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Abstract: We review steady spherically symmetric accretion onto a renormalization group improved Schwarz-

schild space-time, which is a solution to an asymptotically safe theory (AS) containing high-derivative terms. We

use a Hamiltonian dynamical system approach for the analysis of the accretion of four types of isothermal test fluids:

ultra-stiff fluid, ultra-relativistic fluid, radiation fluid, and sub-relativistic fluid. An important outcome of our study

is that, contrary to the claim in a recent work, there are physical solutions for the accretion of an ultra-relativistic flu-

id in AS, which include subsonic, supersonic, and transonic regimes. Furthermore, we study quantum corrections to

the known stability of the accretion in general relativity (GR). To this end, we use a perturbative procedure based on

the continuity equation with the mass accretion rate being the perturbed quantity. Two classes of perturbations are
studied: standing and traveling waves. We find that quantum gravity effects either enhance or diminish the stability
of the accretion depending on the type of test fluid and the radial distance to the central object.
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I. INTRODUCTION

In general relativity, the event horizon of a black hole
is defined as the frontier of a region of space-time, where
gravity is so strong that nothing, not even light, that
enters that region can ever escape. The characteristic fea-
tures of black holes, including event horizons, accretion
and outflow processes, singularities, and Hawking radi-
ation, as well as the possibility of observation of their im-
mediate environment with angular resolution comparable
to the event horizon, using facilities such as the Event
Horizon Telescope [1] and the GRAVITY instrument [2],
make black holes useful laboratories to test general re-
lativity in the strong field regime and, hopefully, to test
ideas for quantum gravity.

The accretion process onto compact objects is relev-
ant as it is believed to provide the energy of Quasars, ac-
creting supermassive black holes, X-ray binaries, and
Gamma-ray bursts. The simplest situation, which has
reached a paradigmatic status in studies on accretion as-
trophysics, is spherically symmetric accretion onto a stat-
ic compact object of an inviscid gas, which is at rest at in-
finity. In the framework of Newtonian gravity the prob-
lem was analyzed in a seminal paper by Bondi [3]. The
relativistic generalization of the Bondi accretion problem
was performed in [4], which was followed by numerous

studies analyzing spherical accretion onto a wide variety
of astrophysical objects, including black holes [5-18].

The problem of the stability of spherically symmetric
accretion under linearized perturbations has been studied
extensively in the literature both in the context of Newto-
nian gravity [19-22] and in the classical general relativist-
ic realm [23-31]. In both of these regimes, no evidence
has been found of the development of instabilities. In
[19], it has been shown that in the Newtonian regime and
neglecting viscosity, the perturbation has a constant amp-
litude for the conserved flow so that stability is ensured.
In general relativity, the background solution is likewise
stable with the amplitude of the perturbation being
damped in time, that is, general relativistic effects en-
hance the stability [23, 30, 31]. A mechanism that favors
stability in this case is the coupling of the infalling flow
with the geometry of space-time, which acts in the man-
ner of a dissipative effect.

In this work, we consider quantum gravity correc-
tions to the accretion, and to its stability, onto an im-
proved Schwarzschild black hole in the framework of the
asymptotic safety scenario for quantum gravity. In this
scenario, it is conjectured that gravity constitutes a funda-
mental theory at the non-perturbative level [32]. A basic
ingredient in this construction is a non-Gaussian fixed
point (NGFP) of the gravitational renormalization group
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(RG) flow, which controls the behavior of the theory at
trans-Planckian energies, where the physical degrees of
freedom interact predominantly antiscreening, which in
turn renders physical quantities safe from unphysical di-
vergences at all scales [33]. This means that the gravita-
tional field itself is the principal carrier of relevant clas-
sical and quantum degrees of freedom, with the renormal-
ization flow relating its infrared and ultraviolet physics.
On the condition that the set of RG trajectories approach-
ing the fixed point in the UV are parameterized by a fi-
nite number of relevant (i.e., physically motivated) run-
ning couplings, asymptotic safety is as predictive as the
standard perturbatively renormalizable quantum field the-
ory. Notwithstanding asymptotic safety defines a consist-
ent and predictive quantum theory for gravity within the
framework of quantum field theory, it remains a predic-
tion in the sense that a rigorous existence proof for the
NGFP is still lacking. There is, however, substantial evid-
ence for the existence of such a fixed point suitable for
the Weinberg's asymptotic safety scenario [34-50].

Quantum corrections to the structure of black hole
spacetimes within the asymptotic safety program was ini-
tiated in [51] by constructing the so-called "RG-im-
proved" solution to the Schwarzschild metric. Following
up on these initial studies, the RG-improved Kerr metric
has been discussed in [52], and the improved Schwarz-
schild-(A)dS and Reissner-Nordstrom-(A)dS metrics
have been studied in [53] and [54], respectively. The in-
clusion of a cosmological constant is relevant, as it has
been shown in [53] that this constant determines the
short-distance structure of the RG-improved black holes.
Further aspects of these quantum compact objects includ-
ing thermodynamical properties, evaporation processes,
and mini-black hole production, have been analyzed in
[55-59], while quantum corrections to the accretion pro-
cess onto a Schwarzschild black hole have been dis-
cussed in [60, 61].

In this paper, we review the results reported by the
authors of [61], where the study of the accretion onto an
improved asymptotically safe Schwarzschild metric with
high-derivative terms was conducted; we furrther discuss
the stability of the accretion process and contrast it with
the result from GR. The interest in the improved Schwar-
zschild space-time with higher-derivatives in the infrared
limit arises from the fact that, as shown in [62], it de-
scribes a black hole that never completely evaporates.
Consequently, it makes an excellent dark matter candid-
ate. Because our interest is to analyze the most general
aspects of the problem, we will neglect viscous effects,
heat transport, fluid self-gravity, and effects associated to
the back-reaction of the fluid on the geometry. As done in
[61], we describe the accretion process of isothermal flu-
ids using the Hamiltonian dynamical formalism and show
that, contrary to what claimed in that work, there are
physical solutions for the accretion of an ultra-relavitiv-

istic fluid in AS. Regarding the analysis of the stability,
instead of adopting the approach of perturbing a scalar
potential whose gradient is prescribed to be the velocity
of the ideal fluid [23], we use a perturbation scheme
based on the continuity equation [19, 20, 30, 31]. The sta-
tionary solution of the continuity equation gives a first in-
tegral, which within a constant geometric factor, is the
matter accretion rate. Our perturbative procedure entails
the perturbation of this constant of motion. This quantity,
being a flux of mass can be observed and, in principle,
can be measured using the present day and the projected
observational instruments [1, 2].

This paper is organized as follows. In the next sec-
tion, we present the RG-improved Schwarzschild metric.
In Sec. III, we review the mathematics of the accretion
process and present the Hamiltonian dynamical system
formalism. In Sec. IV, we apply the formalism to the
spherically symmetric accretion of isothermal fluids and
analyze the quantum gravity effects by comparing with
the GR description. In Sec. V, we discuss the implement-
ation of the perturbation scheme based on the continuity
equation, and analyze the quantum gravity corrections to
the stability of the accretion by studying the behavior of
standing wave and traveling wave perturbations to the
mass accretion rate. Finally, in the last section, we
present our conclusions.

II. RENORMALIZATION GROUP IMPROVED
SPHERICALLY SYMMETRIC SPACE-TIME
WITH HIGHER DERIVATIVES

We start by recalling that the classical Schwarzschild
line element for a black hole with mass M, in units
¢ =Gp =1, is written as

ds® = = fo(r)de® + fo(r) " dr? + 2(d6” +sin*0dg?), (1)

with the metric coefficient g” given by: fo(r)=1-2M/r.
The event horizon or Schwarzschild radius comes from
solving fo(r) = 0, which yields r,s = 2M.

In the high-derivative gravity theory, which includes
the Ricci scalar square, the Ricci tensor square, the
Kretschmann scalar, and running gravitational couplings
in the effective action [62], the quantum gravity correc-
tions to the metric are accounted for by promoting the
classical gravitational Newton constant through a run-
ning coupling that evolves under the equations of the
gravitational RG-flow. Thus, in the low energy limit the
RG-improvement to the metric in Eq. (1) is obtained by
doing

M &
fo) = [ =1-=2(1-5), @

where ¢ is a parameter with dimensions of length squared
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associated to the scale identification between the mo-
mentum scale p and the radial coordinate » , which in the
IR regime, takes the form p ~ 1/r. Notably, the quantum
effects on the space-time geometry are all encoded in &,
such that for &£ = 0 the classical metric coefficient fy(r) is
recovered. The condition for the radius of the new event
horizon: f(r) =0, takes the form of a generic cubic equa-
tion

P =2Mr*+2M3E =0, 3)

where the dimensionless parameter £ = £/M? has been in-

troduced for convenience. The only real solution ryg to
Eq. (3) is

@:12 4

+
s 6 8-278+3V3 VERTE-16)
+{/8—27§+3\/§\/§(27§‘—16)]. 4)

The left panel in Fig. 1 shows the quotient g = ryr /s as
a function of £. For £ =0, we have mr = rs as expected,
while for £ greater than the critical value &, =16/27,
there is no horizon at all, and a naked singularity arises.
This implies that each value of £ in the range 0 < & <&.
selects a critical mass M, = 4/27£/16 in such a way that
for M > M, there are two horizons: one inner Cauchy ho-
rizon and one outer event horizon, for M < M, a naked
singularity develops, while when M = M, the two hori-
zons merge. The right panel in Fig. 1 illustrates this situ-
ation for £ = 0.5 that is, for M. =0.918. Because our aim
is to discuss quantum gravity effects on the accretion onto
a Schwarzschild black hole, naked space-time singularit-
ies will be ignored.

For future reference, we note that for M > M., the
outer horizon of the improved solution, upon expanding
to the leading order in &, acquires the form: ryg =
rns —&€/(2M). This result exhibits the typical shifting of

0.9
0.8

0.7

¢
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Fig. 1.

the horizon of RG-improved black hole solutions to-
wards smaller values with respect to its classical counter-
part.

OI. SPHERICALLY SYMMETRIC ACCRETION
AS A DYNAMICAL SYSTEM

Here, we describe the accretion flow by adopting the
Hamiltonian procedure. The formulation of the problem
of accretion onto compact objects as a Hamiltonian dy-
namical system was proposed for the first time in [63-65].

We first recall that the phenomenon of accretion is
based on two conservation laws: the continuity equation,
which expresses the conservation of the particle number,
and the energy-momentum conservation. These require-
ments are given, respectively, by the covariant derivatives

V,u)=0 and  V,T* =0, (5)
where 7 is the particle number density of the fluid, and u*
is the four-velocity of the fluid normalized as u*u, = —1.

By omitting effects related to viscosity or heat trans-
port and assuming that the fluid's energy density is suffi-
ciently small, such that its self-gravity can be ignored, the
accreting matter can be approximated as a perfect fluid
described by the energy-momentum tensor

T,y = (e+p)uyu, + pguy, (6)

where € and p are the proper energy density and the
proper pressure of the fluid, respectively.

For purely radial flow in the equatorial plane, the nor-
malization condition u"u, = —1 produces

u = —fu'= f+@)? (7

where u” denotes the radial flow velocity, and f = f(r) is
the metric coefficient in the spherically symmetric line
element.

-1.0

(color online) Left panel: Dependence of ¢ = mr/ms on & = £€/M?. Rigt panel: plots of the improved metric coefficient f(r) for

M < M, (blue), M = M, (red), and M > M, (green), with M, =0.918 corresponding to ¢ = 0.5. The dashed line correspond to the classical

fo(r) for M =M..
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We assume as infalling matter a test fluid, which is
both isothermal and isentropic, that is a test fluid with a
barotropic equation of state & = h(r), where #h is the spe-
cific enthalpy

€E+p
- .

h=

®)

This fluid is described by the thermodynamical equations

dp =ndh, de = hdn, 9

such that the square of the local speed of sound is written
as

2| _dp_ndn_dinn
O€|y_y de hdnp dlnpg

(10)

Then, as it is well known, for the spherically symmetric
stationary accretion ,the conservation laws in Eq. (3)
yield

n'r? = Cy, (11)
and
hut = C27 (12)

where C| and C, are arbitrary integration constants.

To describe the accretion process as a two-dimension-
al Hamiltonian dynamical system, it is useful to define
the three-velocity v of a fluid element as measured by a
locally static observer as v = dl/dr, where dl = dr/ \/7 and
dr = +/fdt are the proper radial distance and the proper
time, respectively. It is important to remark that v is
defined outside the horizon, that is for an observer for
whom the time coordinate is timelike [63-65]. Using
u" =dr/dr, u' = dt/dr and Eq. (7) we obtain

- (ur)2 B (ur)Z
TR T (42
from which
wy=-L Y and ) = (14)
1—v2’ ! 1—v2'

As the Hamiltonian for the flow fluid, we can choose
either of the two integrals of motion Cy,C,, or even any
combination of them. We choose C3 as our Hamiltonian
H and fix the dynamical variables of the system to be r
and v. Using Eq. (14), we then have

_ e

H(r, , 15
(rv) =2 (15)
and the dynamical system is defined by
OH 0H
= — p=—— 16
T VT T (16)

where the dot denotes time derivative. After employing
Eq. (10), these two equations become

, 2fh?

= —v(l 7 W -dd), a7
. h* 2, df 2

v__r(l—vz) (1-a )ra—4fa . (18)

The critical points of the dynamical system, which coin-
cides with the sonic points of the fluid flow, are the
points (r.,v.), where both j and v are zero. Assuming that
h#0 for all values of r> rj;g where also f#0,it fol-
lows that at the critical points

vi=al,  rl-adf., =4f.dl, (19)
where fc = f(r)|r( and fc,n = (df/dr)|r( .

IV. ACCRETION OF ISOTHERMAL FLUIDS

In this section, according to [66, 67], we will obtain
an adequate expression for A(r,v) in Eq. (15) when the ac-
creted fluid is isothermal. This in turn provides a neat ex-
pression for the Hamiltonian H(r,v).

The barotropic equation of state for an isentropic flu-
id can be expressed as e = e(7). Moreover, for an iso-
thermal fluid, the equation of state reads p = ke, where
the constant k is the parameter state: 0 < k < 1. Note that
the definition of the speed of sound in Eq. (10) leads to
a*=k, and so the speed of sound remains constant
through the accretion process. Now, from Egs. (9) we
have

h_de

=—, 20
0 (20)
and
dp dh  d%e
_an_ge 21
a Ty " ap 2D
which, upon integration, produces
de
n—— —€(n) = ke(n), (22)

dn
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where we used p(n) = ke(n). Integration of this last equa-
tion yields

€
etn) = Cn'*' = . <, (23)

c

where the integration constant C has been chosen such
that Egs. (8) and (20) give rise to the same expression for
h

h(r,m) =

k
(k+1)ec(£) ’ (24)

c Tc

An expression for 1/7n. can be obtained from the constant
of integration C; in Eq. (11). In fact, using Eqgs. (14) and
(19), we can write

PRI AR Rf o
Py -z 4 )
c
such that
n\ (i 102" o6
ne) \ 4 rfr? .

Substituting this into Eq. (24), we obtain

_2\F
hzzK(%) , (27)

with the constant K given by K = (r2f.., /4 [(k+ 1)e./n.1*.
Redefining the Hamiltonian as H = H/K and using
Eq. (26), H finally acquires the form

Lf)1'*

H(r.v) = 2K — 2y

(28)

It must be stressed that, due to the definition of the
three-velocity v, this expression for H is valid for an ob-
server outside the horizon. This applies both for the clas-
sical Schwarzschild metric and for the improved AS met-
ric.

We now focus on four types of isothermal accretion:
ultra-stiff fluid (k=1), ultra-relativistic fluid (k=1/2),
radiation fluid (k=1/3), and sub-relativistic fluid
(k=1/4). For the purpose of comparison with the analys-
is in [61], we will take £ =0.5 and M =1> M. =0.918 in
the expressions for the quantum HS and the classical
HO® Hamiltonians. Even though this amounts to con-
sider a black hole solution with two horizons, the
quantum effects on the accretion we will describe below
are present for all values of the parameter ¢ in the range
0<&<(16/27)M?, with the orbits in the contour plot of

the quantum Hamiltonian going continuously towards the
orbits of its classical counterpart in the limit & — 0, as we
will show ahead.

A. Solutions for k=1

The equation of state for ultra-stiff fluid reads p =,
which implies @ =1=v2. Eq. (19) immediately yields
f. =0, and the Hamiltonian in AS coincides with the one
in GR

1
(AS) _ qy(GR) _
H H et 29)

with the only difference being in the location of the hori-
zon that, in both cases, coincides with the location of the
critical point: rﬁAS) = rpr and rEGR) =rps.

Contour plots of H®™S (continuous lines) and of
HOR (dashed line) are shown in Fig. 2, where we have
only included selected orbits associated to physical flow
(vl < 1). Here, we retrieve the findings in [61] concern-
ing the contour lines for H*% . Notably, both for infall-
ing matter (-1 <v <0) and for fluid outflow (0 <v < 1),
and for fixed values of the radial coordinate r with
r > s, the flow velocity is consistently larger in GR than
in AS.

We note that we have restricted the comparison
between classical and quantum accretion and outflow to
the region r > ryg in the plots, because this is the region
for which the comparison makes sense.

B. Solutions for k =1/2

In the case of an ultra-relativistic fluid we have
a* = 1/2 =v?, and the Hamiltonians reads

-1.6

Fig. 2. (color online) Contour lines of HAS = HAS (black)
and H®S = HAS £0.06 (red) for accretion of ultra-stiff fluid
(k=1). The green dashed curve is the contour line of
HER = O 4 0,06, HAS stands for HASGR(p), . For all
the orbits: M =1, £=0.5. The vertical dashed lines locate the
horizons ryr (left) and rys (right). The horizontal dashed lines
locate the speed of sound a = Vk.
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2M  2M¢ 2M
- ==+ 1-==
(AS): r r- r

H . HO® = . (30)
rZy V1 —y2 2y V1 -2
For the critical radii, we obtain
5 14 5
a9 L2y 188 en 2, 31)
2 25 M 2
(AS) : . . .
where ;> is given at leading order in &.

In Fig. 3, the contour plots of HAS (continuous
lines) and of H“® (dashed line) are shown. For readabil-
ity of the figure, we have not depicted the contour line
HGR = 4R The important fact here is the existence of
orbits associated to physical flow (Jv| < 1) in AS, which
includes the subsonic regime (—v.<v<v.), supersonic
regime (—v < —v, and v > v.), and transonic regime asso-
ciated to the solution passing through the sonic point.
This is the opposite to the findings by the authors in [61],
where no physical significance was established for accre-
tion of an ultra-relativistic fluid in AS. Two quantum
gravity effects can be identified: a shifting of the orbits
towards the black hole and an increase of the maximum
flow velocity, which occurs at r=r., as compared with
the case in GR.

gy g

Fig. 3. (color online) Contour lines of H®S = HAS (black)
and HAS) = H™ +0.06 (red) for accretion of ultra-relativistic
fluid: k=1/2. The green dashed curve is the contour line of
HER) = {® 1 0.06. For all the orbits: M =1, £=0.5. The ver-
tical dashed lines locate the horizons ryr (left) and myg (right).
The horizontal dashed lines locate the speed of sound a = Vk.

C. Solutions for k=1/3

For a radiation fluid, the critical radii are given by

A a3y 2 0 O3y (32)

O W
<[

while the AS and RG Hamiltonians takes respectively the
form

r r3
A1 =223

2/3
2M
(-2
(GR) _ r

CABVIB(1 =223

2/3
oM 2M.
(1224 2]

HAS) _

H (33)

The orbits of H®S (continuous lines) and of HOR
(dashed line) are shown in Fig. 4. Here, we also recover
the results in [61] concerning the contour lines for HAS) .
Notably, the overall behavior of the accretion and the out-
flow are the same as in the case k =1/2, which implies
the same effects coming from quantum gravity discussed
above.

Fig. 4. (color online) Contour lines of HAS = HAS (black)
and HAS =HAY 1006 (red) for accretion of radiation:
k=1/3. The green dashed curve is the contour line of
HGR) = 3R 1 0.06. For all the orbits: M =1, £=0.5. The ver-
tical dashed lines locate the horizons mr (left) and rys (right).
The horizontal dashed lines locate the speed of sound a = Vk.

D. Solutions for k =1/4
For sub-relativistic fluid, we have

2
rAS) & %M— £%, rOR = %M (34)
and
(-2, 2_Mf)3/“ (i- 2_M)3"‘
H{AS) — roor (GR) _ d

- rV1/2(1 _ v2)3/4 :
(3%5)

rv1/2(1 _ V2)3/4 ’
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The contour plots for H*S (continuous lines) and of
HOR (dashed line) in Fig. 5 show that, once again, the
overall behavior of the contour lines is the same as in the
two previous cases, with the same global quantum grav-
ity effects on the accretion and outflow processes. Not-
withstanding, we observe that for large values of r
(r > r.), the quantum effects are milder for sub-relativist-
ic matter than for ultra-relativistic and radiation fluids.

At this point, it is important to show more explicitly
how quantum effects modify accretion, that is, the de-
pendence of the accretion flow on the parameter £. This

0.5

-0.5

-1.0F

Fig. 5. (color online) Contour lines of H®AS) = 1S (black)
and H®AS = HAS 10,06 (red) for accretion of sub-relativistic
fluid: k=1/4. The green dashed curve is the contour line of
HOR = 3{®) 1 0.06. For all the orbits: M = 1, £=0.5. The ver-
tical dashed lines locate the horizons mr (left) and rs (right).
The horizontal dashed lines locate the speed of sound a = Vk.

[v]
0.5
0.4F
0.3

0.2

0.1

| | | | Loy
2 4 6 8 10

Fig. 6. (color online) Orbits of H®S = H*S +0.06 for sub-
sonic accretion of ultra-relativistic fluid (k=1/2) and for
£=¢.=16/27 (red), ¢=04 (blue), £=0.2 (magenta). The
green dashed curve is the contour line of H©ER = #® 10,06
(£=0). For all the orbits M = 1.

is displayed in Fig. 6 for the case of accretion of ultra-re-
lativistic fluid (k= 1/2) and for subsonic flow. With the
increase in the value of ¢ (from right to left in the figure),
the effects of shifting of the orbit and of increasing of the
maximum flow velocity, already mentioned, become in-
creasingly pronounced, whereas in the opposite limit,
& — 0, the classical orbit is retrieved.

V. STABILITY ANALYSIS

Let us start, following [30, 31], by writing the equa-
tions describing the accretion process in a more appropri-
ate manner for the stability analysis.

First, the explicit form of the continuity equation reads

3 (qu') + 1720, (nurrz) =0. (36)

To solve for  and u", we use the equation for energy-
momentum conservation and the thermodynamic equa-
tion for mass-energy conservation d(e/n)+ Pd(1/n) = Tds.
Along with the condition of constant entropy ds =0, and
with the square of the speed of sound given by Eq. (10),
the condition of energy-momentum conservation reads

W +u6,u' + £ (0. f)u'u’

i % (@)= £)om+uudm|=0.  (7)

Once the expression for the speed of sound a of the
particular test fluid is known and after fixing the time de-
rivatives to zero, the solution to the system of coupled
equations (36) and (37) provides us with the stationary
fields u’(r), n(r), and a(r) and allow, in principle, the
quantitative study of the spherical accretion onto a static
spherically symmetric black hole. Assuming that the flow
is smooth at all points of space-time, the stationary solu-
tions of Egs. (36) and (37) are written as

Anpnu’r* = i, (38)
and
4 [in(fu')] + ady_ 0 (39)
dr ndr

respectively, where the constant of motion 7z is to be
identified as the matter flow rate.

The use of the perturbation scheme based on the con-
tinuity equation starts by considering linear perturbations
to the stationary velocity and particle number density
fields u'(r,t)=u"(r)+u”(r,t) and n(r,t)=n(r)+n'(r,1),
where primed quantities stand for small time-dependent
perturbations. We now define the variable y =nu'r?,
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whose stationary value (r) coincides, except for the con-
stant 4ma, with the steady mass accretion rate given by
Eq. (38).

The first order perturbation to ¢ around stationary
values is

W (r,0) = [ (g (r,0) + () ()1, (40)

and Eq. (36) acquires the form

V

fzt

1
u'om + O’ = ~—=0y'. 41)
r
In general, the first order perturbation to the square of the
speed of sound is given by

d 2
a?=d+ Ly, 42)
dn

The time evolution of 1’ and «” follows from Egs. (40)
and (41) and is given, respectively, by

O’ = —i( — 0 + f M’er) (43)

f
!
" = f—“2 (w0 +u'oy). (44)
nr

Eq. (37) is written in terms of perturbed quantities in the
form

2
u' [u"%a,u“ +0m |+ 0, (uWu")+2u"u ”—a,n

2
+ (fuf)zar(%n’) =0. (45)

Taking the time derivative of this last equation and sub-
stituting for the time derivatives of n’ and «” from Eqgs.
(43) and (44), we obtain the differential equation obeyed
by the perturbation to the mass accretion rate y’

O, (nh" 0y’ +ni'" 0, ) + 0, (wh" Oy’ + " O,

—(1 =26 ("o +17,07) . (46)

where the coefficients 4% are given by

u"(fu')
f2
htr =hrt —

= [(fu’)z +u - (Mr)2a2] ,

2 2
PR

W= (ful) [ = (fu)d?). (47)

A. Standing wave perturbation

Concerning the study of perturbations in the form of a
standing wave, it is has been already pointed out in the
literature that, because an event horizon instead of a
physical surface occurs in a black hole, difficulties ap-
pear in fixing an appropriate inner boundary condition.
Regularity of the flow at the black hole horizon singles
out a unique solution, the Bondi one, which turns out to
be transonic after crossing of the sonic point. However,
the standing wave perturbation must vanish even in the
supersonic regime, but there is no physical mechanism
that allows to impose such a constraint. Because the
standing wave analysis requires cancellation at the
boundaries and the continuity of the solution, we must re-
strict ourselves to completely subsonic flows even though
these may not entirely be representative of the precise
manner of the infalling process. Consequently, in this
section, we study the stability of a subsonic flow by as-
suming the trial standing wave perturbation

W' (1) = {(r)exp (—iwr), (48)
which, when substituted into Eq. (46), provides

w2h”§2 +i‘”{d£ (hzrévz) _2hrt§2i [ln(fu’)]}

L0 ded
(fu")? dr dr

[cruy?] - (h”gjf)=o. (49)

Integrating Eq. (49) over the radial coordinate with the
integrated terms vanishing at the boundaries, a dispersion
relation for w is obtained

Aw? =2iBw+C =0 (50)

where

A= f W' dr,
B= f h”(zi[ln(fu’)] dr.

WTodg d .
G ar 3 S ar (51)

The roots of Eq. (50) are given by
wzigii 4= (52)

Clearly, the sign of the discriminant of the relation dis-
persion determines the stability of the standing wave.
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Now, from Eq. (47), it follows that 4'* > 0. Further, tak-
ing into account that for infalling matter (dn/dr) <0, and
referring to Eq. (39), we can conclude that B > 0. Again,
because u' = +/f+(u")?/f and for infalling fluid u" <0,
we have A" <0, which means A <0. Finally, it is easily
verified that for subsonic flow, %" >0. Consequently,
(B/A) <0 and (C/A) < 0, which implies whether an oscil-
latory and damped in time perturbation when
|C/A| > (B/A), or an overdamped perturbation if
|C/A| < (B/A). Thus, in any case, the stationary solution
will be stable.

Our goal, however, is to determine if quantum grav-
ity effects enhance or diminish the dissipative effect asso-
ciated to the coupling of the flow with the geometry of
space-time. Nevertheless, since the integrands in the coef-
ficients in Eq. (51) depend in a complicated manner on
the classical and quantum functions fy(r) and f(r), the
solution for w is rather impractical for our purpose in the
sense that it requires a considerable numerical effort after
choosing a suitable mathematical distribution for model-
ing the amplitude of the standing wave. In the next sec-
tion, we will see that this aim can be achieved more eas-
ily by analyzing a disturbance in the form of traveling
wave.

B. Traveling wave perturbation

In this case, the perturbation will be modeled as a
high-frequency traveling wave with a wavelength signi-
ficantly smaller than the horizon radius of the black hole
[19]. Then, the spatial part £(r) of the perturbation ’(r,7)
is written as a power series in w in the form [30, 31]

Lu(r) = exp [Z wlkz(r)}. (53)

=1

After replacing into Eq. (49), the coefficients of w? and w
can be collected and equated, each to zero. In this man-
ner, two first order differential equations are obtained for
ki and ko, respectively. Setting the coefficients of «°
likewise to zero, a second order differential equation is
obtained for ki, in terms of k_; and ky. The solutions for
k_1 and kg read

el T

and

12
ko = In {(fut)z[ /(hrr)Z _hrrhtt] } , (55)

while the differential equation for k; is

Z(hrrdk—l _ihtr) % + i (hrr%)

dr dr dr dr
rr dk() d AN
T dr[ko 2In(fu')| = 0. (56)

The power series can be truncated after these first three
terms, as indicated by their asymptotic behavior given by
k_y ~r, ko ~Inr, and k; ~ r~!, which likewise shows that
the self-consistency requirement w™|k;(r)| > w™ " Vlky, 1 (r)]
for the convergence of the series is fulfilled. Thus, we can
write

Lo~ exploka () + k() +o k@), (57)

It is then clear that k_; and k; only contribute to the phase
of the traveling wave, and that the most important contri-
bution to the amplitude of the perturbation y’(r,f) comes
from ky. A direct calculation yields

1/2
2
£ (Nl =xlexplko(N]] = x S LD
/(htr)Z — Wt
) 1/4 1\
R [(uf)zcﬂ] :X(W) ’ %)

where y is an arbitrary small real constant, and we have
used Eq. (13). It must be noted that, due to the fact that
for a spherically symmetric accretion, v never equals to
zero, and since « is also different from zero, ¢, never di-
verges, such that the background solution is stable.

The dependence of |£,(r)| on the metric coefficient f
makes the effect of the space-time geometry on the per-
turbation evident and determines the coupling between
the accretion flow and the curvature of space-time. The
differences between these effects in AS and in GR for the
accretion of isothermal fluids are already evident from
Eq. (58), because a higher value of the three-velocity of
the accretion v is always accompanied by a lower value
of |£,(r)| and vice versa. The variation of |Z,(r)| with the
radial distance to the black hole can be calculated by
writing the Hamiltonian for each type of isothermal fluid
as a polynomial equation in the three-velocity v. After
fixing an appropriate value for the Hamiltonian, this
equation can be solved, and the result can be inserted in-
to Eq. (58). These polynomial equations for each value of
the state parameter k, except for k=1 for which the ex-
pression for v? is immediate, read

2 f() _
w W+7—[2(r)r4_

0 (k=1/2), (59)

where w =1?;
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3 f@)

% —V+7_(3/2—(r)r2=0 (k=1/3), (60)
and
f(r)
x4—x—W:0 (k:1/4)7 (61)
where x = v?/3.

From the solutions to previous equations for each
value of k, we selected only the one corresponding to in-
falling or outflowing matter with velocity approaching
zero at the infinite spatial. By replacing the chosen solu-
tions into Eq. (58), we can construct the plots shown in
Fig. 7 for subsonic flow (similar plots can also be done
for transonic and supersonic flows). In this figure, the up-
per left panel shows that for an ultra-stiff fluid, the amp-
litude of the perturbation is larger in AS as compared
with the amplitude in GR for all values of r (r > ryg) that
is, for the same radial distance a locally static observer
measures a larger amplitude in AS than in GR, thus lead-
ing to a lower stability of the accretion process in AS.
This indicates that, for ultra-stiff fluid, the coupling of the
infalling matter with the space-time geometry is weaker
in AS than in GR, a result which is undoubtedly associ-
ated to the anti-screening character of the gravitational in-
teraction in AS. For the remaining cases of isothermal ac-
cretion, namely k=1/2, k=1/3, and k =1/4, the upper
right panel, lower left panel, and lower right panel in Fig. 7,

1wl
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Fig. 7.

respectively, show that the amplitude of the perturbation
in AS is detracted from its value in GR if rpg <7 < reposs
and it is instead enhanced if r > ress, Where the value of
Teross for each type of isothermal fluid is simply obtained
by solving the equation for r, which equals the quantum
amplitude with the classical one. This means that the
coupling of the fluid with the space-time curvature, which
acts on the perturbation in the manner of a dissipative ef-
fect, is stronger in AS than in GR for r <rqes and is
weaker for r> ryoss. Notably, for sub-relativistic fluid,
the main effect is the reduction of the amplitude of the
traveling wave perturbation with the consequent increase
in the coupling of the fluid with the curvature of space-
time. This result has been already reported in [68].

VI. CONCLUSIONS

In this work, we reviewed the problem previously
analyzed in Ref. [61] regarding the steady accretion onto
a R-G improved Schwarzschild black hole in AS theory
with higher derivatives. In this sense, the accretion pro-
cess is considered as a quantum correction to the known
spherically symmetric accretion in general relativity. As
in [61], we used an isothermal fluid as our test fluid, and
we have specialized to the cases: ultra-stiff fluid ( £ = 1),
ultra-relativistic fluid (k = 1/2), radiation fluid (k =1/3),
and sub-relativistic fluid (k =1/4). Because our interest
has been to describe the most general aspects of the prob-
lem, we neglected viscous effects, heat transport, fluid
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(color online) Behavior of amplitude of traveling wave perturbation |£,(r)| in AS (red) versus GR (green) for accretion of ul-

tra-stiff fluid (upper left panel), ultra-relativistic fluid (upper right panel), radiation fluid (lower left panel), and sub-relativistic fluid
(lower right panel). The vertical dashed line stands for the horizon radius rys of the classical Schwarzschild black hole. The values of
the parameters are HAS = HAS +0.01, HR = HOR +0.01, M=1,£=05, y=0.1
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self-gravity, and effects associated to the back-reaction of
the fluid on the geometry. By using the Hamiltonian dy-
namical system procedure introduced in [63-65], we have
recovered the results by the authors in [61] for the accre-
tion of ultra-stiff, radiation, and sub-relativistic fluids.
However, in contrast to what was established in that
study, we found that accretion of ultra-relativistic fluids
are a physical possibility in AS. In fact, for this type of
fluid, as for the others considered here, we found not only
a shifting of the orbits of the Hamiltonian in the (v,r)
plane towards the central object and an enhancement of
the flow velocity near the black hole as compared to what
happens in GR, but also subsonic, supersonic, and tran-
sonic regimes. This is an important result, as there seems
to be no physical reason for the no physical significance
of the accretion of an ultra-relativistic fluid in AS. As ex-
pected, the quantum effects on the accretion are fully
governed by the parameter ¢ in the RG-improved metric
coefficient f(r) in Eq. (2) with the classical behavior re-
covered in the limit & — 0.

We also analyzed the issue of the stability of the ac-
cretion and compared the results with the known stability
of the accretion flow in classical general relativity. Using
a perturbative procedure based on the continuity equa-
tion, the mass accretion rate of the infalling matter, con-
sidered as an isothermal fluid, has been subjected to small
linear perturbations in the form of a standing and a travel-
ing wave. For the standing wave perturbation, we con-
clude that, as in the general relativistic realm, the disturb-
ance is damped in time, such that the accretion is stable.
As for the traveling wave perturbation a simple criterion,
based on the behavior of the coefficient ky in the series
expansion of the spatial part of the perturbation, has al-

lowed us to compare between the quantum and the clas-
sical frameworks, and to reach to the conclusion that,
where quantum gravity effects will have to be accounted
for, the amplitude of the traveling wave perturbation for
ultra-stiff fluid becomes enhanced as compared with the
classical one. This indicates that the coupling of this type
of fluid with the space-time curvature is weaker in AS
than in GR. For ultra-relativistic, radiation, and sub-re-
lativistic fluids, the amplitude of the perturbation is re-
duced or enhanced depending on whether the local ob-
server is located in the immediate neighborhood of the
black hole horizon or not, respectively. The value of the
radial coordinate rcoss at which this transition takes place
can be easily calculated by solving the equation for r,
which equates the classical amplitude with the quantum
one. This means that the coupling of the accreting fluid
with the geometry of the space-time, which is respons-
ible for the damping of the perturbation, is stronger in the
quantum case than in the classical one for r < reoss and
weaker for r > ryoss. Because the disturbed quantity is the
mass accretion rate, a physical quantity that is measur-
able in principle, it would be highly interesting to study
the possible observable effects that could be used to test
asymptotic safety in the future.
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