord-
ingly, the eigenstates of the Hamiltonian can be expan-
ded in terms of the SU(3) coupling basis as

INEIM)y = > Coll INLR(L)IMy),  (20)
(AL

where the expansion coefficients Cff:f)é 1» With & indicat-

ing the ¢th level for a particular J, can be obtained
through diagonalizing the Hamiltonian.

C. Effects of the boson-fermion interactions

To analyze the different boson-fermion interactions
using the new diagonalization scheme, we compare the
lowest-lying levels in between the IBM and IBFM for the
three symmetry limits. In the IBM calculations, the para-
meters (in MeV) involved in the consistent-Q Hamiltoni-
an (4) are applied as (e; = 1.0, k =0) for the U(5) limit,
(€4=0,k=—-1/4, y=—V17/2) for the SU(3) limit and
(=0, k=—-1/4, y =0) for the O(6) limit. In the IBFM
calculations, the three boson-fermion interactional terms
defined in Egs. (8)-(11) are individually added to the
IBM Hamiltonian (4) with the adopted parameters shown
in Fig. 1, where the level patterns calculated for j=9/2
and N = 10 are shown for different scenarios. In addition,
the parameter y involved in the quadrupole term (9) is set
as y = — V7/2 for SU(3) and y = 0 for both O(6) and U(5)
to be consistent with the consistent-Q Hamiltonian. As
shown in Fig. 1(al)-(a3), the results indicate that the level
degeneracies may exactly occur for the states with
lj— LI < J < j+L in the IBFM if only the monopole term
is considered and the associated level pattern in each
scenario is very similar to the corresponding IBM one.
Thus, if no boson-fermion interactions are involved, the
exact degeneracies will also occur for the states with
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Fig. 1. Lowest levels with L=0, 2, 4 in the U(5), SU(3), and

O(6) limits of the IBM to compare the lowest-lying levels
with J=1/2-17/2 in the IBFM, in which the results are
solved using the three boson-fermion interactional terms be-
ing individually added to each symmetry limit. In the calcula-
tions, j=9/2 and N = 10.

|j— LI <J < j+L; meanwhile, the level energies will be
exactly equivalent to the corresponding values in the
IBM. This means that the monopole term may only cause
a renormalization of the boson level energies in each
symmetry limit [40]. In contrast, if only the quadrupole

term is involved, as shown in Fig. 1(b1)-(b3), the levels
with different J values are not degenerated anymore. Not-
ably, the quadrupole term at a particular strength can
cause the level energy splitting in the SU(3) limit to be
significantly larger than in the U(5) or O(6) limit. As fur-
ther shown in Fig. 1(c1)-(c3), the exchange term can also
break the level degeneracies, but with the level order in
each scenario being different from the one caused by the
quadrupole term. Generally, the three types of boson-fer-
mion interactions should all be considered to obtain
quantitatively good descriptions of the experimental data
[45, 48].

III. EFFECTS OF THE ODD PARTICLE ON SPTs

A. Shape phase diagram

The SPTs in even-even systems can be illustrated as
the QPTs in the IBM. The mean-field analysis indicates
that the emergence of an additional odd particle in odd-
even systems can cause alternative effects on the SPTs
[23-25, 34]. To examine the effects of the odd particle, it
is convenient to use the consistent-Q IBFM Hamitonian:

Hpr=¢ (1—77)ﬁd—%QABF'QABF , (21)
where

Opr = 0% +Gr (22)

is the quadrupole operator. Compared with Eq. (9), we
can derive the strength of the quadrupole boson-fermion
interaction in the Hamiltonian (21) as

en
r= 3N (23)
To calculate the B(E2) transitional rates and quadrupole
moments, we can select the transitional operator as the
quadrupole operator defined in (22). For simplicity, we
only use the boson part; subsequently, the transitional op-
erator is expressed as

B A
TE =eQf (24)

where e represents the effective charge. In practice, such
an approximation closely agrees with the analysis of
some deformed odd-mass nuclei using the microscopic
core-quasiparticle coupling model [35]. Accordingly, the
B(E2) transitional rates and quadrupole moments can be
calculated via the formulas

| (T NTE2 11 1P

B(E2;J; — Jp) = ST

(25)
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and

O() = (UM, = J | lg—”f“uMJ:h. (26)

We observed that the consistent-Q Hamiltonian above
is as same as that adopted in the classical analysis in [34],
which primarily focuses on the quadrupole boson-fermi-
on interaction. This means that some predictions of the
classical analysis based on the same Hamiltonian [34] can
be checked in this quantal analysis.

First, we focus on the boson core dynamics by remov-
ing the fermion term §r in the quadrupole operator (22).
The IBFM consistent-Q Hamiltonian (21) is then re-
duced back to the IBM consistent-Q Hamiltonian:

A = (l—n)ﬁd—%QAB'QAB , 27)

which is as same as the one in (4) but with the paramet-
ers rewritten as

ea=¢e(1-n), k= —8%. (28)

In discussions, the scale parameter is frequently set to

&£=1.0. The IBM phase diagram in terms of the paramet-

ers in Eq. (27) can be mapped onto the Casten triangle, as

shown in Fig. 2. The figure shows that each vertex of the

triangle represents a particular DS, ie., U(5) at

%) \=/_(0,0), 0(6) at (n.x) = (1,0), and SU(3) at (n.x) =
7

1,—7]. As mentioned earlier, these DSs are alternat-

ively associated with different collective modes or col-

lective shapes (deformations). Accordingly, the trans-
v-soft Rotor
06)
2nd order
~a X
. Deformed
Spherical \\
\ N7/2
U(5) g«—F n——> 1 SUB)

Vibrator 1st order Axial Rotor
Fig. 2. (color online) Shape phase diagram in the IBM de-

scribed by the Hamiltonian (27). The dashed line denoting the
Ist-order transitional points described by (29) cuts the tri-
angle phase diagram into the spherical and deformed regions.

itions between different collective shapes are mapped in-
to the QPTs between different DSs and vice versa. Note
that the single group, G, in the IBM phase diagram shown
in Fig. 2 should be replaced with the direct product group
GoUR2j+1) for the IBFM [40], but we maintain the
symbol G to indicate the related scenarios in both IBM
and IBFM for convenience.

Based on the mean-field analysis [14], we can prove
that the system in the large-N limit experiences a 1st-or-
der QPT at 5. =8/17 ~0.5 on the U(5)-SU(3) leg and a
second-order QPT at 5, =0.5 on the U(5)-O(6) leg. The
U(5)-SU(3) QPT may correspond to the spherical to pro-
late (or the vibrator to axial rotor) SPT in the collective
model terminology while the U(5)-O(6) QPT corres-
ponds to the spherical to y-soft (or the vibrator to y-soft
rotor) SPT. In this paper, the terminology of QPTs of the
two models are mutually used without distinction. More
generally, the first-order spherical to deformed SPTs (the
U(5)-SU(3) QPT-like) may widely occur inside the tri-
angle phase diagram with the critical points, expressed as

14

=— 29
28 + x2 29)

Ne

In the following, we apply the scenarios with j=9/2
and N = 10 to discuss the effects of an odd particle on the
U(5)-SU(3) and U(5)-O(6) SPTs in the finite systems. In
particular, we compare the results solved from the IBFM
Hamiltonian (21) to those obtained from the IBM
Hamiltonian (27). Note that the effects of different boson-
fermion interactions on the spectra in the two types of
SPTs have been previously investigated in the IBFM both
classically and quantum mechanically [26]. In the follow-
ing, we focus on revealing the similarities and differ-
ences in the critical behaviors of the odd-even and even-
even systems.

B. Finite-N critical features

First, the lowest-lying levels are computed, and the
results evolving as functions of 7 in both the U(5)-SU(3)
and U(5)-0(6) transitional regions are shown in Fig. 3.
As shown in Fig. 3(a), the states with different J values in
the odd-even systems are approximately degenerate and
are divided into groups with the level energies being
close to those with L =0, 2, 4 in the even-even system
until n ~ 0.4; subsequently, the degeneracies are rapidly
broken in the range of 1 ~0.4—0.6 with the levels reor-
ganized in a spread. This is the finite precursor of the
U(5)-SU(3) SPT in odd-even systems. Note that an SPT
in a finite system may occur in a parameter region rather
than at a point owing to the finite-N effect, which also
results in the transitional features not being as sharp as
that in the large-N limit [14], where the concept of QPT is
rigorously defined. As further shown in Fig. 3(b), the
level degeneracies in the odd-even systems clearly break
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Fig. 3.  (color online) Low-lying energy levels evolving as

functions of the control parameter n in both the U(5)-SU(3)
and U(5)-0(6) transitions; the grey color indicates the critical
region in a finite-N scenario. In the calculated results, the
levels with L=0, 2, 4 in the IBM (denoted by dashed lines)
have been normalized to E(2;)=1.0 and those with
J=1/2-17/2 in the IBFM (denoted by full lines) are normal-
ized to E(13/2;)=1.0.

down in the critical region n ~ 0.4 —0.6, which confirms
that the U(5)-O(6) SPT also occurs in the odd-even sys-
tems. In theory, the breaking of level degeneracies can be
considered to be a signal for U(5)-0O(6) SPT. Meanwhile,
the results imply that the transitional features of the
second-order QPT (U(5)-O(6) SPT) in a finite-N system
may be significantly weaker than those of the first-order
QPT (U(5)-SU(3) SPT).

To further identify the critical features in a finite-N
situation, the energy ratio R4 and the B(E2) ratio B,
are calculated for the two types of SPTs with the corres-
ponding results as a function of n shown in Fig. 4 and
Fig. 5, respectively. As shown in Fig. 4(a), a sudden in-
crease in R4/ can be observed in the critical region of the
U(5)-SU(3) SPT, which confirms again that this type of
SPT indeed occurs in the odd-even system as in the adja-
cent even-even system. An interesting observation is that
the transitional feature in R4y seems to be slightly en-

3.5+
Ry
—&— Even-Even rd
--#+- Odd-Even '
3.0+
q
<5
84
2.5+
2.0 (a)
T T T T
0.0 0.2 04 0.6 0.8 1.0
n
—a— Even-Even
2.4 --#r- Odd-Even
Q et
< ud e
o T
2.2 U(5)-0(6)
2.0 (b)
T T T T
0.0 0.2 0.4 0.6 0.8 1.0
n
Fig. 4. (color online) Typical energy ratios evolving as func-

tions of 7 in the U(5)-SU(3) and U(5)-O(6) SPTs with the
definition R4/2 = %3:72:; ,
Je=9/2 and J, =0 are used in the calculations for the odd-

even and even-even systems, respectively.

where the ground state spins

hanced in the odd-even system. In contrast, the results
shown in Fig. 4(b) indicate that the finite-N precursor of
U(5)-0O(6) SPT can be also identified from the evolutions
of R4, but with the transitional amplitude in the odd-
even system (R4/2 ~2.0-2.3) being more depressed than
in the adjacent even-even system (R4 ~2.0—2.5). This
means that the U(5)-0(6) SPT may be smoother in the
odd-even nuclei owing to the effects of the odd particle,
which agrees with the classical analysis provided in [34].
As shown in Fig. 5, the results for the B(E2) ratio further
confirm the finite-N precursors of the SPTs in the odd-
even and even-even systems. The figure shows that the
U(5)-SU(3) transitional features are strengthened by the
effects of the odd particle, and the transitional amplitude
of By in the odd-even system is relatively larger than
that in the even-even system. In contrast, the U(5)-O(6)
SPT features in the odd-even system become relatively
weaker with a smaller amplitude of B4/, than in the adja-
cent even-even systems. Reference [49] indicated that ra-
tio By, in the even-even system can be applied as the ef-
fective order parameter to distinguish the first-order SPT
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Fig. 5. (color online) Same as in Fig. 4 but for the B(E2) ra-

. BE2(A+T)1 Q1) s
tios defined as B4/2EWM with J,=9/2 and

J, =0 used for the odd-even and even-even systems, respect-
ively.

(U(5)-SU(3)) from the second-order SPT (U(5)-O(6)) by
its different evolutional characteristics in the two types of
SPTs. We can observe in Fig. 5 that B4/, in the odd-even
system can have the same function as the differences in
between the first-order and second-order SPTs become
even larger owing to the effects of the odd particle.

To check the deformations of the finite systems in the
SPTs, the quadrupole moments of the even-even system,
0(21), and those of the odd-even system, Q(J;), have
been calculated, and the results as a function of 5 are
shown in Fig. 6. As shown in Fig. 6(a), the quadrupole
moments of the selected states in the U(5)-SU(3) trans-
ition may all decrease from the nearly zero values to the
negative values with the fastest change appearing in
n=04~0.6 as expected. A noticeable scenario is that
Q(7/2;) as a function of n may gradually increase until
n ~ 0.4 before beginning to decrease. A more interesting
observation from the sub-panel is that the odd-even dif-
ferences AQ for the different states nearly all attain their
maxima in the critical region, which indicates that the
odd particle can induce a larger fluctuation in the quadru-
pole deformation in the critical systems. This implies that

U®)-Su@3)

QW)

64 UG)-06)
S
o
.12
912
L ®
0.0 0.2 0.4 0.6 0.8 1.0
n
Fig. 6. (color online) Quadrupole moments, Q(J), evolving

as functions of # in the two types SPTs. The dashed lines rep-
resent the results for the 2, state in the even-even system, and
the full lines represent the lowest states with | j—2|<J < j+2
in the odd-even system. In the calculations, the effective
charge in the transitional operator (24) has been set to e = 1.0.
The sub-panel shows the odd-even differences of the quadru-
pole moments defined as AQ = Q(J;) - Q(21).

different deformations (phases) may have more opportun-
ities to coexist in the low-lying structures of the odd-even
systems undergoing the U(5)-SU(3) SPT [34]. For the
U(5)-0(6) SPT, we can observe from Fig. 6(b) that the
quadrupole moments of the even-even system, Q(2;), re-
mains zero in the entire transitional process. It is easy to
understand this feature from the selection rule as the
transitional operator QA’];:() adopted in the calculation for
the U(5)-O(6) SPT requires AL = +2 for the yrast states
[15]. In contrast, the quadrupole moments of the odd-
even system, Q(J;), may all monotonically decrease from
zero to the negative values, thus suggesting that the
largest odd-even difference of quadrupole deformation in
the U(5)-0O(6) SPT should appear in the O(6) limit. In ad-
dition, the results in Fig. 6(a) are not exactly equivalent to
zero for the U(5) limit. This is prin}arily because of a dif-

ferent transitional operator, QAE:_T , being selected for
the U(5)-SU(3) SPT to be consistent with the consistent-
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QO Hamiltonian; however, this observation will not change
the conclusions.

Finally, we discuss the one-particle-transfer spectro-
scopic intensities for stripping and pick-up reactions. In
leading order, the spectroscopic intensities in the IBFM
are described by the square of the one-fermion addition
and removal matrix elements [40]. Specifically, we con-
sider the transfer process by adding the even-even sys-
tem with a j =9/2 fermion to the even-even system or re-
moving a j=9/2 fermion from the odd-even system. The
corresponding spectroscopic intensities can be calculated
using

I(Even — Odd) = €2 | {aJ; || a;/z lesLiy P (30)
and
1(0dd — Even) = ¢/,” | (@fLy llaop Nl @ J7) P (1)

where e,(e},) represents the scale parameter. Clearly, the
one-particle-transfer processes can provide a direct con-
nection between the odd-even and even-even systems in a
particular SPT.

The evolution of one-particle-transfer spectroscopic
intensities as a possible signature of the U(5)-0O(6) SPT
was previously investigated for j=3/2 [19]. Here, we
compare the critical features of the spectroscopic intensit-
ies in between the U(5)-O(6) and U(5)-SU(3) SPTs. To
accomplish this, the calculated results for 1(0; — 9/2,),
1(0; = 9/2;), 1(9/21 — 0y) and 1(9/2; — 2;) as functions
of 1 are shown in Fig. 7. Fig. 7(a) shows that the intensit-
ies for the pick-up reactions, /(Even — Odd), may rapidly
either increase or decrease in the critical regions for both
the U(5)-SU(3) and U(5)-O(6) SPT but with the trans-
itional signatures in the former being clearly stronger
than in the latter. A very similar scenario can be ob-
served in the spectroscopic intensities for stripping reac-
tions, 1(Odd — Even), as shown from Fig. 7(b). The res-
ults indicate that the evolutions of one-particle-transfer
spectroscopic intensities can provide alternative signa-
tures of the SPTs, particularly for the U(5)-SU(3) trans-
ition, in addition to those typically used energies and
electromagnetic observables.

IV. SUMMARY

A scheme of diagonalizing the IBFM Hamiltonian in
terms of the SU(3) coupling basis has been introduced,
through which a quantal analysis of the effect of the odd
particle on two types of SPTs is performed in the IBFM
by comparing the critical behaviors of some select ob-
servables. Similar to the even-even systems, we demon-
strate that the U(5)-SU(3) and U(5)-O(6) SPTs can also

69 . UG)-SU®B) S

—a-U(5)-0(6)

I(Even—0Odd)

69 4 UB)-SU®B)
—u—U(5)-0(6)

I(Odd—Even)

Fig. 7.
scopic intensities evolving as functions of 5 in the two types

(color online) Typical one-particle-transfer spectro-

of SPTs. In the calculations, the scale parameters have been
setto e, =€), =1.0.

occur in the odd-even system. More importantly, the res-
ults indicate that the effects of the odd particle may fur-
ther strengthen the U(5)-SU(3) transitional features but
weaken the U(5)-O(6) ones. This observation closely
agrees with the previously classical analysis [24, 25, 34]
of the two types of SPTs, thus providing observable
proofs of the mean-field predictions. Furthermore, we re-
veal that the fluctuations of the quadrupole deformations
in the odd-even systems become larger when approach-
ing the critical point of the U(5)-SU(3) SPT, which im-
plies the potential for phase coexistence in the critical
odd-4 nuclei. The paper presents a schematic illustration
of the actual scenarios for odd-4 nuclei, as the discus-
sions are confined to scenarios with the odd particle be-
ing assumed to move in a single j shell. Multi-particle
(-hole) in multi-j scenarios may require to be considered
for a more general representation, particulalry for search-
ing for the potential phase coexistence in experiments
[28]. In addition to the two types of transitions discussed
herein, the effects of an odd particle on other types of
SPTs (such as the prolate to oblate transition) remain to
be studied [16]. Related research is in progress.
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