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Abstract: We present a nonextensive version of the Polyakov-Nambu-Jona-Lasinio model that is based on nonex-
tentive statistical mechanics. This new statistics model is characterized by a dimensionless nonextensivity parameter
q that accounts for all possible effects violating the assumptions of the Boltzmann-Gibbs (BG) statistics (for g — 1,
it returns to the BG case). Based on the nonextensive Polyakov-Nambu-Jona-Lasinio model, we discussed the influ-
ence of nonextensive effects on the curvature of the phase diagram at u = 0 and especially on the location of the crit-
ical end point (CEP). A new and interesting phenomenon we found is that with an increase in ¢, the CEP position
initially shifts toward the direction of larger chemical potential and lower temperature. However, when ¢ is larger
than a critical value g., the CEP position moves in the opposite direction. In other words, as ¢ increases, the CEP po-
sition moves in the direction of smaller chemical potential and higher temperature. This U-turn phenomenon may be
important for the search of CEP in relativistic heavy-ion collisions, in which the validity of BG statistics is question-
able due to strong fluctuations and long-range correlations, and nonextensive effects begin to manifest themselves.
In addition, we calculated the influence of the nonextensive effects on the critical exponents and found that they re-
main almost constant with g.
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I. INTRODUCTION

The QCD phase diagram is extremely important for
us to be able to understand the evolution of strongly inter-
acting matter, especially for our understanding of com-
pact stars and the early universe [1-4]. When studying a
QCD phase diagram, a statistical method based on
Boltzmann-Gibbs (BG) statistics is often used. However,
strictly speaking, BG statistics can only be applied to sys-
tems in equilibrium and within the thermodynamic limit.
Obviously, in relativistic heavy-ion collisions, quark-
gluon plasma (QGP) is produced, exhibiting strong in-
trinsic fluctuations and long-range correlations. In addi-
tion, the volume of QGP is small and evolves rapidly.
Therefore, this system is far from uniform, and it is im-
possible to establish a global equilibrium [5]. As a result,
the application of the common BG statistics in such colli-
sions is questionable.

Thus, nonextensive statistics were first proposed by
Tsallis, also known as Tsallis statistics [6]. The most typ-
ical feature of Tsallis statistics is the replacement of the
usual exponential distribution factors by their g-exponen-
tial equivalents [7-9],

D)= rm=en,(-2), O

Ppg(E) = CXP(—T

where
1
exp,(x) = [1+(1—¢g)x] ', )
and its inverse function is

Ing(x) = ——. 3)
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All factors that may violate BG statistical assumptions
are summarized in the nonextensivity parameter g. For
q — 1, Tsallis statistics returns to BG statistics because of
exp,(x) — exp(x) and In,(x) — In(x).

Tsallis distribution has been observed in nature in
several experimental and model systems. Impressive ex-
perimental examples include the following: (i) in high-en-
ergy physics, use of the Tsallis distribution to describe
the transverse momentum spectra is now a standard prac-
tice [10-20], (ii) cold atoms in dissipative optical lattices
exhibit an unusual transport behaviour that cannot be de-
scribed within BG statistics [21], (iii) in Ref. [22] a par-
ticular case of the nonextensive scaling law in confined
granular media is experimentally validated. From among
the model systems, Refs. [23,24] show in a very clear
manner that due to a break in ergodicity, the system has
crossed from BG statistics to Tsallis statistics. In addi-
tion, a study of the nonextensive behavior of the QCD
strong coupling constant is described in Ref. [25], in
which the inconsistency between theory and experiment
in the non-perturbative region is successfully considered.
Finally, more about Tsallis statistics and its diverse ap-
plications can be found in Ref. [26].

Therefore, considering a real experimental environ-
ment in relativistic heavy-ion collisions, in this paper, we
use Tsallis statistics to study the QCD phase transition.
For this purpose, we generalize the PNJL model to its
nonextensive version. Compared with the NJL model,
this model can simulate the quark confinement effect and
fit lattice QCD data more successfully by introducing a
Polyakov-loop potential [27]. Moreover, other models,
such as the linear sigma model and NJL model have also
been generalized to the nonextensive version for study-
ing the QCD phase diagram [8,9].

This paper is organized as follows: In Sec. II, we in-
troduce the nonextensive version of the PNJL model. In
Sec. III, we discuss the influence of nonextensive effects
on the QCD phase transition, especially on the position of
CEP and the critical exponents. Finally, we give a brief
summary of our work in Sec. IV.

II. PNJL AND NONEXTENSIVE PNJL MODEL

A. PNJL model

As a first step, we give a brief introduction to the PN-
JL model. The Lagrangian of the two-flavor and three-
color PNJL model is as follows [27]:

Lenge =Py, D" — )P + G [(PP)* + (Piys?P)*]

~ U@, D7), “

where W = (u,d) represents the two flavor quark field
with three colors, and m = diag(m,,,my) with m, =my=m

stands for the current quark mass matrix. %(a =1,2,3)
corresponds to the Pauli matrices in flavor space, and G is
the effective coupling strength of the four point interac-
tion of quark fields.

The effective Polyakov-loop potential U(D,D;T) is
expressed in terms of the traced Polyakov-Loop expecta-
tion value @ and its conjugate

_ (Tl o (TrLh)
N, N,

D

)

Index c refers to the color of the quark and N, =3. The
Polyakov-loop L is defined as

B
L(%) = Pexp (1f As(%, T)dT), (6)
0

where A4 =iA¢ is the temporal component of the Euclidi-
an gauge field (A, As), B=1/T, and P denotes the path or-
dering. Moreover, for simplicity, we take the approxima-
tion L' = L following Refs. [28-33]. According to Eq. (5),
we have ® = ©.

The thermodynamic potential density function can be
determined in the mean field approximation as

(M —m)?
4G
A 3=
4D g
o (n)}

Qu, T, M, ®, D) =U(D,D;T) +

— 2NNy

ood3ﬁ
—-2NT InF*+InF~), (7
7 [ SEnEt e, ()

where M is the effective quark mass and relates to the
quark chiral condensate o = (¥¥) as

M =m-2Go, ()

and

. o _Eouy _Ep En
Fr=1+3(@+®e™ T Je~ T +e° T,

E,+u E,+u E,+u

Fo=1+3(0+Qe” T )~ T +e7 T, )

in which E, = y/p?+ M? is the single quasi-particle en-
ergy, and u is the quark chemical potential. In the above
integrals, the cut-off A only acts on the vacuum integral,
whereas the medium dependent integrals have been ex-
tended to infinity [27,28,34,35].

For the Polyakov-loop effective potential U, we take
the following two commonly used forms, for which the
determination of the parameters is used to fit the pure

073105-2



QCD chiral phase transition and critical exponents within the nonextensive Polyakov...

Chin. Phys. C 45, 073105 (2021)

gauge lattice data [27,29].
(1) The polynomial effective Polyakov-loop potential
is [27,36,37]

(L{P by(T) - b3p 3 =3 b4p = 2
— =00 - — (O’ +D — (0D 1
2= 200 "L+ @)+ @07, (10)

with a temperature-dependent coefficient

T
by(T) =ag, +a1p(7°)

2 T()3

L o BT

and the corresponding parameters are given in Table 1.

Table 1. Parameter set used in our work.

aop Aaip ap azp h3p b4p

6.75 -1.95 2.625 —7.44 0.75 7.5

(2) The Logarithmic effective Polyakov-loop poten-
tial is [29]

T) . - - -
% =- %CDQJ +b(T)In[1 — 60D — 3(DD)>

+4(D° + DY), (12)

with the temperature-dependent coefficients

a(T)=a01+a11(%)+azz(%)2, (13)

and
To\
mn=m(7), (14)

the corresponding parameters are given in Table 2. Here,
the logarithmic form constrains ®,® < 1.

In a pure gauge sector, Ty =270 MeV. However, the
value of T is adjusted to account for the presence of dy-
namical quarks. Here, we let Tp(2) = 192 MeV following
Ref. [38]. Moreover, the parameters for the NJL model
part of the effective Lagrangian Lpyj. are summarized in
Table 3, which are determined by fitting the pion decay
constant f; =92.3 MeV and the pion mass m, = 139.3
MeV [27].

Table 2. Parameter set used in our work.

ao; ai az| b3y

3.51 —2.47 15.2 -1.75

Table 3. Parameter set used in our work.

A/MeV G/MeV~2 m/MeV

651 5.04x107° 5.5

Finally, the solutions of the mean field equations are
obtained by minimizing the thermodynamic potential
function Q with respect to M and @, that is

Q0
=50 =" (15)

B. Nonextensive PNJL model

In short, the introduction of nonextensivity to a given
model means that we need to make substitutions, as
shown in Eq. (1) [8,9,39]. Moreover, we will use two
simplifications in the following calculations, as in Ref.
[40].

(i) The nonextensive effects are not considered in the
pure Yang-Mills sector. That is, the Polyakov-loop poten-
tial remains unchanged and includes nonextensive effects
implicitly only through the saddle point equations.

(i1) The usual PNJL model parameters remain un-
changed. We treat ¢ just as researchers treat volume V in
the study of finite-size effects, as a thermodynamic vari-
able on the same footing as 7 and u [41,42]. In fact, this
is all based on the ansatz that the parameters determined
at zero temperature and zero quark chemical potential can
be used to study the finite temperature and finite quark
chemical potential.

Therefore, within the nonextensive PNJL model, the
thermodynamic potential density function becomes

(M —m)*
4G
A 3o
d
ar E,
o (2m)3

Q,(u, T, M,D,D) =U(D,D;T) +

—2NcNy

&g " -
—2NfT A W(lanq_‘_lanq)’

(16)
where
F =1+3(q>+ci>eq(—E”T_”)) q(—ﬁ)
e[ 2E7)
T
F, =1+3(d_>+<1>eq(—E”T+”)) q(_ﬁ)
—3(E, + 1)

eq( ; ) (17)
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Because the typical value of the nonextensivity paramet-
er ¢ is found to be 1<¢< 1.2 in high-energy collisions
[12,13,43,44], we only consider the case of ¢ > 1 in this
paper.

In order to ensure that e,(x) is always a non-negative
real function, the following condition must be supple-
mented:

[1+(1-g)x]>0. (18)

If this condition is not met, for ¢ > 1, one can use an
approach with the Tsallis cut-off prescription

eq(x)=0, for [1+(1-¢)x]<0. (19)
For g < 1, the Tsallis cut-off prescription is
eq(x) =+0o0, for [1+(1-§x]<0, (20)

where §=gq for particles and §=2-¢ for antiparticles.

for x<0,
x> 0.

1
eg(x)=[1+(1-g)x]1-4, f1={ & (21

2—-gq, for

As pointed out in Ref. [8], there are certain problems
with or without the Tsallis cut-off prescription. The Tsal-
lis cut-off prescription limits the allowed phase space
considerably. Without the Tsallis cut-off prescription the
entropy makes a jump on the Fermi surface, which has
not been observed in nuclear matter. Therefore, in order
to avoid disputes about which cut-off should be used and
to ensure the reliability of the results, Eq. (18) is always
satisfied in our numerical calculations. Moreover, it is
important to realize that for 7T — 0 one always gets
Q, — Q, as long as ¢ > 1. This means that nonextensive
effects only appear when the temperature is high enough.

In order to study the QCD phase diagram, based on
Eq. (15), we need to solve the following coupled equa-
tions:

3>
Else, taking ¢ >1 asan example, one can use an ap- M =m+4GN_.N; d_l;ﬂ[l_nq_ﬁq], (22)
proach without the Tsallis cut-off prescription (2n)* Ep
—(E, — —(E, —
) 1+e, ( p—H) e (Ep—p)
0= f " & d d
BN YR ~Ep=p\\ (—Ep=p\ (B E-w\[
1+3D(1+e, ey +ey
T T T
—(E, —(E
a5 )
(23)
—(E —(E -3(E a
1+3<D(1+eq( ( p+'u)))eq( ( p+'u))+eq( ( p+ﬂ))
T T T
where the g-version of the Fermi-Dirac distribution is
~3(E, - —~(E, - —~(E, -
eZ( (7,: #))+®(1+2eq( ( ,} ,U)))ez( (1T #))
ng(T,p) = : (24)
—(E,— —(E,— —3(E,—p)\|?
1+3(I)(1+eq( (Ep ﬂ)))eq( (E ﬂ))+eq(—( P 'u))]
T T T
and
eg(—3(Ep+m)+®(l +2€q(—<Ep+m))ez(—<Ep+m)
T T T
ng(T,p) = 7 (25)

_(Ep +ﬂ)

T

1+3(D(1 +eq(

))eq(—(E,;ﬂt)) +eq(—3(E; +,U))

For ¢ — 1, they return to the distribution function of the usual PNJL model.
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III. QCD PHASE TRANSITION AND CRITICAL
EXPONENTS WITHIN TSALLIS STATISTICS

A. QCD phase transition

We plot M and @ as a function of 7 for four different
q,(¢=1,1.05,1.1, 1.15) as well as two different U (Up,
Uy), as shown in Figs. 1 and 2. We found that even con-
sidering the nonextensive effect, the finite-temperature
QCD transition is still not a real phase transition but a
crossover [45]. However, as g increases, the transition oc-
curs at a smaller pseudo-critical temperature 7.. The
same conclusion also appears in the nonextensive linear
sigma model [9]. In addition, it is worth mentioning that
the nonextensive effect has no influence on the QCD
phase transition at zero temperature and finite chemical
potential, as mentioned above.

For small values of the chemical potential, the shape
of the QCD crossover transition line can be characterized
by its curvature, which is accessible to lattice QCD
[46,47]. Therefore, next we discuss the influence of
nonextensive effects on the curvature . This is defined
according to the Taylor series [48,49]:

T (1) = T0)(1 - ki® /TA(0) + O(u* /T20))), (26)

and herein, we choose u < 100 MeV. The pseudo-critical
temperature T.(u) is determined by the peak of the
thermal susceptibility, as follows [33]:

_ 0o

= 27)

XT

For the Polyakov-loop potential Uy, the change in the
crossover transition line with parameter ¢ is shown in
Fig. 3. We find that the pseudo-critical line gets lower
and flatter with increasing ¢q. In fact, the conclusion is the
same for the Polyakov-loop potential U . In order to bet-
ter illustrate this, the change in curvature « with ¢ is lis-
ted in Table 4. Apparently, x decreases as ¢ increases.
However, it should be noted that the curvature values we
calculated are significantly higher than the values ob-
tained in lattice QCD studies [46,47].

Finally, we are more concerned about the impact of
the nonextensive effects on the CEP position. From
Fig. 4, we clearly see that when u =329 MeV, the chiral
condensation ¢ is discontinuous, which corresponds to a
first-order ~ phase  transition. = Moreover, = when
1 =327MeV, o is continuous, which corresponds to a
crossover transition. Therefore, there must be a critical
termination point for the first-order phase transition line
in the middle chemical potential region, which is CEP. As
we know, in the neighborhood of the CEP position, the
susceptibility tends to diverge. Taking g=1 and the
Polyakov-loop potential Up as an example, from Fig. 5,
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Fig. 1. (color online) Constituent quark mass M as a func-

tion of T at u =0 for two different potentials U and four para-

meters g, where land p represent the logarithmic and polyno-

mial Polyakov-loop potentials, respectively. The figure is

taken from Ref. [40].
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Fig. 2. (color online) Polyakov-loop expectation value @ as
a function of T at u =0 for two different Polyakov-loop poten-
tials U and four parameters ¢. The figure is taken from Ref.
[40].
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Fig. 3. (color online) Variation of the pseudo-critical line
with g, for Polyakov-loop potential Uyp.

Table 4. Curvature « changes with ¢, where «p and «; cor-
respond to the Polyakov-loop potentials Uy and U, respect-
ively.

q 1 1.05 1.1 1.15
Kp 0.142 0.124 0.106 0.090
KL 0.158 0.138 0.123 0.101
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(color online) Chiral condensate o as a function of T'

quark chemical potentials.
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Fig. 5. (color online) Susceptibility yr as a function of T at

g =1 for Polyakov-loop potential Uy and three different quark
chemical potentials.

we can clearly see that when u = 328.1 MeV, the suscept-
ibility shows quite a sharp and narrow divergent peak,
which  determines the position of CEP as
(ue, Te) = (328.1 MeV,74.1 MeV).

The influence of the nonextensive effect on the posi-
tion of CEP is shown in Figs. 6 and 7. We found that its
impact on the position of CEP is not as simple as previ-
ously thought. As ¢ increases, the CEP position moves in
the direction of the larger chemical potential and lower
temperature at first, but then, when ¢ is larger than a crit-
ical value g., the CEP position moves in the opposite dir-
ection. In other words, as ¢ increases, CEP moves in the
direction of the smaller chemical potential and higher
temperature. Obviously, this interesting U-turn  phe-
nomenon is independent of the choice of Polyakov-loop
potentials. For U, and Up, the critical values g. are 1.1
and 1.08, respectively. It should be noted that this phe-
nomenon was not found in Refs. [8,9]. Excluding the use
of different models, one possible reason is that in Refs.
[8,9], ¢ was calculated only up to 1.1, which is just at the
turning point. Our results are meaningful for the search of
the CEP position in relativistic heavy-ion collision exper-
iments. Based on our results, the search for areas with lar-
ger or smaller chemical potential depends on the critical
value q..

2

% e q=1.0
= 82F |+ q=1.02
+ ¢g=1.05
4+ q=11
[ |+ q=1.12
q=1.14

80

327 28 29 30
1 (MeV)

Fig. 6. (color online) Trajectory of CEP position with ¢ in

the 7- u plane for Polyakov-loop potential %/ .

78

76F

T (MeV)
~
N
L]

e =10 n

= =102 A

+ q=1.05 *

72F+  q=1.08

v g=11

o q=1.12
q=1.14

70 " "
327 328 329 330 331

1 (MeV)
Fig. 7. (color online) Trajectory of CEP position with ¢ in
the 7- u plane for Polyakov-loop potential Usp.

B. Critical exponents

As we all know, in the vicinity of CEP, the diver-
gence in susceptibility can be described by the critical ex-
ponents. Regarding the critical exponents, there are two
important physical concepts: the scale hypothesis and the
universality assumption. Regarding the scale hypothesis,
its basic idea is that when approaching the critical point,
the correlation length ¢ — o, and the singularity of ¢ de-
termines the singularity of all thermodynamic functions.
From this, the scaling law that should be satisfied
between the critical exponents can be derived. Regarding
the universality assumption, it refers to a system with the
same spatial dimension d and order parameter dimension
n, with the same critical exponent and belonging to the
same universal category. However, it should be pointed
out that the validity of these concepts is based on the
equilibrium phase transition system described by BG stat-
istics. Therefore, in a system that deviates from the de-
scription of BG statistics, the critical exponents may not
be completely determined by d and n, and the scaling law
may need to be reconstructed or modified [50-54]. Based
on this, in this subsection, we use Tsallis statistics to
study the critical exponents and discuss the influence of
the nonextensivity parameter ¢ on them. However, it
should be pointed out that the critical exponents calcu-
lated below are mean-field values, due to the mean-field
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approximation employed in this work.

Here, we choose a specific direction, which is de-
noted by 7T (]), for calculating the critical exponents us-
ing the path from lower (higher) 7 toward TC (represents
TCFP) with the quark chemical potential fixed at u© (rep-
resents uCFP). Using the linear logarithmic fit, we obtain

Iny = —yIn|T = T + ¢y, (28)
In|O - 0| = BoIn|T = T + 3, (29)

v is the critical exponent of susceptibility, while 8 is the
critical exponent of the order parameter O, and ¢y, ¢, are
constants. At g =1 and in the direction T, the fitting pro-
cedure of the critical exponents for thermal susceptibility
and quark mass is shown in Figs. 8 and 9.

The variation in critical exponents with ¢ is shown in
Tables 5 and 6. We found that when ¢ increases from 1.0
to 1.1, the critical exponent yr remains almost un-
changed, regardless of the Polyakov-loop potentials se-
lected. However, for the critical exponent g, taking the
Polyakov-loop potential U, as an example, we found
that for the direction 7 (), By decreases (increases) with
an increase in g. For the Polyakov-loop potential Up, this

-
o
o

-
o
3

yr=0.671

-
o
=3

log(IxIMeV]?)

-
»
&)

14.0

-40 -35 -30 -25 -20 -15 -10
log(|T-T°EP|/[MeV])

Fig. 8.
ceptibility yr as a function of log|T — TCFP| at the fixed quark

(color online) Logarithmic value of the thermal sus-

chemical potential xFF for Polyakov-loop potential Usp.

34
32
5 Bu=0.318
2
g 3.0
[=2]
kel

2.8

2.6

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0

log(|T-TEP|/[MeV])
Fig. 9.
M as a function of log|T — TCFP| at the fixed quark chemical po-

(color online) Logarithmic value of the quark mass

tential 4“EP for Polyakov-loop potential Usp.

trend is the opposite. However, if we take the average
value By = (Bur +Buy)/2 as the critical exponent parallel
to the T axis, we find that 5, is stable around 0.337 and
hardly changes with ¢g. In other words, even in Tsallis
statistics, the critical exponents y and S are still the same
as their mean-field values y =2/3 and 8= 1/3 in BG stat-
istics [55-58].

It is worth noting that, in Ref. [50], the critical beha-
vior of a two-dimensional Ising model with nonextensive
statistics was studied, and it was found that for
0.5 < g < 1, the critical exponents «, 8, and y depend on
g in the form a(q)=(10g*>~-33¢+23)/20, B(g)=
(2g-1)/8, and y(q) = (¢*> —q+7)/4. However the critical
exponent v does not depend on ¢. Using the same model,
in Ref. [51], it was found that although the critical expo-

Table 5. Dependence of the critical exponents on the nonex-
tensivity parameter ¢ for Polyakov-loop potential U .

q Quantity Path Numerical result
T 0.677
Yr
| 0.678
qg=1.0
T 0.361
Bm
| 0.309
T 0.680
Yr
| 0.685
qg=1.05
T 0.332
Bm
| 0.346
T 0.681
Yr
| 0.679
g=1.1
T 0.315
Bum
l 0.362

Table 6. Dependence of the critical exponents on the nonex-
tensivity parameter ¢ for Polyakov-loop potential Up.

q Quantity Path Numerical result
T 0.671
Yr
l 0.678
qg=1.0
T 0.318
Bu
l 0.353
T 0.668
yr
l 0.683
q=1.05
T 0.364
Bu
l 0.307
T 0.660
yr
l 0.673
g=1.1
T 0.370
Bu
l 0.304
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nent B is different from its value in BG statistics, it does
not depend on ¢ within the margin of error. In particular,
the critical exponent v depends on ¢ in a linear manner.
At present, the impact of the nonextensive effect on the
critical exponent, especially for the two cases of ¢ < 1
and ¢ > 1, is not very clear. Therefore, it is worthy of fur-
ther research.

IV. SUMMARY AND CONCLUSION

In this paper, combined with the Tsallis statistics and
the PNJL model, we investigated the sensitivity of the
QCD phase transition and critical exponents with regard
to deviations from usual BG statistics. Regarding the
QCD phase diagram, we found that the influence of
nonextensive effects on the CEP position shows a very
interesting U-turn phenomenon. At the beginning, with an
increase in ¢, the CEP position moves toward the direc-
tion of larger chemical potential and lower temperature.

However, when ¢ is larger than a critical value ¢., as ¢
increases, the CEP position moves in the opposite direc-
tion, that is, in the direction of smaller chemical potential
and higher temperature. Because of this U-turn phe-
nomenon, we found that searching for CEP in larger or
smaller chemical potential regions in relativistic heavy-
ion collisions depends on a critical value g.. This is a
very interesting result that deserves further study. Re-
garding the critical exponents, numerical results based on
Tsallis statistics show that the critical exponents remain
almost constant with q. In other words, different from the
findings in Refs. [50,51], we found that the critical expo-
nents do not depend on the choice of Tsallis statistics or
BG statistics. In addition, quark stars, as candidates for
observed massive stars ( > 2M), have attracted much at-
tention in astronomy [4,59-61]. Therefore, studying the
influence of nonextensive effects on the structure and
evolution of protoquark stars is a very meaningful topic.
We shall study these issues in future.
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