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Abstract: This study addresses the formation of anisotropic compact star models in the background of f(T,7")

gravity (where T and 7~ represent the torsion and trace of the energy momentum tensor, respectively). f(7,7") grav-

ity is an extension of the f(7T') theory, and it allows a general non-minimal coupling between 7 and 7 . In this setup,
we apply Krori and Barua's solution to the static spacetime with the components & = Br2 + ¢ and ¥ = Ar2. To devel-

op viable solutions, we select a well-known model f(T,7) = aT™ +B7 + ¢ (where a and f are coupling parameters,
and ¢ indicates the cosmological constant). We adopt the conventional matching of interior and exterior space time

to evaluate the unknowns, which are employed in the stellar configuration. We present a comprehensive discussion

on the stellar properties to elaborate the anisotropic nature of compact stars corresponding to well-known models:
PSRJ1416-2230, 4U1608 —52, CenX -3, EXO1785-248 , and S MCX — 1. Via physical analysis, it is observed
that the solution of compact spheres satisfy the acceptability criteria, and its models behave optimally and depict sta-

bility and consistency, in accordance with f(7,7") gravity.
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I. INTRODUCTION

Astrophysical observational data substantially sup-
port the speculations about the cosmic expansion of the
universe, and reveal some mysterious components present
in the universe [1]. The basis of this result is actually the
collaboration of the Friedman-Robertson-Walker-type
geometry with cosmology, as well as currently available
astronomical data. Therefore, precisely, considering the
current available information on astronomical data, the
only result that can be presently determined is that the
pressureless Einstein-de Sitter model is not favored by
the scrutiny. In general, the theoretical reasons for the ex-
pansion of the universe are described in two approaches.
The first is based on altering the contents of the universe,
realized by applying the dark energy sector, initiating
from a canonical sector field or both as a unit model, and
paving the path for further complex configurations [2, 3].
The second approach is based on modifying the gravita-
tional sector [4-8]. Considering the issues regarding phys-
ical interpretations, one can modify it as a whole or par-

tially from one way to another; however the number of
extra degrees of freedom [9] is actually an important as-
pect. Therefore, both approaches described above can be
used together or in a framework with the combination of
the gravitational and non-gravitational sectors.

The basis for modifying theories of gravity is conven-
tionally the generalization of the Einstein-Hilbert action
in the general relativity (GR) theory, such that these the-
ories are developed with the curvature concept of gravity.
However, an unmatched and compulsive modification of
gravity was observed when the action of GR identical to
the geometric formulation of GR based on torsion, was
extended. Einstein himself developed an equivalent GR
theory, which he remarkably referred to as "TEGR"
(Teleparallel Equivalent of General Relativity). The
TEGR formulation of gravity is elucidated by the torsion-
dependent Weitzenbock connection [10-12], instead of
the curvature deployed Levi-Civita connection. There-
fore, the Lagrangian elaborated by the torsion scalar 7,
originates from the contraction of the torsion tensor, ana-
logous to the Einstein-Hilbert Lagrangian, which origin-
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ates from the Riemanian (curvature) tensor. Hence, rather
than modifying GR, TEGR can be generalized, and f(T)
simply developed by extending the Lagrangian with a
discretionary torsion function [13-15], in addition to the
torsion 7. It is more attractive to know that TEGR is
equalent to GR in terms of its equations; however, f(T) is
divergent to f(R), such that they generate dissimilar
modifications. Different generalizations of the f(7) grav-
ity theory have also been proposed in the literature. One
of such proposals introduced a novel Lagrangian scalar
f(T,B), which involves a boundary term B related to the
divergence of the torsion tensor [16-21]. This theory be-
comes equivalent to the f(R) gravity for the selected spe-
cial form f(T + B) because the Einstein-Hilbert action
Lagrangian is dynamically equivalent to this argument
choice. An extended version of f(T) gravity is the coup-
ling of torsion 7 with the trace 7~ of the energy mo-
mentum tensor (EMT) [22], which results in f(7,7), a
new modification of gravity that is dissimilar to all other
forms of torsion and curvature-dependent gravities. This
modified gravity takes its inspiration from the modified
F(R,T) gravity [23-25], where instead of having the Ricci
scalar R coupled with the trace of the EMT 7, the tor-
sion scalar T is coupled with 7. In f(T,7"), various cos-
mic aspects have been explored, including the reconstruc-
tion of cosmic models, their stability, thermodynamic as-
pects, late time aspects, and dark energy models [26-30].
Being at the extremity, in the formation of an ordin-
ary star, compact stars play a crucial role in describing
the configuration of highly-condensed substances in in-
tense situations. In astrophysics, some of the highly dense
compact objects that have strong magnetic fields, such as
pulsars and other spinning stars, are considered remark-
able discoveries. Owing to the omission of the Catholic
church's elucidation of these dense bodies, it is confined
that these objects are actually the combinations of sub-
atomic particles such as baryons, leptons, and mesons,
except strange quark matter. Nevertheless, in astrophys-
ics, the basic objective is to discover the geometry and
configurations of intramural and inshore substances of
compact stellar objects. The study on the formation of
compact stars, as well as the gravitational collapse phe-
nomenon, is regarded as one of the most fascinating top-
ics in modern cosmology and astronomy. In 1916, Carl
Schwarzschild presented the exact solution on the interi-
or of symmetric stars spherically by adopting the uni-
form density-based matter profile [31]. In 1939, Oppen-
heimer and Snyder [32] contributed to the exploration of
the gravitational collapse with homogeneity-based dust
sphere. In the literature [33-37], several static analytic
models representing the relativistic stars have been con-
structed by introducing bulk viscous effects, anisotropic
pressures, charge, multilayered fluids, and equations of
state. Recently, compact stars have been discussed as ma-
jor trends in different amended theories of gravity, such
as f(G) gravity [38], f(R) gravity [39], f(R,7) gravity

[40-44], f(T,T) gravity [45], and other alternative theor-
ies of gravity. In [46], Rahaman ef al. discussed the pos-
sibility of applying the Krori and Barua (KB) model [47]
to describe ultra-compact objects, such as strange stars. In
their study, they analyzed the mathematical formulation
of strange star models. Shahzad and Abbas [48] used the
KB insatz in the static and spherically symmetric geo-
metry to discuss quintessence compact stars models in
Rastall gravity. Sharif and Majid [49] discussed the ex-
tension of isotropic spherically symmetric solutions to an-
isotropic domains via minimal geometric deformations in
the context of the self-interacting Brans-Dicke theory.
They employed the anisotropic KB solution and exten-
ded the Durgapal-Fuloria solution in this study, based on
the MGD approach. The KB solution is also discussed in
f(R,T), based on the MIT bag model, which results in
singularity-free and physically acceptable solutions [50].
In recent work, Roupas and Nashed [51] modeled aniso-
tropic neutron stars working in the KB ansatz without
preassuming an equation of state (EOS). It is determined
that stability requirements yield the compactness limit to
be 2GM/Rc* < 0.71.

Here, we study the physically admissible results for
anisotropic compact objects in a non-minimally-coupled
torsion-based theory, f(T,7) gravity. In the f(T,7") grav-
ity, compact stellar configuration has been presented for
isotropic matter fluid distribution, which corresponds to
embedding the class I model for LMC X-4 and Vela X-1
compact stars using a specific linear function
ST, 7)=aT(r)+BT (r)+®, where a and f represent any
arbitrary constant, and ® represents the cosmological
constant [45]. In [52], Salako et al. discussed strange star
models via anisotropic fluid distribution in the f(7,7)
gravity. They adopted the diagonal tetrad matrix and ex-
plored the role of the strange quark star model. In previ-
ous studies [52, 53], field equations are obtained by em-
ploying the diagonal matrix choice of the tetrad field,
which is considered an inappropriate choice in torsion-de-
pendent gravity theories, as it imposes some limitations
on the modification of the gravity theory [54, 55] by re-
stricting the functional form of the theory to the linear
one. To address these limitations by avoiding the bad
choice, we adopted corrected off-diagonal tetrad and a
more generic modification of the f(T,7") gravity theory,
ie., f(T,T)=aT"(r)+BT (r)+¢. We elucidated the linear
and non-linear modifications by selecting n =1 and non-
linear modification results by choosing n =2, respect-
ively. Therefore, the results obtained in our study are
more generic, and adopt the correct formalism of theoret-
ical physics. We consider the anisotropic KB solution,
and discuss the existence of anisotropic compact star can-
didates. The objective of this paper is to determine the
constraints on the f(7,7) model, and the parameters of
the theory, if the compact star solutions exist in this mod-
el. We selected the parameters based on the observation-
al data of various compact stars, such as PSRJ1416-
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2230, 4U1608-52,
SMCX-1.

This paper is organized as follows. In Sec. II, we dis-
cuss the basics of the f(7,7) theory adopted in this
study. Here, we generalize the solutions of field equa-
tions by utilizing the KB metric. In Sec. III, we evaluate
the values of unknown parameters using matching condi-
tions. In Sec. IV, we reveal the anisotropic characterist-
ics of the compact stars by discussing the behaviors of
density, pressures, gradients, and anisotropy. In Sec.
IV.E, we discuss the realistic behavior of matter by con-
sidering its energy conditions. In Sec. V, we determine
the physical viability and acceptability of the compact
stars by discussing the behavior of EOS, casuality condi-
tions, equilibrium, mass function, compactness, and red-
shift function. Throughout this study, we monitor the data
of compact stars, PSRJ1416-2230, 4U1608-52,
CenX -3, EXO1785-248 and SMCX -1, already dis-
cussed in literature. Finally, in Sec. VI, we conclude our
study based on analytical and graphical solutions.

CenX -3, EXOI1785-248, and

II. BASICS OF f(7,7) GRAVITY AND FIELD
EQUATIONS BY THE EMBEDDING
APPROACH

As is well-known, TEGR is an adjoining alteration in
GR; however f(T) is significantly differs from TEGR
when it is generalized in terms of the torsion 7 function.
Hence, f(T) describes the gravity in a very dissimilar
way from the curvature based f(R) gravity. A parallel
form of f(R,7") gravity is f(T,7) gravity, whose Lag-
rangian is defined by the action as [22]:

1
s:fdx4e{2—]<2f(T,7')+£(M)}, (D

where e = det (eﬁ) = y—g and k* =87G = 1. In addition,
Ly represents the function, which shows that the Lag-
rangian density and f are torsion-trace (7,7 )-dependent
functions. The equations of motion are extracted from the
variation of Eq. (1) relative to tertrad field:

e"S P frrd, T +e” S fra 0, T + e ' dyu(ee? S ) fr

4 1 o 4
- eanyyiSnyT - Zeinf + fT"-)yn,uS ynﬂ - j(eani” + ptenl)

=—dne,'T/",
@
of >’f
where T} denotes the EMT, fr= 3T frr = 577

2

_of P . o
fr= i and fry = T The spin connection w?,, is

considered to be zero in the begining. Core components

used in Eq. (2), such as torsion contorsion and super-po-
tential, are expressed as:

T} = ey (0ue”y — Oye” ), (3)
1
K" = -3 (T'“”,l —T™, - T,#‘”), 4)
1
S 11 = E(Kﬂn/l+5ﬂ/lT7Hy_5n/lTyyy>~ 5)

TEGR's Lagrangian density is torsional based, and its tor-
sion 7 is interpreted by the equation given below:

T =TS . (6)

In the study of stellar objects, the static and spherical
symmetric metric is an important tool, as it provides a
convenient beginning. The line element for the spheric-
ally symmetric configuration is defined as:

ds? = DR — Y02 — 2d6* - Psin?6dg?,  (7)

where £(r) and W(r) are the core components translating
the gravity, which are only radial coordinate "#" depend-
ent. TEGR is a compatible geometric structure for the
gestures of gravitational field. The basic formulation of
this theory is based on the tetrad field. Regarding these
fields, it is well-kniown that they are necessary compon-
ents in interlinking the Dirac spinor fields to the gravita-
tional field. In addition, these fields provide the detailed
description about the reference frames in metric space.
Generally, in the absence of boundary conditions im-
posed on the tetrad fields, TEGR is a non-variant under
the global Lorentz group SO(3,1) framework. Therefore
gauge transformations cannot discard the six degrees of
freedom provided by the tetrad fields (relative to the met-
ric tensor), similar to the Einstein-Cartan theory, as it
demonstrates local SO(3,1) symmetry. In contrast, the
reference frame is designated based on the six constitu-
ents of the acceleration tensor [56], which is a major
source for specifying the inertial prospects of the frame.
It is important to mention that in TEGR, the tetrad form-
alism regulates both the gravitational field and reference
frame. Because this f(7,7") gravity is based on the coup-
ling of the matter part 7~ with the torsion 7, the tetrad
formalism is necessary in setting up this matter coupled
theory. In setting up field equations, tetrad has a defining
role. According to Tamanini and Boehmer [57], two
types of tetrad are adopted, good and bad (poor) tetrads.
In the literature, authors have recommended the off-diag-
onal tetrad (good tetrad), and various aspects of the
spherically symmetric spacetime have been presented
[54-57]. In this study, we incorporate good tetrad in field
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equations to address these reservations, which is defined
as:

e 0 0 0
o= 0 e?:) sinfcos¢ rcosfcos¢ —rsinfsing
7 0 e sinfsing rcos@sing rsinfcose
0 e+ cosf —rsiné 0

®)
The EMT defining the anisotropic fluid distribution of
compact star is given by:

Ty = 0+ Pouguy = Pigey + (Pr=Povevy,  (9)

where ug = €267 and v¢ = €36}, p, p, and p; represent the
energy, density, radial and tangential components of pres-
sures, respectively. The trace of EMT is given by:

T =06l (10)

Torsion T(r) and its derivative T’(r) relative to "#", which
serves as the basis of the theory, are given by:

-P0) (o — T -
S~ 2e (e 1)r(ze r&§’(r) 1)’ an
L 4O (e —1)(eF —re(n-1)
T =— S
.\ eiT‘P’(r)(eT —ré'(r)— 1)

2

)W) (e -re(n-1)

2

i (

7
1 Y

-1) [Eez‘l"(}") —r€"(r) —f'(r)] :

(12)

1 ¥ o
ity Pt {00
+ 2 2e (e

p, pr and p, for f(T,T) gravity are obtained by employ-
ing Egs. (2)-(8), and they are expressed as:

e (e = 1) (freT + frr T)
P=-
p
1 eYOA-r¥@r) 1 T
‘sz(‘ 7 7*7)
1
L S x o), (13)

(e‘“'(’)(rf’(r)ﬂ) 1 T(r))fr
pr=|l——a——— -5+ —| =

r? r2 2 ]2

1
A ) (14)

Dr —; _‘P(r)( .f (r) ](fTTT +frrT")
ro2
+me«50) )@()T%» &(ﬁ
T fr f
+‘717‘z- (13)

In our discussion we employ a generic f(7,7) model,
which involves higher powers of torsion and is defined
as:
J@,T)=al"(r+pT (r)+¢, (16)
where o and f are arbitrary constants, n # 0 and ¢ repres-
ents the cosmological constant. TEGR is recovered if we
set the parameters as e« =n=1, 8=¢ =0. By setting up
n=2 and ¢ =0 , we acquire a model f(T,7)=aT?(r)+
BT (r), which has been used by Harko et al. [22] to ex-
plore the cosmic aspects. Here, we produced more gener-
alized results by utilizing the corrected framework (i.e.,
correct and rotated tetrad) for model (16). In previous
studies [52, 53], authors have worked on the linear choice
of torsion i.e., n = 1. However, in this case we presented
results for both the linear and quadratic contributions of
torsion by selecting n = 1 and n = 2. Moreover, the contri-
bution of trace term 7 = p — p, —2p, supports the analys-
is of minimal coupling, between the torsion and matter
contribution. In the literature, researchers have worked on
compact star models in the background of f(R,T)=
R+ A7, which presents minimal coupling between
curvature and torsion components [40-44]. Such studies
are required to explore the compact star models in the
minimally coupled torsion based framework, and pos-
sible outcomes can be interpreted as new outcomes. Here,
in this study we select 8 =-25,n=1, 2. In addition, the
parameter ¢ represents the cosmological constant [58],
which defines different phases of the universe's expan-
sion, as the universe with a positive value of ¢ will tend
to accelerate; whereas in the universe with negative value
of ¢, the expansion slows down, stops, and then reverses.
Calculations [59] demonstrate that the required value of
the cosmological constant is ¢ = 2.036 x 1073572, In [60],
Pace and Said worked on the linear model f(7,7)=
aT(r)+BT (r)+ ¢, together with ¢ =2.036x 1073572, to
study the quark star within the f(7,7") gravity. In this
study, we adopt the same calculated positive value of ¢ to
study the accelerated phase of universe expansion.
Moreover, we use different positive values of a, in the
case of n=1, and different negative values of a in the
case of n =2 to show the combined anisotropic effects of
torsional gravity combined with the matter aspect, which
has never been done before in this theory. Values of these
parameters are well adjusted to obtain the physically vi-
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able solutions of compact star models.

To complete the study, we have considered that in the
f(T,7) gravity, there may be such compact stars that
have anisotropy in their interiors. The interior geometry
of the compact stars has been addressed by the metric as-
sumption proposed by Krori and Barua to discuss the stel-
lar configuration. The above set of functions are intro-

1
C8(-B2+3p-2)r*
3B

p:

duced to arrive at a singularity-free structure for compact
stars. Clearly, this set of functions leads to a non-singular
density and curvature setting. In the literature, [46-51] au-
thors have developed stellar structures for compact star
models using the KB space-time for spherical symmetry.
For this model Egs. (13)-(15) can be manipulated as:

[ﬁﬂ (a2"ne_Arz (2£ (Br2 + 1) —4BF? - 2) (@M "™+ 22" (g1(r)" + r2¢)

+4 (1 - Z)[aZ"nrze_Arz (2£ (B +1)-2 %A+ B)) (217" +a2"2(n— 1)ne=2A" (ei - 1)

2

X (_A (2Br4 + rz) +et (A (Br4 + rz) + 2) et - 1)(81(V))"_2 +a2"r* (g1()" + ¢

1
pr_8w2—3ﬁ+2)(e% ~1)(e*% —2Br2-1)

}, (17

s[482 26 - 200 (¢ 1) a2 (@10 [28-2)

2

x(n—1)e* +2B-5Bn+8n—4||+2Br°[a2" (g1()" [ (8(B—2)—28n> + (20~ 9B)n) +2(B-2)

X (n=2)e"" ~48+28n> + (9B~ 16)n+8] + 2 AB(~2"" ) nr? ((n— Des —2n+3)(g1(r))” _4(3-2)

2 2 2 2
x¢(e’% - 1) ]+2(e% - 1)[—a/Aﬁ2”n(2n—3)r2 (1) +a2" (g1(r)"[2(n = e’ (B+pn-2)

+(B-2)e" ~(2n—1)(B+pn-2)] +(ﬁ—2)¢(ﬁ - 1)2 + B2 (n=Dnr? (1(r)" ], (18)

1
" 8(3-2)(6— D -1) (e 282 1)

[aB- DB 20 (e* - l)(gl(r))” +2(e% - 1)2

x[-a2" (g (r))" (2(/5’—2)(11— 16+ (<B+2(B- n+2) - (B-2) (2% ~3n+ 1))+a/A2”nr2

X (8425 -2 +2)(g1 ()" + (B~ 26 e - 1)2 +aB(=2 ) 2(B-2n+ 1) (g1(r)" | 287

x(e = 1)[a2" (1) [20° (2428 - 3 + 38 - 208 - DB ~4) +.¢* [1* (<245~ 2r* ~ 68 + )

+n(-24r + 158 -26) - 8(8—2)| +n(6Ar* - 115+ 18)+ &' (48— 6pn + 8n— 8) + 4(B-2)| +4

2

x(ﬁ—2)¢(ﬁ - 1)2] +4Bzr4[(e% - 1)[2(,3—2)¢(e¥ - 1)—a2" (1(1)" [ Ibigl-28+ (3B~ 5)n

+4]+2(8-2)+2(8— Dn> + (9~ 6B)n|| - aAB— 12" n? (n(e* —2)+ 1)(g1(r))"]], (19)

A=pi=pr, (20)

g1(r) is defined as

e A" (e% - 1)(e% —2Br* - 1)

72

g1(n =

III. EVALUATIONS OF UNKNOWNS BY
THE COMPARISON OF INTERIOR AND
EXTERIOR SPACE-TIME

We consider concluded a set of unknown parameters,
ie {4, B, ¢, a, B}, which specify the model, large-scaled
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observable mass M, and radius R of anisotropic sphere.
The junction method is an easy and conventional ap-
proach to evaluating the actual unknown parameters by
smooth matching the inner geometry M~ with the outer
geometry M*. However, in modified theories, this match-
ing purely is a non-trivial case. Moreover in the GR the-
ory, the exterior space-time, depending on the case study,
may be the Schwarzschild solution for the vacuum case,
Reissner-Nordstrom model, or Kerr-Newman model. In
this study we focus on the uncharged-anisotropic fluid
distribution; accordingly, we compare the inner space-
time Eq. (7) with the outer Schwarzschild space-time Eq.
(21) at the boundary r = R. This matching of geometries
at the boundary is muddled in examining the size of the
star, i.e its radius R and total mass M.

oM oM\
ds? =(1 - —)dt2 —(1 - —) dr?
R R
—1?(d6” + sin” 6dg?). (21)
By parallelizing the interior and outer geometries, we ar-
rive at the following system of matching equations con-

sidered the boundary conditions, the resulting equations
are Egs. (22)-(25).

2M

Br2+c=1—7, (22)
oM\
Ar? = (1 - 7) , (23)
2M
2Br = F, (24)
pr=0, (r=R). (25)

By solving the above system of boundary equations, we
obtain the real constant parameters as:

%)
log|l——
R
A= (26)
M
B=— " 27)
R%(]_z_M)
R
2M M
c:log(1_7)—( 2M), (28)
Rl - —
R

Chin. Phys. C 45, 085102 (2021)
1

2
[ 2Mm
= 4B-2)(B-1R? 1-=-1
agz(R)(ﬂ)(B)¢( R )
xR[w/l_z_M_l]ﬂM]
R

R22M —R)

where
2[R =[(4—4ﬁ)[ —168M>*(n—)n - 2M2R[2(ﬁ— 2)

[ 2m [ oM
ﬂ(Sn[ 1—7—2]—7 1_T+13]+4
+MR2[4ﬁn2[4,/1_2_M_5]

R

2M 2M
+”[7ﬂ—7ﬁ\/1—7—12\/1—T+20]

[ 2m
—2(ﬂ—2)><[3 1—?—5]]
—R3(‘/1—2%/[—1](—4[3+n(,8+4/3n—8)+8)
+,8nR(2M—R)(M[2n[w/1—2TM—2]
—4\/1—27M+6]—(2n—3)k(,/1—27M_1D

oM
log(1- ==
el )

where f and ¢ are unknown free parameters. In addition,
we select the values for these parameter, which are com-
patible with the study, and also satisfy the necessary
boundary condition p,(r=R)=0. The calculated values
of these parameters are presented in Table 1.

+n

IV. ANISOTROPIC NATURE

We elucidate the physically admissible anisotropic
management of the stellar matter by presenting graphical
presentations (with the required correct behavior and con-
duct adopted in our study) of the following stellar proper-
ties.
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Table 1. Values of strange star constants for different values of 7 at 8= —25 and ¢ =2.036 x 1073,
p .
Name of star Mass (Mp)  Radius (R/km) 4 ¢ an=1) o(n=2) ?n <!

C
PSR J1416-2230 1.97 12.182 0.00263284  0.00161063 —0.629736  2.84278x10°°  —2.1471x10™"  0.133357
4 U 1608-52 1.74 11.751 0.00254322  0.0015235  —0.561557 25104310 —2.20964x10 " 0.120995
Cen X-3 1.49 11.224 0.00244938  0.00143467  —0489306  2.1621x10°°  —228633x10°°  0.107308
EXO 1785-248 13 10.775 0.00237852  0.00136969  —0.435169  1.90562x10 "  —2.35416x10 "  0.0966594
SMCX- 1 1.04 10.067 0.00228377  0.00128484  —0361659  1.56258x10°"  —2.45785x10 " 0.0816683

A. Behavior of p energy density

The physical admissibility of the stellar configura-
tions in the compact star study is substantially important.
If the study is not physically acceptable, it is worthless.
Density is a useful parameter that ensures the admissibil-
ity of the case study. The justifiable nature of matter dis-
tribution is explained from the graphical behavior of the
energy density p. Its following trend should be such that
energy density must admit peak value in the center, and
then decline toward the boundary, with a minimum value

T
PSR J1416 - 2230 (Black)

1.5x10738 1 Cen X - 3 (Blue)

EXO

1.x1073% |

5.x 10734

P 11x10%

Fig. 1.

B. Behavior of pressure components p, and p;

Pressure components are another necessary paramet-
ers in determining the admissibility of the stellar model.
Considering the approaches that should be followed by
the pressure components in the discussion of compact
stars, parameter such as p, p,, and p, must also remain
positive throughout the stellar distribution by admitting
peak values in the center, and then exhibiting a decline
from the center to the boundary, with a minimum value at
the boundary. p; > p, and p, should vanish at the bound-
ary (r =R), and p; should remain positive throughout the
matter distribution. Figure 2 demonstrates that p, and p;
have identical behaviors to p in both cases (for n = 1 both
p, and p, have maximum values in the center, as well as
a sudden decline from the peak value toward r =R , with
a positive conduct; however, for n =2 these parameters
decline smoothly from the maximum to the minimum

at the boundary (r = R). In addition, it must remain posit-
ive throughout the matter dispersal. Figure 1 illustrates
the graphed behavior of p, which is maximum in the cen-
ter at r=0. However, for n=1, it admits a sudden de-
cline in its value, and for n =2 it exhibits a regular de-
cline and remains thoroughly positive in both cases,
which is a crucial requirement. Therefore, energy density
follows the admissible trend by ensuring the physical ex-
istence of the stellar bodies, which is a significant re-
quirement in stellar studies, and for our case as well.

T
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T
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SMC X

T
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T
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T

T

9.x10°%

23

8.x107%
0

(color online) Density versus radial coordinate » for n =1 (left) and n =2 (right).

value), and remain in an admissible range, as
p(r=R)=0,and p, > p, is positive at the boundary.

C. Behavior of gradients

The admissible criteria for gradient components is
that they should follow the negative trend in the aniso-
tropic matter dispersal, i.e.

dp
dr

dp:

dp;
) = O .
dr

-0, -0 30
r=0 dr ( )

r=0

r=0

however, for other values of the radius r, ie. from
0 < r <R, this trend should exist, such that:

dp,

d
do| o
r=0 dr

dr

dp:

, 0. 31
r=0 dr < D

r=0

Figure 3 illustrates the trend of gradients in our study.
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Fig. 3. (color online) Gradients versus radial coordinate » for n = 1 (left) and n =2 (right).

Accordingly, for n =1, this trend progress from negative
to zero, and for n = 2, its progression is from zero to neg-
ative. However, in both cases, the gradients remain with-
in the admissible range.

D. Anisotropy behavior
It is important to state that the positive anisotropy
(A>0, if p,> p,, as A= p,—p,) is an attestation for the
exhibition of repulsive forces that counterbalance the

-38 [T T
2.5x10 PSR J1416 - 2230 (Black)

2.x10-38 [ Cenx-3 (iue)
EXO 1785 - 248 (F
SMC X

15x107%

1.x107%8 |

Anisotropy (A)
Anisotropy (A)

5.x10%

oF

gradients and improve the equilibrium and steadiness.
Actually, this phenomenon allows more compact config-
urations [61] and huge massive formations. At the center
where r = 0, anisotropy is not present owing to the coin-
cidence of pressures p, and p;. However, with the in-
crease in radius, these quantities float separately; hence,
anisotropy increases toward the boundary surface of the
star. Figure 4 illustrates the positive and smooth behavior
of A for both values, n =1 and n = 2.

3.x10738 F rsrsrats zzan meck ) ) ) 4
2.5x10°% f
2.x107%
1.5x107%8
1.x107%8

5.x107%

0

Fig. 4. (color online) Anisotropy versus radial coordinate r for n =1 (left) and n =2 (right).
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E. Energy conditions

The EMT describes the mass, stress, and momentum
in GR, which are considered for the existence of matter
field and every other gravitation-free field (GFF). In the
space-time model, the field equation did not directly con-
cern the state of matter or allowable GFF. Conversely,
energy conditions allow all forms of matter and diverse
GFF in the GR theory and preserve the physically suit-
able solutions of filed equations. To realize the rational
and physically reasonable distribution of anisotropic mat-
ter, field energy must remain positive throughout the stel-
lar object; accordingly, some mathematical functions of
inequalities must be satisfied. In the literature [62, 63],
these energy conditions are discussed as null energy con-
ditions (NEC), weak energy conditions (WEC), strong
energy conditions (SEC), and dominant energy condi-
tions (DEC), in terms of both the radial and tangential
directions, given as:

NEC:p+p, 20,

WEC:p>0, p+p, >0,
SEC:p+py, 20, p+p,+2p; >0,
DEC: p > |p,l.

where (y = r,t), and r and ¢ are the notations used for radi-
al and tangential coordinates, respecticely. Figure 5 is an
indication towards the satisfaction of the above energy
conditions in the framework of f(T,7") gravity for our se-
lected values of 1, i.e. n =1 and n = 2.

V. PHYSICAL FEATURES ANALYSIS

In this section, we present the physical viability of the
stellar solutions by discussing the matter nature, equilibri-
um, stability, and physical existence using EOS, TOV
equations, casuality conditions, and mass function, re-
spectively. In addition, we discuss compactness and red-
shift.

A. Equations of state parameter

In the study of compact stars, it is important to dis-
cuss the importance of matter arrangements, whether it is
normal or dark matter. For the normal arrangement of
matter, both the tangential and radial components of EOS
lie within the ranges 0 < w,, w; < 1. If the stellar object is
composed of the realistic anisotropic matter, the results
will satisfy this stability criteria. If the limits defined for
EOS are violated, this might be an indication of exotic or
dark matter. EOS is mathematically expreesed as:

wy =L, (32)
0

w, =2t (33)
Jel

As observed in Fig. 6 , the graphical response of these

EOS Egs. (32) and (33) is presentd, which indicates that
the distribution of matter is the normal one, as it satisfies
the required range of stability in the effects of the f(T,7")
gravity for our selected values, n =1 for liner modifica-
tion, and n = 2 for generic results.

B. TOYV equation
The Tolman-Oppenheimer-Volkoff (TOV) equation
[64, 65] is adopted as the equilibrium parameter. Accord-
ing to these TOV equations, the stellar system is in equi-
librium state if it is well balanced under gravitational
(Fg), hydrostatic (F1), anisotropic (F,) fields. The TOV
equation in its general form is given by:

dp, . Mg(’)(PJFPr)e% _2pi—pr) _
dr r r -

0, 34)

where M, (r) , which is the gravitational mass inside the
radius 7, and can be derived by the Tolman-Whittaker
formula:

n@@:%l}ﬁ—n-ﬁ—ﬁy%%m (35)
0

The Eq. (34) can take the form given as:

My(r) = Sre . (36)

re

NS S)

By substituting the value of M,(r) from Eq. (35) into
Eq. (33), we obtain:

dp,  EQ+p) 2(i=p) _
dr r r

0. 37
An extra force (F.) [52] in the effects of the f(T,7)
gravity is also present. These forces in mathematical for-

mulation are obtained as:

dpr  E+p) 2(pi=p)

dr r r
L b dpt L
4 6ra or 4 (?r:O’ (38)
§+47T
Fo+Fn+Fy+F.=0, (39
where
_ E+p) _ dp, _ 2pi—pr)
Fg_ 2 9 Fh_ drs Fa— r 9
L ope_ om 1 dp
F.=— 4 (9ra or 4 ar- (40)
§+47T
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(color online) Energy conditions versus radial coordinate » for n =1 (left) and n =2 (right).

The actual equilibrium test of the stellar system in-

volves the combined

balanced effect of these forces.

Fn, F. and the repulsive anisotropic force F, inhibit the
effect of the gravitational force F,. This mechanism pre-
vents the stellar system from collapsing to a point singu-
larity during the gravitational collapse. These forces can

be investigated from Fig. 7. As can be observed from the

figure,

counter each other; hence, our system is in equilibrium
for n =1 and also for n = 2, as demonstrated by the balan-

the negative and positive effects of these forces

cing effect of these forces.
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C. Casuality conditions

In this section, we elaborate the physically satisfact-
ory model by describing the squares of radial and tangen-
tial sound speeds. In addition, with the justification of sta-
bility, another concern involving the distribution of aniso-
tropic matter emerges, which is known as Herrera's
cracking concept [66]. Under the cracking concept, the
stability of the stellar solutions is studied based on the ra-
dial and transverse sound speeds (v? and v?). According
to this concept, both sound speeds must satisfy the in-
equalities 0 <12, v> < 1 (i.e., both sound speeds must re-
main less than the speed of light ¢, and must be positive
within the stellar body, with the speed of light ¢=1).
These sound speeds are written as:

dpy
do’

> _dpr 2
Vr - dp ’ vt - (41)
Later, Abreu et al. [67] presented another stability criter-
ia According to this criteria, the region is stable where
v2>12_ ie. there is no change in v2—12. Subsequently,
this assumption was set as 0 <| v —v2 |< 1. The presented
behaviors in the upper and lower pannels of Fig. 8 show
that the radial speed is perpetually greater than the tan-
gential speed; hence, our solutions are adequately adjus-
ted with the cracking. Figure 9 is also an admitted exam-
ination of Abreu concepts for both modifications i.e.,
n=1 and n=2, in the influential frame of the f(T,7)
gravity.

D. Mass function, compactness factor, and redshift

. .om(r) . . o
The mass to radius ratio —— is an important criteria

for ascertaining the compactness level u of the stellar ob-
ject. The mass expression can be determined by using the

mathematical form:
=4n f rzpdr.

Then, by adopting the above referenced Eq. (42), the rela-
tionship between compactness ¢ and redshift z; can be
conveniently extracted as:

m(R) (42)

utn="2, 43)

z=(1=2u)": 1. (44)
In a simpler approach, the relationship for the mass func-
tion can be determined by using Egs. (16) and (42), with
the help of the metric component, as:

— e VIRYy,

m(R) = Ig[l (45)

For the spherically symmetric distribution of matter con-

4
tents, the maximum limit for compactlﬁcatlon u=— < —

[68] (in the unit system ¢ = G = 1) must be satlsﬁed Sub—
sequently, for the anisotroplc matter, this limit was fur-
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Fig. 9. (color online) Stability factor versus radial coordinate  for n =1 (left) and n =2 (right).

ther generalized [69]. Figures 10-12 illustrate the realist-
ic behavior of the mass function. The compactness factor
is also within the Buchdhal limit, and the redshift func-
tion satisfies the criteria z, <4.77 [33]. By examining the
graphs in Figs. 10-12, the realistic formation under the
mass function, required compactification level, and sta-
bility of the system in both linear and non-linear modific-
ations (n =1 and n = 2) of the gravity theory can be con-
cluded for compact star models.

E. Adiabatic index

An essential parameter required to assume the stabil-
ity factor of the relativistic and non-relativistic objects
based on spherical symmetry is the adiabatic index. The
adiabatic index analysis in the structure of spherical sym-
metric objects is a core component because it defines the
stability and solidity of the EOS at the given density.
Backing the pioneer work of Chandrasekhar [70, 71],
several authors [72-75] presented the refined method for

guessing the stability of the stellar objects that adopt the
spherically symmetry, by adopting the adiabatic index.
Based on the persepective of Heintzmann and Hilleb-
randt [76], the spherical symmetric stellar object is

stable if its adiabatic index I' > 3 throughout the interi-

or of the stellar object. The dynamical adiabatic index is
defined as:

_Drtp 5
==
Pr

r (46)

As the variation of adiabatic index versus radial coordin-
ate can be examined from Fig. 13, it is evident that the

.. 4 . .
condition I' > = is satisfid everwhere inside the stellar

structure. Because I' follows the complete conduct of
Heintzmann and Hillebrandt [76], our stellar system is
completely stable under the adiabatic index perturbation
versus the radial coordinate for both values of n (n=1,2).
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VI. CONCLUSION

In this paper, we debated on the spherically symmet-
ric solutions of compact stars by adopting the KB space
time. In the literature [44-51], authors have developed
stellar structures for compact star models using the KB
space-time for spherical symmetry. Our main objective in
this study was to elucidate the anisotropic effects of mat-
ter coupling in torsional gravity via the corrected and ro-
tated tetrad formalisms. For this purpose, we adopted the
KB model [47], as it is one of the simple models, and has
never been used before in the f(7,7) gravity. First, we
explored the comparative results of the linear n =1 and
non-linear n =2 modification of f(7,7) gravity by ap-
plying the model f(T,7) = aT"(r)+B7 (r)+¢a with a KB
line-element. Accordingly, we employed the accessible
data from available literature of five compact stars
PSRJ1416-2230, 4U1608-52, CenX -3, EXO1785-
248 and S MCX —1.To address the few solar system con-
straints that are present in the case of the diagonal tetrad,
we adopt a non-diagonal in setting up f(7,7") field equa-
tions. To accurately configure our solutions, we adopted
ST, 7)=aT"(r)+BT (r)+ ¢, an analytically and graphic-
ally suitable model of the f(7,7") gravity. We applied the
conventional matching condition for the evaluation of un-
knowns, whose values are presented in Table 1. We con-
structed our solutions for two values of n, i.e. n=1,2.
Furthermore, we addressed the admissibility, stability,
and physical existence of stellar objects by discussing the
following stellar characteristics under the anisotropic ef-
fects of f(T,7") gravity:

e Energy density behaves optimally, as illustrated in
Fig. 1. It meets the admissibility criteria, as it has its max-
imum value in the center, and starts to decrease toward

the boundary. In addition, it
throughout.

® Pressure components, p, and p;, also exhibit an ac-
ceptable range under the realm of the f(7,7") gravity, and
both components follow the trend: In Fig. 2, p, >0 and
zero at the boundary, p, >0, and p, > p,. In addition, they
exhibit their highest values in the center, and afterward
exhibit a decline toward the boundary r = R.

e Figure 3 clarifies that the gradients exhibit a negat-
ive trend via the stellar dispersal. As can be observed,
dﬁ <0 dp, dp:

3 < & <0 , and ESO. For n=1, gradients

propagate from negative to zero, and for n =2, they
propagate from zero to negative. However, both cases ex-
hibit a negative behavior.

e Figure 4 illustrates the expansion of anisotropy. As
can be observed, A=0 in the center (r=0), where
pr = p:. Subsequently, it shows a positive evolution
(p: > pr) by authenticating the occupancy of repulsive
forces, which prevents the stellar objects from collapsing
to a point singularity.

e Positive trend of energy conditions indicate the or-
dinary nature of matter. Figure 5 demonstrates that in
both cases considered in this study, energy remains posit-
ive, starting from the maximum value in the center to the
minimum value at the boundary, with a sudden decline
for n =1 and normal decline for n =2.

e Tangential and radial components (w,,w,) investig-
ate the matter composition of stellar objects to determine
whether it is dark or ordinary matter. Figure 6 shows the
normality of matter in both cases of this study (n =1 and
n=2), as these components remain in the admitted range
0O<wpw <1.

remained positive

Table 2. Summary of calculated results using observed values of stars PSRJ1416-2230, 4U1608 —52, CenX —3, EXO1785—248, and
SMCX-1.
p >0 Justified Justified Pr >0 Justified Justified
Dt >0 Justified Justified % <1 Justified Justified
A >0 Justified  Justified % <0 Justified  Justified
d(ﬁ L <0 Justified Justified % <0 Justified Justified
Fa, Fn, F,and Fe Sum=0 Justified Justified p+pr >0 Justified Justified
pP+Dr >0 Justified Justified P—Dr >0 Justified Justified
P—Pt >0 Justified Justified P+ pr+2p; >0 Justified Justified
m(r) >0 Justified Justified u(r) 0<u(r)< g Justified Justified
Zs 0<z5)<5 Justified Justified wy O<w,<1 Justified Justified
Wy O<w,<1 Justified Justified v% 0< vf <1 Justified Justified
v? 0<vi<l Justified  Justified v2 -2 —1<[v?-v2|<1  Justified  Justified
Adiabatic index r> g Justified Justified

085102-14



Physical aspects of anisotropic compact stars in f(7,7") gravity with off diagonal tetrad

Chin. Phys. C 45, 085102 (2021)

e Figure 7 presents the equilibrium of forces. The
system is stable and in equilibrium if TOV forces are in
balance, i.e. their combined effect is zero. In our study,
all the forces F,, F,, Fy, and F. are well balanced, and
for n =1, the forces evolve from the negative and posit-
ive axes in the center and converge to zero at the bound-
ary; however, for n =2, the forces propagate from zero
(in center) to positive and negative axes (towards the
boundary). By including these small positive and negat-
ive values, their net effect cancel each other.

e As can be observed in Figs. 8 and 9, the causality
(0 <v2,v? < 1) and Abrue conditions (0 <|v2—v? |< 1) (in
both cases (n = 1,2) of our study) are optimally satisfied,
and this indicates the stability of our solutions.

e Figures 10-12 present the regularity mass function,
as r=0 and, m =0, then it expands positively to the
physical range of mass. The compactness factor also ad-
mits the Buchdabhl criteria, whereas the redshift factor sat-
isfies the limiting range z; < 4.77.

e Figure 13 also sufficiently validates the stability of
our proposed stellar system under the behavioral re-

sponse to the adiabatic index. It can be inferred that the
diab‘all ic index in our study strictly followed the limit
r> 3 of stability.

Moreover, it is important to note that in spite of be-
ing non-singular in nature, our solutions meet the Zel-

dovich stability condition Pre -1 at r~0. We have also

tabulated these results in a é)ummarized form to elucidate
the discussed properties of compact stars, as presented in
Table 2. Based on the above discussion on the properties
of compact stars, we conclude that our compact star solu-
tions, drawn from this manuscript, are physically admiss-
ible, graphically stable, and viable.
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