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Abstract: In this paper, we analyze the dependence of the topological charge density from the overlap operator on

the Wilson mass parameter in the overlap kernel by the symmetric multi-probing source (SMP) method. We observe

that non-trivial topological objects are removed as the Wilson mass is increased. A comparison of topological charge

density calculated by the SMP method using the fermionic definition with that of the gluonic definition by the

Wilson flow method is shown. A matching procedure for these two methods is used. We find that there is a best

match for topological charge density between the gluonic definition with varied Wilson flow time and the fermionic

definition with varied Wilson mass. By using the matching procedure, the proper flow time of Wilson flow in the

calculation of topological charge density can be estimated. As the lattice spacing a decreases, the proper flow time

also decreases, as expected.
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I. INTRODUCTION

Topological charge Q and its density ¢ (x) play an im-
portant role in the study of the non-trivial topological
structure of QCD vacuum. Topological properties have
important phenomenological implications, such as 6 de-
pendence and spontaneous chiral symmetry breaking. The
confinement may also be related to nontrivial topological
properties [1-3]. The topology of QCD gauge fields is a
non-perturbative issue; therefore, the lattice method is a
good choice to investigate it from first principles. Lattice
QCD is powerful for studying the topological structure of
the vacuum. There are many definitions of the topologic-
al charge for a lattice gauge field [4-6]. These definitions
can be characterized either as gluonic or fermionic. In the
fermionic definition, topological charge Q is the number
of zero modes of the Dirac operator [7, 8]. In contrast, to-
pological charge can be given by the field strength tensor
(gluonic definition) on the lattice, and this definition ap-
proaches the fermionic definition in the limit a — 0 [9-11].

The overlap Dirac operator is a solution of the
Ginsparg-Wilson equation [12, 13], and the topological
charge defined from the overlap fermion will be an exact
integer. In the traditional method, the point source is used
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in the calculation of topological charge density [14, 15],
which makes the computation on the large lattice almost
impossible. To reduce the computational cost, the sym-
metric multi-probing source (SMP) method is introduced
to calculate the topological charge density [16]. As the
Wilson mass parameter m varies, the value of O may
change [17-20]. The topological charge density ¢(x) has a
strong correlation with the low-lying modes of the Dirac
operator, which strongly influences how quarks propag-
ate through the vacuum. Therefore, the topological charge
density ¢ (x) is a useful probe of the gauge field. We visu-
alize the topological charge density and view the detailed
extra information [21]. In contrast, the topological charge
cannot show the details of the QCD vacuum. Therefore,
we will focus on the topological charge density g(x) in
the study of the topological properties of the QCD vacu-
um. We show an analysis of the topological charge ¢(x),
obtained using the fermionic definition with different val-
ues of m and the gluonic definition with different Wilson
flow time. Unlike in the case of Ref. [22], which studied
just one time slice, we consider all time slices and show
more details on the topological charge density with dif-
ferent topological charge. By analyzing the topological
charge density ¢(x), we can obtain a great amount of in-
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formation about the underlying topological structure. We
show a comparison with the gluonic topological charge
density that is calculated after the application of the
Wilson flow method. This comparison is shown by calcu-
lating the matching parameter =45, which is defined later.
Eap 1s used to measure the match of the topological
charge density between the fermionic and gluonic defini-
tions. The best match is found when the matching para-
meter is nearest to 1. The proper flow time of Wilson
flow in the gluonic definition can also be obtained by
analyzing the matching procedure. The behavior of the
proper flow time toward the continuum limit is also dis-
cussed.

II. SIMULATION DETAILS

The pure gauge lattice configurations were generated
using a tadpole improved, plaquette plus rectangle gauge
action through pseudo-heat-bath algorithm [23, 24]. This

gauge action at tree-level O(az)—improved is defined as

Sg = %8 ZReTr[l —Puv(x)] B % Z ReTr[l _R’“’(x)]’
X[y "o "
vou v>u

(M

where P, is the plaquette term. The link product R, (x)
denotes the rectangular 1x2 and 2x1 loops. The mean
link u is the tadpole improvement factor that largely cor-
rects for the quantum renormalization of the coefficient
for the rectangles relative to the plaquette. ug is given by

1 1/4
lm=%Rﬂumﬂmﬁ . )

In the fermionic definitions, we use the overlap oper-
ator to calculate topological charge density. The massless
overlap Dirac operator is given by [20]

Dw

Doy =1+ ——|, 3)
Dl Dw
where Dy is the Wilson Dirac operator,
4
DW = a,béa,ﬁéi,j - KZI [(]1 - 7“)043 U# (i)ab 6,',1;/)
pm
+(1+9) , UL G =)y 6102 ) @)

and « is the hopping parameter,

1

R YEr ©)
In the overlap formalism, « has to be in the range
(k¢,0.25) for Dy, to describe a single massless Dirac fer-
mion, and «, is the critical value of x at which the pion
mass extrapolates to zero in the simulation with ordinary
Wilson fermions. We call m in Eq. (5) the Wilson mass
parameter. In this work, we choose parameter « as the in-
put parameter.

The overlap topological charge density can be calcu-
lated as follows:

1 -
Gov (x) = zTrc,d (y5sDoy (x)) = Treq (Dov (x)) > (6)

where the trace is over the color and Dirac indices. It is
well known that the traditional way of computing gy (x)
with a point source is almost impossible for a large lat-
tice volume.

To avoid the high computational effort in the calcula-
tion of the g(x) with a point source, we apply the SMP
method to calculate ¢ (x) [16, 25],

Gamp (¥) = D1 (,0,@) (Doy (1) 65 (S (x, P), @,2)

= Z W (x,a,a) (Dov (x)) ¥ (x,a,a)

V#EX

+ > e, (Do (0)y (5,0)

YES (x,P)

~ Z v (x,a,a) (DOV (x)) v(x,a,a), (7

where x is the seed site at site (x,x»,x3,x4), and y repres-
ents the other lattice sites belonging to the set S (x, P).
ép(S (x,P),a,a) is the SMP source vector, and ¢ is the
normalized point source vector. S (x,P) represents the

sites with the same color of x obtained by the symmetric
. ng nNg ng n
coloring scheme P(—S, = = —',mode). ng and n, are the

spatial and temporal sizes of the lattice, d is the minimal
distance of the coloring scheme, mode=0,1,2 corres-
ponds to the Normal, Split, and Combined mode for
scheme P, and the number of SMP sources that cover all
lattice sites are 12d*, 24d*, and 6d*, respectively. The
term in the third line of Eq. (7) is the summation of
space-time off-diagonal elements of D, (x). Because of
the space-time locality of Dy, this term can be regarded
as the error in the calculation of topological charge dens-
ity. If we choose the proper scheme P of the SMP source,
we can neglect the error term and obtain the last line in
Eq. (7).

However, the number of normalized point sources is
12Ny, and Np=N,N,N.N, is the lattice volume. This
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shows that the SMP method is much cheaper than the
point source method in the calculation of topological
charge density with the fermionic definition, especially
for a large lattice volume. The topological charge using
the SMP method is denoted as Qsmp, given by

Qsmp = Z dsmp (x). (®

Gradient flow is a non-perturbative smoothing pro-
cedure, which has been proven to have well-defined nu-
merical and perturbative properties. The gradient flow is
defined as the solution of the evolution equations [6, 26-
28]

V(67 = =83 [0S 0 (V)| Vi (1,7), Vu (3,0) = Uy (),
©)

where 7 is the dimensionless gradient flow time (Wilson
flow time in this work), and g3d...S ¢ (U) is given by

80xuSc(U) =21 ) TImTr[TQ, |

a

=% (Qu (0 -9))- éTr(Qy ®-9)). (10)

where T%(a=1,2,---,8) are the Hermitian generators of
the SU(3) group. &, = U, (x)XZ (x), and X, (x) represents
the so-called staples.

In practice, the gradient flow moves the gauge config-
uration along the steepest descent direction in the config-
uration space, such as along the gradient of the action.
The chosen sign in the evolution equations leads to a
minimization of the action, which is as expected. We use
the third order Runge-Kutta method to obtain the solu-
tion of the flow in Eq. (9). The gluonic definition of topo-
logical charge density in Euclidean spacetime is defined
as

1
C](x) = 3276/vaO'Tr [vaFpo'] s (11)

with F,, the gluonic field strength tensor. The topologic-
al charge of a gauge field is the four-dimensional integral
over space-time of the topological charge density,

Q=fd4xq(x). (12)

The most common definition of the topological charge
density in lattice discretization is the clover definition,
given by

1
g (x) = T2 o T [coeveee]. (13)

where Cf)fv is the usual clover leaf.
The field strength tensor F,, used in this work is
three-loop O(a“)—improved and defined as [29]

Flmp — 2_7C(1,1) _ 2_7C(2,2) + LC(3,3)’ (14)

18 180 90

where C" denotes the three mxn loops used to con-
struct the clover term, and CV is the clover leaf men-
tioned above.

The g(x) calculated after Wilson flow to the gauge
configuration is denoted as gwr(x). The topological
charge obtained by Wilson flow is denoted as Qyr, given
by

Oui =) qur(x). (15)

To fairly compare the two definitions for the topolo-
gical charge density with the varied Wilson mass para-
meter, we calculate the matching parameter Z4p5, given
by [30]

2
_ X
ZAB = i, (16)
XAAX BB
with
1
Xas = ;(% (00— G4) (g5 (X) — Gp), (17)

where g denotes the mean value of ¢(x), and in this work,

g4 (X) = gsmp (X), g (x) = qwr(x). When the Z4p is nearest

to 1, the best match is found [22]. When the best match is

reached, the flow time 7 is called the proper flow time of

Wilson flow, denoted as 7. In this work, the step length

for numerical integration of Wilson flow is 67 = 0.005.
We also calculate the factor Z.,., defined as

Z |QOV (x) |
> lawr @ |

Because the topological charge of gluonic definition is
not always an integer, Z.,. is needed in the visualization
of the matching procedure. The matching parameter Z4p
is independent of the value of Z,.

We will analyze g(x) of all time slices on lattices of
16*, 243x 48 and 32* at the inverse coupling, 3 =4.50,

Zeaic =

(18)
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B=4.80, and B =5.0, corresponding to the lattice spacing
a=0.1289, 0.0845 and 0.0655fm, respectively. In this
work, we calculate the topological charge density of two
configurations for lattice volumes 16* and 24*x 48, and
one configuration for 32*. We show the visualization of
the topological charge density and apply the matching
procedure to obtain the proper flow time of Wilson flow
in the calculation of topological charge density.

II. g(x) FOR DIFFERENT METHODS

Before we proceed with the analysis, we first demon-
strate that the SMP method with proper d is a good meth-
od to calculate the topological charge density with an
overlap Dirac operator. When the source in the calcula-
tion of topological charge is a point source, gps(x) is an
exact result of goy (x). It is reasonable to use gps(x) as a
benchmark for comparison. Due to the high computation-
al cost, we only make a comparison of the point source
and the SMP source in Eq. (6) on a 123 x24 lattice with
B=48, k=0.21. We show g, (x) obtained using the
point source method and ggmp (x) using the SMP method
with d =6 in Fig. 1. To show the visualization more
clearly, we use a cutoff method, shown as the color map.
The same cutoff procedure is used in other visualized fig-
ures. It shows that gemp (x) is highly matched with gps (x).
The matching parameter =45 for these two methods is
0.9997, and we can barely see the difference with the na-
ked eye. This shows that the error caused by the space-
time off-diagonal elements of D,, is indeed very small
when the distance parameter d of SMP source is proper.
Thus, the SMP method is a good choice to calculate the
topological charge density while the parameter d is large
enough. It is expected that a better match corresponds to a
larger distance d [16].

0.008
| |

0.006

0.003

Fig. 1.

To obtain more precise topological charge density, we
choose the distance parameter d =8 in the SMP method
on 16%, 243 x 48, and 32* ensembles. The results are sum-
marized in Tables 1-5. We only show the visualization of
topological charge density g¢(x) for lattice volume
243x 48 at $=4.80 as an example. The results for other
lattice ensembles are similar. In these calculations of ¢ (x)
with d =8 by the SMP method, we find that the topolo-
gical charge Qqmp is very close to an integer and it is not
always the same for the same ensemble with different «
values. This is acceptable as zero crossings in the spec-
tral flow of the Dy, (x) occur for different x on the lattice
[6, 18]. From the tables, it also shows that Qyyp is very
sensitive to x on the coarsest lattice. Qsnp changes a little
on the finer lattice, and is stable versus the change of « on
the finest lattice. This sensitivity is probably the effect of
finite lattice space a. All results indicate that even though
the topological charge Qsmp from overlap fermions is al-
ways an integer, its value is not unique, and it depends on
the Wilson mass parameter m.

The SMP topological charge density for three choices
k compared with the proper flow time of Wilson flow 7,
for time slice ¢ = 24 as an example is shown in Fig. 2, and
gwt(x) is renormalized using Z., .. Other time slices have
a similar property. This shows that more Wilson flow
time for gwe(x) is needed to match the topological charge
density gemp (x) with a smaller « or larger mass m. This
phenomenon may be a result of the smaller « showing
sparser small eigenvalues of D,,, which has a similar ef-
fect of smoothing the configurations. However, the de-
tailed reasons need further study. This indicates that the
overlap Dirac operator is less sensitive to small objects as
k is decreased, and these objects can be removed by
Wilson flow smoothing.

Tprs Zeale> ZAB, Qsmp and Q¢ of different ensembles

(color online) gps (x) and gsmp (x) on lattice 123 x24 by the point source and SMP source for the ¢ = 12 slice; other time slices

are similar. To the naked eye, they are almost the same. The parameters « =0.21 and g =4.80 are the same for both setups. In the fig-

ures, we use a color cutoff method shown as the color map. (left): Point source, (right): SMP source.
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Table 1. Proper time of Wilson flow 7, needed to match the SMP topological charge density with different « at 8 =4.50 and lattice
volume 16* for conf.1. Qump is obtained by the SMP method, and Qy is the result of Wilson flow with 7.

K Tpr Zcalc EaB Qsmp Owt
0.17 0.360 0.5121 0.6853 5.0010 3.5420
0.18 0.365 0.7351 0.7259 5.0015 3.5299
0.19 0.350 0.8656 0.7309 6.0005 3.5847
0.21 0.330 1.0045 0.7267 3.9990 3.6378
0.23 0.320 1.0073 0.7030 1.9963 3.6796

Table 2. Proper time of Wilson flow 7, needed to match the SMP topological charge density with different « at 8 =4.50 and lattice
volume 16* for conf.2. Qump is obtained by the SMP method, and Qs is the result of Wilson flow with 7.

K Tpr Zeale Eap Qsmp Owr
0.17 0.365 0.5230 0.7006 —6.0091 —7.2945
0.18 0.360 0.7235 0.7339 —6.0052 =7.3027
0.19 0.350 0.8680 0.7471 -5.0026 —7.3181
0.21 0.330 1.0077 0.7322 -3.9997 —7.3458
0.23 0.320 1.0121 0.7096 -5.9964 —7.3581

Table 3. Proper time of Wilson flow , needed to match the SMP topological charge density with different « at 8 =4.80 and lattice
volume 243 x 48 for conf.1. Qump is obtained by the SMP method, and Qyr is the result of Wilson flow with 7.

K Tpr Zeale EaB Qsmp Owt
0.17 0.365 0.6811 0.7653 8.0077 8.5997
0.18 0.345 0.8364 0.7670 7.0078 8.6863
0.19 0.325 0.9275 0.7580 7.0095 8.7954
0.21 0.305 1.0215 0.7324 9.0169 8.9322
0.23 0.295 0.9811 0.6972 9.0279 9.0130

Table 4.  Proper time of Wilson flow 7, needed to match the SMP topological charge density with varied « at g =4.80 and lattice
volume 24% x 48 for conf.2. Qump is obtained by the SMP method, and Qyr is the result of Wilson flow with 7.

K Tpr Zcalc EaB Qsmp Owt
0.17 0.365 0.6802 0.7661 4.9938 4.3224
0.18 0.345 0.8359 0.7656 4.9932 4.3289
0.19 0.325 0.9274 0.7574 3.9942 4.3365
0.21 0.305 1.0211 0.7309 3.9949 4.3431
0.23 0.290 0.9596 0.6953 3.9967 4.3454

Table 5. Proper time of Wilson flow 7, needed to match the SMP topological charge density with varied « at =5.0 and lattice
volume 324. Osmp 1s obtained by the SMP method, and Qy is the result of Wilson flow with .

K Tpr Zeale EAB Osmp Owr
0.17 0.355 0.7271 0.7678 3.0099 2.8066
0.18 0.335 0.8724 0.7627 3.0059 2.7340
0.19 0.315 0.9507 0.7515 3.0069 2.6380
0.21 0.295 1.0233 0.7222 3.0127 2.5120
0.23 0.285 0.9636 0.6818 3.0240 2.4352

073103-5



Zhen Cheng, Jian-bo Zhang Chin. Phys. C 45, 073103 (2021)

k=017 Tor = 0.365

Fig. 2. (color online) Best matched topological charge density gr(x) (right) calculated by the Wilson flow method compared with the
overlap gsmp (x) for the time slice 1 =24, where gy (x) is renormalized using Zc. 7pr is the proper flow time of Wilson flow fixed by a
matching procedure. A color cutoff method is used shown as the color map in the figures.
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for five different « are shown in Tables 1-5, respectively.
When calculating Z,, the flow time of Wilson flow is
Tpe. As the parameter « increases, there is a monotonic-
ally decreasing trend in the proper flow time of Wilson
flow in all tables. This shows that the matching proced-
ure is effective and the proper flow time of Wilson flow
is almost equal at the same « for different configurations
of the same lattice ensembles. When the parameter « is
fixed, 245 and Z., are independent of topological charge
QO and very close for different configurations with the
same lattice volume. The value of Z45 is approximately
in the range [0.68,0.77]. We can see that the proper flow
time of Wilson flow 7, is different for different «.
However, it is reasonable to choose the average value of
the proper flow time of Wilson flow of different « as the
proper Ty. This is approximately 7, = 0.345, Ty = 0.327,
Tpe =0.317, or the proper flow radius of Wilson flow
V87~ 0.214, 0.137 and 0.104fm for the lattice ensemble
16* at B=4.5, 243x48 at =4.8, and 32* at =5.0, re-
spectively. This indicates that we can choose 7, for
gluonic gyt (x) to match with fermionic gsmp (x).

All results show that Q¢ deviates largely from an in-
teger for the proper flow time of Wilson flow fixed by the
matching procedure. This phenomenon may be due to the
fact that the topological charge is the global property of
topological structure. However, the matching parameter
E4p only shows the local matching property of topologic-
al charge density. Otherwise, the topological charge is the
effect of the infrared properties, and the ultraviolet fluctu-
ations lead to unphysical results as well as to non-integer
topological charge values. Wilson flow is indeed a
smoothing scheme of gauge fields. However, Wilson
flow will modify the gauge field at the same time, which
does not satisfy that the topological charge is conserved.
In contrast, Fu® in Eq. (14) is applicable under the clas-
sical expansion with respect to lattice spacing a, and it
may be affected by some quantum fluctuations even
though the smoothing is performed.

However, the topological charge is not the main
quantity of interest, and the physically relevant observ-

able is the topological susceptibility. The results show
that to make the topological charge close to an integer,
larger Wilson flow time is required. It is noted that too
large a Wilson flow time may wipe out the negative core
of the topological charge density correlator [31].
However, the flow time for the topological susceptibility
to reach a plateau is smaller than the flow time for the to-
pological charges reach some integers [28]. Nonetheless,
the topological susceptibility using the SMP method is
too expensive to calculated. In future work, we may try to
consider it.

In Fig. 3, E4p versus the flow time of Wilson flow of
one configuration for lattices of 16*, 243 x 48, and 32* are
shown. E4p for other configurations have a similar trend.
We see that as the flow time of Wilson flow 7 increases,
Z4p reaches a maximum value and then decreases. When
the parameter « is fixed, we can observe that as the lat-
tice spacing decreases, the proper flow time of Wilson
flow almost uniformly decreases, as expected. It also
shows that as the lattice spacing a decreases, E45 tends to
increase.

IV. CONCLUSIONS

We have analyzed the topological charge density ¢ (x)
of all time slices using direct visualizations. We find that
the SMP method is a good choice to study the topologic-
al charge density in the fermionic definition, and the SMP
method is much cheaper than the traditional point source
method, especially for a large lattice volume. The results
show that the topological charge density depends on the
Wilson mass parameter m in the fermionic definition. By
comparing the ggmp(x) with the gluonic definition of
gwt (x), a correlation between m and 7 is revealed. Smal-
ler values of « remove non-trivial topological charge fluc-
tuations, which are similar to Wilson flow with a larger
flow time. The detailed reasons are worthy of further
study. By analyzing the topological charge density ¢(x),
we find that the proper flow time of Wilson flow for the
gluonic definition of topological charge density can be
obtained by the comparison of ggmp(x) with gwr(x). We

0.8 « k=017 0.8
< k=018

« k=017

« k=017 0.8

0'%.0 0.2 0.4 0.6 0.8 1.0 0'%.0 0.2 0.4
T

Fig. 3.

0.6 0.8 1.0 0'%.0 0.2 0.4 0.6 0.8 1.0
T T

(color online) Z45 versus 7 of one configuration for lattices of 16*, 24° x48 and 32*. From left to right, the first figure is Zap

versus 7 for lattice volume 16, the second figure for lattice volume 243 x 48, and the last one for lattice volume 32%. As « is reduced,
the proper flow time of Wilson flow is increased. As the lattice spacing decreases, Z45 tends to increase.
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also observe that the proper flow time of Wilson flow de-
creases with the decrease in lattice spacing a, which is
consistent with expectations. Furthermore, as the lattice
spacing a decreases, Z4p tends to increase.

We also find that the topological charge obtained by
Wilson flow at the proper flow time is far from an in-
teger, and it is different from that of the fermionic defini-
tion. Although the topological charge density of the fer-
mionic definition and that of the gluonic definition have
the best match, the topological charge from the fermionic
and gluonic definition are very different. The reason for
this phenomenon may be that the matching parameter
Eap only shows the local matching property of topologic-
al charge density, but the topological charge is the global
property of topological structure. In contrast, Wilson flow
can indeed smooth the gauge field. However, Wilson
flow also changes the configurations, which does not
guarantee the conservation of topological charge. Other-
wise, in the gluonic definition of topological charge dens-
ity, we used the improved field strength tensor corrected

in the classical expansion with respect to lattice spacing,
which may be affected by the quantum fluctuations even
though the Wilson flow is used. The detailed reasons
need further study.

In the SMP method, we had known that the error is
dependent on the off-diagonal components of the overlap
operator. With a larger distance parameter, it has smaller
errors in the SMP method. We can try to choose a larger
distance parameter to decrease the error in future work.
Otherwise, we could try to improve the field strength
tensor to reduce the effect of classical expansion with re-
spect to the lattice spacing in the gluonic definition of to-
pological charge density.
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