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Universal time delay in static spherically symmetric spacetimes
for null and timelike signals”
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Abstract: A perturbative method of computing the total travel time of both null and lightlike rays in arbitrary static
spherically symmetric spacetimes in the weak field limit is proposed. The resultant total time takes a quasi-series
form of the impact parameter. The coefficient of this series at a certain order n is shown to be determined by the

asymptotic expansion of the metric functions to the order n+ 1. For the leading order(s), the time delay, as well as

the difference between the time delays of two types of relativistic signals, is shown to take a universal form for all

SSS spacetimes. This universal form depends on the mass M and a post-Newtonian parameter y of the spacetime.

The analytical result is numerically verified using the central black hole of galaxy M87 as the gravitational lensing

center.
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I. INTRODUCTION

Today, the time delay of gravitational lensed images
by compact objects, galaxies, or their clusters has be-
come an effective tool in astrophysics and cosmology [1].
For lensing by compact objects, the time delay can be
used to constrain properties of the spacetime, such as its
mass or naked singularities [2, 3]. For galaxies or galaxy
clusters, time delay can be used to independently and ac-
curately measure the Hubble parameter to a percentage
level, and to constrain the lens mass profile, the line-of-
sight mass distribution, dark matter substructures, and the
dark Universe parameters [4-10].

Traditionally, the time delay has always been ob-
tained from light spectral data. With the discovery of ex-
tragalactic neutrinos [11-14] and gravitational waves
(GWs) [15-19], particularly the lensed supernovas [20,
21] and simultaneous observations of GW+GRB events
[18, 19], it is clear that both neutrinos and GWs can func-
tion as messengers of the time delay effect. Although
neutrinos [22] as well as GWs in some gravitational the-
ories beyond GR [23, 24] are known to have nonzero
masses, the formulas for null rays were used in previous
considerations of their time delays [10, 25-27]. Since the
subluminal speed of these massive particles can also con-
tribute to the time delay, timelike geodesics, rather than
null ones, should be used for computation if high accur-
acy is desired.

Previously, we have demonstrated that the time delay
in the Schwarzschild spacetime for null or timelike rays
receives factors of correction [28]. However, when con-
sidering other spacetimes, the effect of the spacetime
parameters such as electromagnetic charges, angular mo-
mentum, and other effective charges such as in the
Bardeen [29, 30], Janis-Newman-Winicour [31], and Ein-
stein-Born-Infeld spacetimes [32, 33] on the time delay is
still unclear. In this work, we present a perturbative meth-
od of calculating the total travel time and time delay in
arbitrary static spherically symmetric (SSS) spacetimes
for null and timelike signals with general velocities. The
result of the total time takes a quasi-series form of the im-
pact parameter b, and the time delay to the leading
order(s) takes a universal form depending on the leading
expansion coefficients of two metric functions. We use
the geometric unit G = ¢ = 1 throughout the letter.

II. TOTAL TRAVEL TIME IN SSS SPACETIMES

The most general SSS metric can be described by
ds? = —A(r)dr* + B(r)dr? + C(r)(d6” +sin® 0dg?), (1)

where (¢, r, 0, ¢) are the coordinates, and A, B, C are
metric functions depending on » only. It is routine to find
the geodesic equations in this metric
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in which k=0, 1 for null and timelike signals, respect-
ively. Here, L and F are first integral constants represent-
ing the angular momentum and energy of the null ray or
the unit mass of the timelike particle, respectively. Note
that because of the spherical symmetry, we will always
set 0=m/2 for the geodesic motion without losing any
generality. Using Egs. (3) and (4), we can obtain the
equation of motion for d¢/dr. Further integrating it from
the source located at radius r, to the closest radius rq and
then to a detector at r,;, we obtain the total travel time ¢ of
the signal:

t_[f f] LA \/A (EZ—ii)C L2A]dr' ©

Note that we have not canceled some terms in the numer-
ator and denominator for later convenience in Egs. (14)
and (15). In this letter, we focus on asymptotically flat
spacetimes, in which L and E are related to the velocity v
at infinity and impact parameter b by

% 1
b, E= .
1-v2 V1 -2

Although this equation is only valid for massive particles,
the relationship

IL| = rxpl= (6)

L/E =bv @)

can be used for both null and timelike rays. Indeed, in the
deflection angle computations in this paper, taking the
v— 1 or E — co limit will always produce results for null
rays. The angular momentum L can also be related to ry
using the radial equation of motion dr/df|,=,, =0, to de-
termine

L= o) [E2 = kA(ro)] JAGr0). (®)

Further using Eqgs. (6) and (8) for timelike rays and Egs.
(7) and (8) for null rays, we can establish a relationship
between the impact parameters b and ry

1 E? -k
- 9
b \JE2—kA(ry) \ C(r0) ©)

—p( 1) (10)

ro

where, in the final step, we denote 1/b as a function p of
1/rg.

The key to proceeding is to perform a special change
of variables in the total time formula (5), after which we
can conduct a series expansion of the impact parameter
and subsequently rigorously prove the integrability of the
expansion for null and timelike rays in arbitrary SSS
spacetimes. The variable change simply utilizes the in-
verse function of p(x), which we denote as ¢(x), such that
r is changed to u through the relationship

eoft)

or equivalently

(1) [A()C(r0)[E? - kA(ro)]
=t p(r) - \/A<ro)C(r>[EZ—KA<r)]’ (12)

where, in the second step, Eqgs. (9) and (10) are used.
Now, using Egs. (11) and (6), the infinitesimal and the
first fractional term in the integrand of Eq. (5) respect-
ively become

1

= P @FPb ! (13)
E \B(r)C(r) R B(l/q)C(l/q)i (14)
LA(r) A(l/q) b’

Using Eqgs. (8) and (12), the second fractional term in the
integrand of Eq. (5) becomes

LA(r) L
VAN (B2 =cA())C(N-LPA(D]  V1-i2

(15)

Note that, on the right hand sides of Egs. (14) and
(15), ¢q is g(u/b) and p’ is the derivative of function p.
The integral limits of Eq. (5) should change to the limits
of variable u, i.e.,

1
ro— 1, rs,d—>b~p(—). (16)
Fsd

Collecting these together, the total time (5) becomes
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where

(g)_ vBU/)CU/Qul 1 u (18)
b A(Jq) by @b

Note that this function y(u/b) depends on u only
through the ratio u/b. Using definition (18), when the
metric functions A(r), B(r), and C(r) are known, y(u/b)
can be series expanded in the powers of u/b to yield the
result

()= (i)

n=-—1

(19)

where y, denotes the expansion coefficients. Note that
the explicit form of the inverse function g(x) is not re-
quired in this process since we can use the Lagrange in-
version theorem and function p(x) to obtain its expan-
sion. To obtain the general form of y,, we will use the
following asymptotic expansion of the metric functions

b, C(r) Cn
T

n=1 n=1

A(r) =1 +Z By =1+ (20)

where a,, b,, and ¢, are finite constants. Without losing
any generality, the constant @; will later be identified
with the ADM mass M of the spacetime (a; = —2M), and
the constant b, is conventionally referred as the y para-
meter (b; =2My) in the parameterized post-Newtonian
(PPN) formalism of gravity [34]. Substituting these into
Eq. (18) and determining the power expansion of u/b,
the first three orders of y, are observed to be (see Ap-
pendix A for details)

M {
LBy py = 3 DM

i= sd(n )”
cosBi| 1+
Therefore, the total time (22) becomes
l (Bs.Ba), (26)

n——l

where y, are given in Eq. (21) and /, in Egs. (24) and
(25). This is the total travel time applicable to all SSS
spacetimes and both null and timelike rays, as well as for
both large and smaller impact parameters b.

For practical gravitational lensing (GL) observation,

poveonp 3

”(2]—1).!

=1

1
y-1=—,

1%

1 (a
Yo = Z(——201+b1)

8a —4(b1+c1)a1—(b1—cl)2—8a2+4b2 +46‘2
y=— . 2D

8v

We observe that for the order n coefficient y,, only the
coefficients up to order n+ 1 of the metric functions con-
tribute.

Substituting Eq. (19) into the total time (17) and per-
forming a further change of variable u = sinf, which is
suggested by the denominator V1 —u2, this becomes

: ] sin™! 6do, (22)

where we denote, respectively,

Bs.a = arcsin(b - p(1/rs q)). (23)
Here, the integrability of Eq. (22) to any desired order of
yn/b" becomes clear because the integration part can al-
ways be calculated to yield

1By, Ba) = f Ty f “[sin" 6de
Bs Ba
cotf;, n=-1
= : , 24
vy ln[cot(%)], n=0 @4
and for odd and even positive n, respectively, [35]
(%41
Dt nzj_lﬁi], n=2k+1,
(25)

o sinzj,B,-], n=2k, keN.
D!

\
the relationship ry, > b is satisfied. Moreover, we will
assume that the expansion parameters of the metric func-
tions in Eq. (20) satisfies the weak field limit, i.e.,
Ob™) > |ayl, |bn| or |c,l|. In these two limits, we can ex-
b

rsd
Therefore, we can expand the first three I, (n = —1,0, 1) in

pand the total time (26) in the powers of — and

1 1
Egs. (24) and (25) to the order of (%) and (i)

Vs.d
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Substituting this expansion and Eq. (21) into Eq. (26), the
total time becomes

b a;  2a;-bi\, 2r
r= LR (Pl In=t
Z{v 2rv (2v3 2v "

i=s,d

(c1 a1)1 b

+ _—— — _—
2 2v2)v  16bv

x[8a7 - 4(b]+cl)a] (b —c1)? = 8ay +4by +4c)|
ai
+ (2
[ 3 Tt

(4a1( 2ay +by)+ b7 + 3 +8a2—4b2—4cz)}

—b1 +Cl)

8

v M?
+0( 5 ,7]}, (28)

sd

where all terms are arranged in a decreasing order. The
first, second, and fourth terms, i.e., the O®;), OB3/r;),
and O(M) order terms, are obtained from /_; in Eq. (27).
Similarly, the third and part of the sixth terms, which are
of orders O(In(r;/b)) and O(M?/r;), respectively, origin-
ate from [y. The fifth and remainder of the sixth terms, of
orders O(M?/b) and O(M?/r;), originate from I;. As we
will demonstrate next, expansion to these orders is suffi-
cient to determine leading order(s) useful for observa-
tions. In Ref. [36], the total travel time for null rays were
also computed using PPN parameters. We have com-
pared our result (28) with their Eq. (3.4) and observed
that at orders O(r;), O(b?/r;), O(MIn(r;/b)), O(M), our res-
ults agree analytically. For even higher order results, i.e.,
O(M?/b), O(M?/r;), owing to the different approxima-
tions used, our results are only consistent at the mag-
nitude level. However as we will discuss in Sec. III, these
higher order terms will not contribute to the leading or-
der result of the time delay.

III. TIME DELAY IN GL

Using the total time (28), we can compute the time
delay between images of the same source in GL. For this,
we first must determine the total time of each image sep-
arately. Let us assume that the source, lens, and detector
are in the configuration depicted in Fig. 1, where ¢y is the

Fig. 1.
lens, and detectors. b, and b, are the impact parameters for the

The GL in an SSS spacetime. S, L, D are the source,

bottom and top paths, respectively. For this configuration with
small but positive ¢y (or B), b, > b, as can be seen from Eq.
(32), and consequently, the flight time from the top will be
shorter, as dictated by Eq. (28).

angle of the lens-source direction against the lens-detect-
or axis. 8 denotes the angle of the detector-source direc-
tion against the lens-detector axis in the no lens limit. Us-
ing triangles AAS L and AAS D, apparently we can estab-
lish the geometric relation

(rqg+rgcosgp)tanB = rysin gy, (29)

between the two angles ¢y and B8 and the source and de-
tector radii r; and ry, respectively.

Thus, for the two paths of any given two images, the
only parameter that is different in the total time formula
(28) or (26) is their impact parameter b. Therefore, we
must devise a means of comparing these two b's to com-
pute their time delays. Here, we avoid as much as pos-
sible any non-exact equations or equations whose trunca-
tion errors are difficult to track, such as the approximate
equation b ~ r;0 where 6 is the apparent angle of the im-
ages. Rather, in this letter, we use a more exact and track-
able method to link the two impact parameters.

From Ref. [37], the change of the angular coordinates
Ag from the source to the detector in an SSS spacetime
has been computed as a series form to high order of M/b.
For the purpose of time delay, we will only use this series
to the first order of M/b and b/r,, (henceforth we use M
and y to completely replace a; and b,), i.e.,

Ago(b)z7r+2—M(y+l)—b(l+l). (30)
b v2

rs rad

We emphasize that to this order, among all expansion
coefficients in Eq. (20), Ag(b) only depends on mass M
and y but not high order a,, b,(n=2,---) or any of
cyn (n=1,2,---). One will see later that this point contrib-
utes to the universality of the time delay to the leading or-
der(s) in Eq. (38).

For GL shown in Fig. 1, the change of the angular co-
ordinates from the bottom and top sides are respectively
=+ ¢o. Equating them to Eq. (30) with b substituted by
impact parameters b,;, from both sides, we have
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Fr+do = FA@(Ds ). (€2))]

where the sign on the top (or bottom) is for the top (or
bottom) path. From this, we can solve b, as

Porars
=" |41 +1 2
O e KT E (32)
where
SM(I +yv2)(rd +rg)
= . 33
n v, (33)

Equation (32) establishes a simple and yet accurate
relation between the angle ¢y and the impact parameters,
with the only approximation tracking back to the trunca-
tion of the change in the angular coordinate (30). Since
¢o 1s small and positive, it is clear from Eq. (32) that
n > 0 and therefore the impact parameter b, of the signal
from the same side of the source against the lens-observ-
er axis will be larger than b;,, the impact parameters of
the signal from the other side.

Substituting these two impact parameters (32) and
a; = —-2M into the total time (28), we see from the lead-
ing relevant term —b?/(rp?) that the flight time of the top
trajectory with a larger impact parameter b, will be smal-
ler than that of the bottom trajectory with a smaller im-
pact parameter b,. Subtracting each other, we see that the
leading, fourth, and sixth terms of Eq. (28), i.e., the
O(ri), O(M), and O(M?/r;) order terms, are exactly can-
celed between the two total times. The second, third, and
fifth terms, which emerged as the respective leading
terms in the expansion of /_j, ly, and /; in Eq. (27), be-
come respectively the three terms in the following result
for the time delay:

2
2M[1—v2(2+y)]1n(1_ 2 ]
V3 1+ +/T+7
[—2a2+b2+M2(8+47—72)] (b3 M2

4M (1 +pv2) o a’T] (34)

+

+ oV

X

It is then easy to see that when

M
n>1, ie,—> q)(z), (35)
rd,s

the logarithmic term of Eq. (34) will take a form of
In(1+ asmall quantity) and a Taylor expansion can
demonstrate that this term is comparable to the first term

of Eq. (34). Moreover, the first two terms are observed to
be significantly larger than the third one, which, there-
fore, can be ignored. Subsequently, the time delay to the
leading order in this scenario assumes a simple form:

8M(1+7) (rds 2)3/2 b M?
At= ——— 22 M= JdoM, —,—1|. (36
V\/ﬁ +O[ M¢0 ¢0 Vid b ( )

On the other hand, if M/r;, < q%, then the first term will
dominate the second which in turn is much larger than the
third one. In this limit, the time delay can also be expan-
ded to yield a simple result to the leading order

AM(1 +yv? b
At = %W) +O(M,T]. 37)
v-n rs’d

When y =1, as in many SSS spacetimes, including the
most common Schwarzschild and Reisnerr-Nordstrom
spacetimes, the time delays (36) and (37) reduce to Egs.
(36) and (33), respectively, of Ref. [28].

Combining the above two limits, it is clear then in any
case, the time delay can always be well described by the
sum of first two terms of Eq. (34). In GL computations,
the source angular position is often represented by B in
Fig. 1 rather than ¢y. To this end, one can simply solve
¢o in terms of B from Eq. (29) and substitute it into the
first two terms of Eq. (34), yielding

4M(1 +yv2)
At=—s———
v (B, v)
2M[1 —v2(2+y)]
1

2
1_
i v3 n( 1+ w/1+n(ﬁ,v)]

V1+n(B,v)

b3 M2
where n(B,v) is
8M(1 + yvz) T
nB,v) = 39)

ﬂzVZ(rd + r‘v)rd ’

A few features of this result are remarkable. First,
only two parameters from an SSS spacetime, the mass M
and the PPN parameter y of the metric function B(r), ap-
pear in the time delay to these leading order(s). All other
quantities in Eq. (38), i.e., ry4, v, and B are geometric or
kinetic variables associated with the initial/final condi-
tions of the signal particle. High order spacetime para-
meters a,, b, (n=2,3,---) and all of ¢, (n=1,2,---) in Eq.
(20), including (effective) charges etc., have little effect
on the time delay of weak-deflection GL. Because of this,
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all SSS spacetime time delays at the leading order(s) take
a universal form described by Eq. (38). Secondly, the first
term of Eq. (38) originates from the /_; term of the total
time (26), which represents the geometric propagation
time. Meanwhile, the second term of Eq. (38) can be
traced back to the [y term, which corresponds to half of
the conventional Shapiro time delay [28]. Therefore, the
analysis in this section proves that, in any scenario of the
lensing parameters, i.e., small or large n(3,v), to find the
weak field time delay, one only needs to calculate to the
2nd non-trivial order of the total time (26). In other
words, only y_; o and I_; o are required.

IV. APPLICATION OF THE RESULTS

To check the validity of the time delay in Eqgs. (34)-
(39), we apply these results to the supermassive BH in the
center of galaxy M87, which we model as an SSS with
v =1 but otherwise arbitrary spacetime. Note that we do
not need to specify the exact type of the spacetime here
because as shown in Eq. (38), the time delay depends to

o [as]
0%  10°% 102 10" 10° 10’
10----- st Total _ __f,
= e I2nd] — — 1 _ ,,:,fy“"‘/
T 0.100[ == 3rd --- - sl e
= — 7
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1070y R 1 0 1
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3057 T
g
027 e
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) L
5,05 T
3 me T
020 T ——
0.1L \ : v ar
0.5 0.6 0.7 0.8 0.9 1.0
v [c]
Fig. 2. (color online) Time delay caused by the M87 super-

massive BH as a function of g (or ¢¢) (top), rs (middle), and v
(bottom). The parameters selected are r, =ry, ¢o =1 [as] and
v =c, except for the parameter that is varied in the x-axis of
each subplot. The 1st, [2nd|, 3rd, and "total" curves corres-
pond to the first, absolute value of the second, third, and all
three terms of Eq. (34), respectively. The n>1 and n<1
curves correspond to Egs. (36) and (37).

the leading order only on M and 7y. Using the mass
M=65x10°M, and r;=16.8 [Mpc] [38] for M8&7, we
plot the time delay (34) in Fig. 2 as a function of other
parameters.

The first subplot indicates that as 8 increases, the first
and second terms of Eq. (34) (or (38)) have similar val-
ues until approximately B~ 2 [as], beyond which the first
term dominates the second one. Moreover, the first two
terms are significantly larger than the third one in the en-
tire range. When B <4 [as] and B> 4 [as], the total time
delay approaches the n>>1 and n <1 limits, respect-
ively. In the second subplot, in the entire range of r, the
first and second terms of Eq. (34) (or (38)) are compar-
able, and their combination becomes the total time delay,
which is approximated by the 7> 1 limit. In the last sub-
plot, as v varies from 0.5¢ to ¢, the value of the first term
decreases to that of the second term, which increases
from negative to positive. Again, their combination forms
the total time delay, which is approximated by the 7> 1
limit. We can verify that, for these parameters or para-
meter ranges, all the behaviors described above perfectly
match the predictions of Eqgs. (34)- (39).

Since both the supernovas and GW+GRB events emit
two types of relativistic signals (almost) simultaneously,
some researchers have proposed using the difference
between the time delays of both types of signals to con-
strain their properties [25, 28]. Using Eq. (38) for signals
with velocities v; and v;, the time delay difference be-
comes

AM1 +y)T+7@B, 1)
nB.1)

A%t

+2M(1—y)1n[1—
1+

2
— = |la
x/1+n(ﬁ,1)]] '
+O(BMras.fra,s) (AvY, (40)

where Av = v —v,. Similar to Eq. (38), when <« 1, both
terms in the square bracket of Eq. (40) are at the same or-
der. Otherwise, the first term dominates. For spacetimes
with y =1, the second term vanishes and this reduces to
Eq. (38) of Ref. [28]. Equation (40) suggests that for all
SSS spacetimes, the time delay difference also relies on
only two parameters M and y. In all spacetimes where
v=1, this time delay difference becomes completely
equivalent to that of the Schwarzschild spacetime with
the same mass. The corresponding analysis for neutrinos
and GW/GRB time delay was conducted in Ref. [28];
therefore, it is not repeated here.

V. CONCLUSIONS

We have developed a perturbative method to com-
pute the total travel time in any SSS spacetime for sig-
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nals with general velocities. The result, Eq. (26), takes a
quasi-series form of 1/b. Only the first two orders of this
result contribute to the leading order(s) of the time delay
Atr, expressed in Eq. (38), between different images of
GL. At depends on the mass M and PPN parameter y of
the metric functions. This result reveals that in the weak
field limit, high order parameters in asymptotic expan-
sions of the metric functions, such as effective charges,
have a significantly smaller effect on Ar than M and vy.
The difference of the time delays for different types of
signals is also demonstrated to take a universal form to
the leading order(s), still determined by M and y.

It would be interesting to observe whether this meth-
od can be generalized to other types of spacetimes for
parameters other than M and y to have a considerable ef-
fect on the time delays and their difference. Such space-
times include at least stationary axisymmetric spacetimes,
asymptotically non-flat spacetimes, and non-static/sta-
tionary spacetimes [39]. We are currently researching
these.
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APPENDIX A: EXPANSION OF
y(u/b) IN EQ. (18)

The y(g) defined in Eq. (18) can be dismantled into
five factors:
1 1 u

NEUOCT) w1 1w

u
A(l/q) by p'(q)qz’ b

In order to expand them into series of u/b, the second,
third, and fifth factors are ready, and we must focus on
the first and fourth factors, f; and f4

VB(1/q)C(1/q)

fi= T/CD’ (A2)
_ 1
fi= P (g (43

For f;, note that g = g(u/b) and ¢(x) is defined as the
inverse function of p(x), which is given in Eq. (10).
Clearly, if the series expansion of p(x) and ¢q(u/b) at

small u/b are known, the series of f; can be obtained.
However, the series of p(x) can be simply obtained from
its definition (10) when the metric expansions (20) are
known. Explicitly, substituting Eq. (20) into (10) (and
with the aid of a computer symbolic system to simplify
the tedious algebra), we obtain, to the first three orders,

2
_ ) &_ﬂ) 3 36‘1—4C2
p(x) =x+x (2\/2 > +x {—8

2a> —ajcy —2&% Sa%
f—

e o +0(xh.  (A4)

Using the Lagrange inversion theorem in Calculus, its in-
verse series can be obtained as

o(5)=5+(53-55)5) )

Za% —3ajc1 —-2as a%
4y2 8t

c% +4cy
8

+0(g)4. (AS)

Obtaining the derivative of p(x) in Eq. (A4) and then sub-
stituting Eq. (AS5) into it, the series of the p’(¢g) factor in
fa can be computed. Using this, as well as Eq. (AS), the
series form of the entire f4 can be known in terms of the
metric expansion coefficients.

When the series (AS) of g(u/b) is known, composit-
ing it with the metric expansions (20) and substituting
them into Eq. (A2), the series of f; can also be known.
Grouping the series of f; and fywith the second, third,
and last factors of y(u/b), we obtain the series of the form
(19) with coefficients (21).

A few comments are necessary here. First, the key
step in these computation is the inversion from p(x) in
Eq. (A4) to g(x) in (AS). This is not used frequently in
common scientific and engineering applications of series
expansion. However, it is not a difficult step and can be
performed relatively easily using the Lagrange inversion
theorem. Second, although the remainder of the computa-
tions are conceptually simple series multiplications or
compositions, computation by hand can be tedious; there-
fore, a computer symbolic system was used. Third, be-
cause of this, a significantly higher order of the the ex-
pansion coefficients y, (n>3) can also be obtained de-
pending on the complexity of the metric expansions (20).
For example, for simple spacetime such as the Schwarz-
schild metric, y, up to n = 12 can be obtained using a per-
sonal computer within a reasonable time.
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