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Improved macroscopic microscopic mass formula
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Abstract: A nuclear mass formula based on the macroscopic microscopic approach is proposed, in which the num-

ber of model parameters is reduced compared with other macroscopic microscopic models. The root mean square
(RMS) deviation with respect to 2314 training sets (measured nuclear masses) is reduced to 0.447 MeV, and the cal-
culated value of each nucleus is no more than 0.8% different from the experimental value. The single and two nucle-
on separation energies and the shell gaps are calculated to test the model. The shell corrections and double magic

number of superheavy nuclei are also analyzed.
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I. INTRODUCTION

Mass is one of the basic properties of nuclei. The nuc-
lear mass formula is important for nuclear physics and re-
lated fields in science and technology. Recently, experi-
mental mass measurements have made it possible to de-
termine the masses of very asymmetric isospin (N/Z) [1-
4] as well as very heavy nuclei [5, 6] with high precision.

To understand many nuclear structure effects and
nuclear synthesis processes in astrophysics, it is neces-
sary to have an accurate knowledge of nuclear mass. In
addition, the survival probabilities for the xn evaporation
channels are very sensitive to the model input. For ex-
ample, the neutron separation energies and fission barri-
ers have to be known with sufficient accuracy. However,
it may not be feasible to experimentally determine the
masses of all nuclei of interest in nuclear physics and as-
trophysics in the near future. Therefore, it is necessary to
rely on theoretical models of nuclear masses.

The seminal work of theoretical mass formula has
been proposed by Weizsicker, Bethe, and Bacher [7, 8]
based on the idea of the liquid drop model. In recent
years, many approaches have been developed to predict
nuclear mass more accurately [9-24]. There are micro-
scopic self-consistent methods, such as the Hartree-Fock-
Bogoliubov approach (HFB) using density functional the-
ory based on Skyrme-type or Gogny-type effective inter-
actions [9, 10] and the relativistic mean-field theory
(RMF) [11], as well as macroscopic microscopic meth-
ods, such as the finite-range droplet model (FRDM) [17,
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18], Koura-Tachibana-Uno-Yamada (KTUY) [19], Lub-
lin Strasbourg drop (LSD) [20], and Weizsidcker-Skyrme
(WS) mass formula [21-24]. In addition, the macroscopic
microscopic model parameters (MMM2003) [25] ob-
tained by fitting the nuclear properties of heavy nuclei are
widely used to describe the properties of heavy and su-
perheavy nuclei [25-27]. The macroscopic microscopic
approach is much faster than the microscopic self-consist-
ent approaches, at the cost of being non-self-consistent.

Nuclear mass models contain parameters that must be
determined to best reproduce the experimental results. To
reasonably determine these parameters, various methods
[30-36] are used to estimate their uncertainty when calcu-
lating the nuclear binding energy. In recent years, deep
machine learning has been used to study the mass of
atomic nuclei with great success [31, 35, 36]; this also
provides a reliable guarantee for future studies of the re-
lated properties of atomic nuclei.

Recently, Sobiczewski and Litvinov quantitatively
tested the ability of several models to predict nuclear
mass [37]. They found that the best accuracy is obtained
by the WS* model [22] in all considered regions, where
the root mean square (RMS) deviation is reduced to 0.441
MeV. In the WS* model [22], the macroscopic part is ex-
pressed as Epp [1(1+bB7). The above parabola approx-
imation of the change in macroscopic energies with
Br(k=2,3...) 1is acceptable near the ground state.
However, such constraints limit the use of this macro-
scopic microscopic model (WS*) when estimating the po-
tential energy surface in deformation space for describ-
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ing fission or fusion process.

It is reasonable to consider deformation dependent
nuclear surface energy and Coulomb energy [38, 39], es-
pecially for large deformation, to calculate the ground
state energy and potential energy surface. This is also the
major motivation of the present work. Furthermore, we
consider the consistency of the model parameters
between the macroscopic and microscopic parts in WS3.2
[21] and the mirror nuclei constraint [22] in WS*.

II. THEORETICAL FRAMEWORK

In the macroscopic microscopic mass formulas, the
binding energy of nuclei is divided into two parts [38,
39]. The macroscopic part is the liquid drop energy Eyp,
and the microscopic part Eg, is the shell correction en-
ergy [40, 41]. Considering the effect of deformation on
the binding energy, the total binding energy can be writ-
ten as

E(Z,A,Br) = ELp(Z, A, Bi) + Esven(Z,A, Br), (D

where A,Z are the nuclear mass number and charge num-
ber, respectively, and B, are deformation parameters.
The liquid drop energy in Eq. (1) is expressed as

. 7? .
E1p =ayA+asAs Bg +(1CE(1 —-Z75)B¢

+dsymI* A+ Epgir. )

The first term is the volume energy; the second term is
the surface energy, in which By is the ratio of the surface
energy of the deformed nucleus to that of a spherical one;
and the third term is the Coulomb energy, in which B¢ is
the ratio of the Coulomb energy of the deformed nucleus
to that of a spherical one. Detailed expressions for Bs and
B¢ will be given later.

We use uniform neutron and proton distributions with
sharp cuts. The shape of the nucleus is represented by the
function of the polar coordinate angle 6 as follows [42]:

N
R(@;,6) = % ll + " aniPi(cos 9)] : 3)
i=1

Here, N is a cutoff parameter, P,;(cosf) (i=1,2, ...)isa
Legendre polynomial of order 2i, and ay; is a parameter
that specifies the shape. Ry is the radius of the spherical
nucleus considered to be equal to the volume of the de-
formed nucleus. A is the volume conservation

1/3
4
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With these constraints, we can write the deformation

3 (4n , 4n , 4
A=[1+—(—ﬂa2+—ﬂai+1—§a§)+---

parameters of nuclear surface energy and Coulomb en-
ergy Bs and B¢ as

2, 5, 20,
BS=1+§a2+a4+—13a6+~-- (5)

1, 5, 25,
Be=1-30- 570 g%~ ©)

Then, we can use a transformation relation to replace the
deformation descriptor «; in the formula with §;

Bi = \An/Q2i+ Day,i =2,4,6. o

Finally, Bs and B¢ can be written as

1 9 5
Bs =1+ =—f5+—f;+ =Pz, 8
s =1+ -t B+ ®)
1 5 25
Be=1-—f2—— - 2 9
¢ P2 1P 5P ©)

We only consider the fourth-order, sixteenth-order, and
sixty-fourth-order {8,,84,8¢} deformations in nuclear de-
formation space.

The fourth term in Eq. (2) asym/?A is the symmetry
energy. In this equation, asym, is the symmetric energy
%BS+22+_|}|IJ4), and [ is the
isospin asymmetry I = (N -Z)/A [22].

The last term in Eq. (2) is the pairing correction, and
Epair = apairA’§6n p» Where d,,, is expressed as [43]

coefficient agym = ¢ (1 -

2 —|I|, foreven—Z, even—N,
|7], forodd—Z, odd—-N,

1 —|I|, forodd-Z, even—N and N > Z,

1—11|, foreven—Z, odd—Nand N < Z,
1, forodd —Z, even—N and N < Z,
1, foreven—Z, odd—N and N > Z.

Sap =

The shell correction in Eq. (1) is calculated using
Strutinsky's method [40, 41], where an axially deformed
Hamiltonian is employed and diagonalized using the
computer code WSBETA [44]. In this code, the smooth
width is taken as y =1.2fiwy, and the average distance
between the total shells is 7wy = 41A4'/3. The plateau con-
dition is important for extracting the reliable shell correc-
tion energy in Strutinsky's method [45]. To be able to cal-
culate the global nucleus masses, especially for the super-
heavy nuclei, we choose the largest possible major shell
number of the harmonic oscillator basis. In this work, the
major shell number of the harmonic oscillator basis is 20,
and the order of the Gauss-Hermite polynomials p is 6.

The single particle Hamiltonian is expressed as
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H=T+V+Vi, (10)

where V, is the spin-orbit potential,

no\ .
Ve = /l(m) X VV (3% ), (11)

where A is the strength of the spin-orbit potential, for pro-
ton A= Ag(1+Z/A) and for neutron A = Ay(1 +N/A). The
form of the deformed Woods-Saxon potential of the de-
formation is

Vdepth

V= s
r—R(a;,0)
a

(12)

1+exp

where R(a;,0) represents the distance from the origin of
the coordinate system to the nuclear surface point along
the radius vector 7. Here, a is the diffusion parameter.
The potential depth Vepn can be written as

Vdepth =VoxVil. (13)

We use a plus sign for protons and a minus sign for
neutrons. V; is the isospin-asymmetry part of the poten-
tial depth. Vj is a constant, as an adjustable parameter in
mass fitting. The isospin asymmetry of potential depth is
equal to the symmetrical energy parameter in the macro-
scopic part [21], which can be expressed as

Vs = asym. (14)

For neutrons and protons, the shell correction is cal-
culated separately. We express Egen as the sum of pro-
ton and neutron shell corrections, that is, Egwenr = Espen(Z)
+Egen(N). Considering the constraints of the mirror nuc-
leus, the actual shell correction is fEsnen +|E, , [22],
where E7, , represents the shell energy of the mirror nuc-
leus.

III. RESULTS AND DISCUSSION

A. Fitting parameters and RMS deviation

To fit the adjustable parameters, we selected 2314
atomic masses as the training set to refer to the corres-
ponding subset of AME2016 [46], with the number of
protons and neutrons greater than or equal to 8 and the
mass measurement error less than 150 keV [46]. The non-
linear least squares method is used for fitting, and the fit-
ting results of Eq. (1) are shown in Table 1. In this work,
the fitting procedure primarily consists of the following
two steps. First, the ground state deformation of each

Table 1. Model parameters of the mass formula.
mac para mic para
ay —15.6192 Vo —49.4867
as 18.0592 o 1.3265
ac 0.7192 a 0.7588
c1 29.2372 24.2105
k 1.3543 I 0.6215
Apair —5.3661

nucleus is given and the minimum RMS deviation is
found in the parameter space. This step uses the Leven-
berg-Marquardt method. Second, we use the set of para-
meters determined in the previous step to find the lowest
energy value of each nucleus in the deformed space.
Thus, the ground state deformation and ground state en-
ergy of each nucleus are determined. This step uses the
Downhill Simplex method. This process is repeated until
the desired accuracy is achieved, after which the iteration
process is terminated. After fitting, the resulting RMS de-
viation is 0.447 MeV. Here, we have only 11 independ-
ent parameters. Then, we calculate the percentage error
between the calculated value and the experimental value,
and the calculation method is as follows [34]:

19B| _ 1Bexp. = Beal|
B Bep,

x 100%.

At present, the percentage error between the calculated
binding energy and the experimental value is within
0.8%. The maximum error is 0.77%, and there are 2115
nuclei with a deviation of less than 0.1%.

Compared with the number of parameters and the
RMS of FRDM, KTUY, LSD, WS, and other similar
global mass formulas, our model has fewer parameters.
However, it is consistent with the smallest RMS of WS*,
as shown in Table 2.

In order to test the prediction ability of the our mass
formula, we take the remaining 60 atomic masses as the
testing set to refer to the other subset of AME2016 [46].
These nuclei are also N > 8, Z > 8, and the error of mass
measurement is larger than 150 keV and less than 400
keV in Ref. [46]. In Table 3, we have compared and lis-
ted the RMS values of different macroscopic-microscop-
ic models. The calculation results proposed in this paper
are similar to those for WS* and better than the results of
other models.

Since 2**Og was found, no new nuclides have been
synthesized in recent years. However, the synthesis of
new nuclides has always been of great concern. The new
nuclides were discovered by looking at the daughter nuc-
lei after alpha decay. « decay half-life is sensitive to de-
cay energy. A more accurate calculation of the half-life of
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Table 2. Number of model parameters and RMS for various
macroscopic microscopic models.

model number of para o/MeV
our work 11 0.447
WS* 13 0.441
KTUY 34 0.667
FRDM1995 16+22 0.669
FRDM2012 17+21 0.560
LSD 0.698

Table 3. Calculated RMS for testing set nuclei and « decay

energy for superheavy nuclei from AME2016 [46] based on
different macroscopic microscopic models.

mass table o/MeV testing set o/MeV Q,
our work 0.793 0.373
WS* 0.738 0.263
KTUY 0.895 0.421
FRDM1995 1.088 0.547
FRDM2012 0.965 0.503

alpha decay requires a precise decay energy. Therefore,
we calculated 74 superheavy nuclei a decay energy Q,
[47] using our mass formula. To compare the results with
other mass tables, we calculated the RMS between exper-
imental Q,. In Table 3, we list the calculated results of
each mass table of experimental values. Our results are
second only to the WS* with respect to the global quality
equation. This shows that our work can be applied to ex-
periments as a reference.

B. Nucleon separation energies, deformation energies,
and shell gaps

To test the accuracy of our model, we calculate the
single and two nucleon separation energies, as well as the
shell gaps. The experimental data for single and two nuc-
leon separation energies are taken from AME2016 [46]. It
can be seen from Table 4 that the RMS values of 2113
single neutron separation energies and 2057 proton separ-
ation energies have no significant difference in different
models. However, for 2033 two neutron separation ener-
gies and 1943 two proton separation energies, the RMS
calculated in this work and WS* is smaller than that of
FRDM2012.

As mentioned above, the difference between the work
in this paper and WS* is the different consideration of de-
formation factors. Therefore, we compared the deforma-
tion energy calculated by the mass formula proposed in
this paper with that calculated by WS*. The deformation
energy can be written as the difference between the total
energy of a spherical nucleus and a ground state nucleus,

Table 4. Calculated RMS for single proton separation ener-
gies (S,), two proton separation energies (S»,), single nucle-
on separation energies (S,), and two nucleon separation ener-
gies (S2,) using different mass models.

mass table our work FRDM2012 WS*
o(MeV)(S,) 0.396 0.391 0.397
o(MeV)(S,) 0.322 0.343 0.316
o(MeV)(S2p) 0.374 0.443 0.373
oc(MeV)(S2) 0.332 0.446 0.316
i.e., [48]

Eger = E(spherical) — E(gs)

In Fig. 1, we show the results of the mass formula
proposed in this paper with those from WS* for calculat-
ing the deformation energy of the nucleus on the B-stabil-
ity line. The deformation energies calculated by both
models are almost zero at the magic number. When devi-
ating from the phantom number, the calculation results of
both models show the same trend because of the use of
the same shell correction calculation method. The differ-
ence in the deformation energy calculated by the two
methods is reflected in the position far from the phantom
number, and the calculation results of the mass model
proposed in this paper are slightly larger than those of
WS*. The reason for the difference is the different con-
sideration of the deformation factor.

The shell gap is a sensitive quantity used to test the
theoretical model. The variations of the neutron shell
gaps as a function of Z, at the neutron shell closure Ny =
126, 82, 50, and 28, are shown in Figs. 1(a), 1(b), 1(c),
and 1(d), respectively. The solid squares in the figures de-

16 B
14-‘ B
12-‘ B

g.:l:: +‘c};18191:w0rk :

=gt i
4+ i
ok i
0 !

50 100 150 200 250
A

Fig. 1. (color online) Deformation energies of nuclei along

the g-stability line. The solid black curve is the calculation

result using the work in this paper, and the red solid squares is

the calculation result using WS*.
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note experimental data. The solid, dashed, and dotted-
dashed lines denote the results of our work, WS*, and
FRDM2012, respectively. We can see in Fig. 2 that the
experimental shell gaps at magic numbers Z = 20, 28, 40,
50, 82 are remarkably well described with our calcula-
tions. Both the present calculation and WS* can describe
most of the shell gaps, except for the shell gap at the clos-
ure of the sub shell Z = 64. It can be observed from the
shell gaps of FRDM1995 that when Ny = 28 and 50, the
enhancement of shell structure is approximately repro-
duced, but it is not at 82 and 126 [49]. Similar results
have been obtained from FRDM2012.

C. Fission barriers and neutron separation energies of

superheavy nuclei

7
5
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%2 3.|.|.|.|.|
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=t /
<=5 - Y —
wn
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3 FRDM 7] -
. M P A ]
32 36 40 44 7 20 24 28
Fig. 2.  (color online) Shell gaps as a function of Z for the

three mass tables from FRDM2012, WS*, and our work for
Ny =28, 50, 82, and 126.

Superheavy nuclei production is one of the major
aims of low energy heavy-ion collisions. In the study of
producing superheavy nuclei by fusion evaporation reac-
tion, the survival probability of the compound nucleus
against fission is crucial in the deexcitation process. To
precisely estimate the survival probability, basic nuclear
data such as the neutron separation energy and the fis-
sion barrier must be reliable to some extent.

For superheavy nuclei, neglecting the shell energy at
the saddle point [25], the fission barrier can be written as

By = BLp — Egpelt, (15)

where Brp and Eg.p are the macroscopic fission barrier
of superheavy nuclei and the shell correction in ground
state nuclei, respectively. Because the macroscopic fis-
sion barrier generally disappears when Z > 106, the fis-
sion barrier can be roughly estimated using the corres-

ponding nuclear shell correction. Therefore, the fission
barriers can be written

B¢ =~ —FEghells (16)

In Fig. 3, we show the fission barrier height of even-Z
superheavy nuclei calculated with various macroscopic-
microscopic models such as FRDM2012 [18], WS* [22],
MMM2017 [27], and that in the present work. It can be
seen from Fig. 3 that for SHN with Z > 106, the pre-
dicted fission barriers By are quite different, and the dif-
ference ranges from approximately 1-3 MeV. For some
neutron emission channels, a difference in predicted By
values in the range of 1-3 MeV may lead to a difference
in survival probability of one or two orders of magnitude.

The fission barrier By strongly depends on the neut-
ron and proton numbers of the compound nucleus, espe-

10T T 17 T 17 7 1T 7717

|||||||||||

.
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= 140150160170180190
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Fig. 3.  (color online) Calculated fission barrier height of

even-Z superheavy nuclei from different theoretical models.
Our work, MMM2017 [27], FRDM2012, and WS* for fission
barriers are denoted by filled black squares, red solid curve,
blue hollow circles, and filled pink inverted triangles, respect-
ively.
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cially on how close they are to the magic numbers. From
Fig. 3, we find that the different models give different fis-
sion barrier heights, but give the same position as the sub-
closed shell Ny =162 when the proton number is relat-
ively small, in the range of Z =106 ~ 110. With an in-
crease of the number of protons, the shell effect of
N =162 gradually weakened, and a new magic number
appeared. Moller et al. proposed the magic numbers Z =
114 and N = 184 [17], while Wang et al. [22] found that
the central position of the stability island of SHN may lie
at approximately N=176~178 and Z=116~120. In
Fig. 3, it can be seen from the fission barrier height and
its variation trend with the neutron number and proton
number that when the proton number Z =114 ~ 118 and
the neutron number is greater than 170, the fission barri-
er height is less than that of Z = 120 with the same neut-
ron number. Because the fission barrier height has a peak
at Z =120 and N = 178, spontaneous fission in the vicin-
ity of this nucleus may be more stable. However, to de-
termine the location of superheavy double magic number
nuclei, the single-particle energy levels of the nuclei need
to be analyzed. In the next section, we will predict the
double magic number nuclei of superheavy nuclei.

D. Double magic number nuclei

We know that the magic number of nuclei is due to
the spin-orbit coupling of the nucleon. The next double
magic number nucleus after 2%®Pb is of interest. By de-
scribing the single-particle energy levels of the nucleus,
we can determine the position of the double phantom
number nucleus in the superheavy nuclear region. First,
double magic number nuclei are generally stable spheric-
al nuclei. Therefore, we calculated the nucleus deforma-
tion and binding energies in the superheavy nucleus re-
gion and found that the three spherical nuclei are 2°8Fl,
304120, and 319126. Next, we calculated the single-
particle energy levels of these three nuclei, and after com-
paring them, we can conclude that 2*Fl is the next
double magic number nuclei. The single-particle energy
levels of the protons and neutrons of 2°8Fl are listed here
in Fig. 4. As we can see in Fig. 4, no significant proton
shell structure appears, despite the fact that the deforma-
tions of 39120 and 3'°126 are 0. The most pronounced
nucleus shell structure appears for the proton number Z =
114 and neutron number N = 184. That is, our model pre-

28970 | -2 N
Uiy | —————— 3?@%
OF —————— 1liyg 4L 3f,y ]
196 1172 —4 998 /2
bl T 15?17 2]
-2k Bpy O zhﬁj
- 285, [ 184 . 1
Q r 1-8f 3dy
= 114 4812
by S o 2f, .7 [ ————————————— 2g7/2‘
(25 — 20y —3d
ligg 2‘10* e
92 3 Lisof
b —————— lhy12r %fg/b
82 Ll 126 h i
-8 il e 3p |
7 N
Fig. 4. (color online) Single-particle energy levels of 2*8FI

are shown on the left for protons and on the right for neutrons.
dicts that the next double magic number nucleus is 2> F1.

IV. CONCLUSIONS

In summary, a mass formula based on the macroscop-
ic microscopic approach has been proposed. The number
of model parameters is less than other macroscopic mi-
croscopic models; we have only 11 independent paramet-
ers. The RMS deviation with respect to 2314 measured
nuclear masses is reduced to 0.447 MeV. The RMS of
our model is much smaller than those for the FRDM,
KTUY, and LSD models. The present result is similar to
the accuracy of WS* and employs two parameters less
than the number of parameters for WS*. Because of the
shape dependence of nuclear surface energy and Cou-
lomb energy, the present model can not only calculate the
binding energy of the nucleus but also estimate the poten-
tial energy surface in deformation space for describing
fission and fusion processes.

The shell gaps at proton magic numbers Z = 20, 28,
40, 50, 82 can be remarkably well described with the pro-
posed model. The predicted central position of the super-
heavy island according to the calculated single-particle
energy level of nuclei could lie at approximately N = 184
and Z=114.

As computing power increases, deep machine learn-
ing becomes progressively more capable. In our future
work, we will combine machine learning with models to
pursue more accurate results.
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