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Abstract: The self-consistent mean field approximation of the two-flavor NJL model, with a free parameter a to
reflect the competition between the "direct" channel and the "exchange" channel, is employed to study the QCD
phase structure at finite isospin chemical potential y;, finite baryon chemical potential up and finite temperature 7,
and especially to study the location of the QCD critical point. Our results show that in order to match the corres-
ponding lattice results of isospin density and energy density, the contributions of the "exchange" channel need to be
considered in the framework of the NJL model, and a weighting factor a = 0.5 should be taken. It is also found that
for fixed isospin chemical potentials, the lower temperature of the phase transition is obtained with increasing « in
the T —p; plane, and the largest difference of the phase transition temperature with different a's appears at
1~ 1.5my. At uy =0 the temperature of the QCD critical end point (CEP) decreases with increasing «, while the
critical baryon chemical potential increases. At high isospin chemical potential (u; = 500 MeV), the temperature of
the QCD tricritical point (TCP) increases with increasing «, and in the low temperature regions the system will
transition from the pion superfluidity phase to the normal phase as pp increases. At low density, the critical temper-
ature of the QCD phase transition with different a's rapidly increases with y; at the beginning, and then increases
smoothly around x; > 300 MeV. In the high baryon density region, the increase of the isospin chemical potential

will raise the critical baryon chemical potential of the phase transition.
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I. INTRODUCTION

At low temperature and low baryon chemical poten-
tial, a strongly interacting system is in the hadronic phase,
and as temperature and/or baryon chemical potential in-
creases the system will transition to a quark-gluon plasma
(QGP) phase, in which the quarks and gluons are decon-
fined and chiral symmetry is partially restored. This new
state of matter can be created from a hot and dense fire-
ball, which is able to reach the transition temperature, in
high energy nucleus-nucleus collisions [1]. The early
Universe should have been in this phase for the first few
microseconds after the Big Bang. QGP is also expected in
the interior of quark stars or hybrid stars [2]. In the last
twenty years, the study of the quantum chromodynamics
(QCD) phase diagram has been extended to finite isospin

chemical potential [3-5]. The physical motivation to
study QCD at finite isospin chemical potential is related
to the investigation of neutron stars, isospin asymmetric
nuclear matter, and heavy ion collisions using neutron-
rich heavy-ion beams. The phenomenon in which quark-
antiquark condensation can be rotated by the isospin
chemical potential is called the pion condensate, which
means the direction of the broken symmetry of U,(1) is
related to the conservation of the pion number. A super-
fluid of charged pions will appear in the zero momentum
state, once the isospin chemical potential exceeds the pi-
on mass (u; >my;) [6, 7]. Unlike the normal phase
(ur < my) with zero pion condensate, the occurence of the
pion condensate can affect the low-energy nature of had-
ronic matter, like the lifetimes and the masses of mesons
[8-10], as well as many other phenomena [11, 12]. There-

Received 9 December 2020; Accepted 18 March 2021; Published online 22 April 2021
* Supported by National Natural Science Foundation of China (12075117, 11535005, 11775118, 11690030, 11905104) and National Major state Basic Research and

Development of China (2016YEF0129300)
" B-mail: wujieyil001@foxmail.com
z. E-mail: jlping@njnu.edu.cn
¥ E-mail: zonghs@nju.edu.cn

©2021 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese

Academy of Sciences and IOP Publishing Ltd

064102-1



Zu-Qing Wu, Jia-Lun Ping, Hong-Shi Zong

Chin. Phys. C 45, 064102 (2021)

fore, it is meaningful for us to investigate the phase trans-
itions of strongly interacting systems in a baryon and
isospin medium.

Generally, QCD is recognized as the basic theory of
strong interactions. Theoretically, QCD has rich phase
structures at finite temperatures and densities. Perturbat-
ive QCD works well for the properties of the phase struc-
tures in the regions of high temperatures and/or high
densities. In a finite temperature region with vanishing
baryon chemical potential, lattice simulations give a valu-
able understanding of QCD phase diagrams. Although
lattice simulations are hindered when dealing with finite
chemical potential, due to the "sign" problem, this can in
principle be handled with the situation of finite isospin
chemical potential [13, 14]. Furthermore, the phase struc-
ture has also been investigated in many low-energy ef-
fective models, such as ladder QCD [15], the random
matrix method [16, 17], the quark-meson model [18, 19]
and the Nambu-Jona-Lasinio (NJL) model [20-27].

The phase diagram of QCD matter in three dimen-
sions, i.e., the temperature, the isospin chemical potential
w1 and the baryon chemical potential ygp, is the holy grail
of nuclear physics. In this paper, we study the three-di-
mensional QCD matter phase diagram at finite isospin
and baryon chemical potentials in the NJL-type model
with the self-consistent mean field approximation [28].
The standard Lagrangian density of the NJL model con-
tains scalar (Jy)* and pseudoscalar-isovector (Fiysty)*
channels [27], which is insufficient for describing the
physics in the case of finite density. Because of this,
people often use the Fierz transformation to generate oth-
er interaction channels. These interaction terms play an
important role in the case of finite density. For example,
the vector-isoscalar channel becomes vital when a finite
chemical potential is discussed [29, 30]. Similarly, if the
axial chemical potential is involved, the isovector-isoscal-
ar channel is important [31-34], and we cannot ignore the
contributions of the axial-vector channel in a chirally im-
balanced system [35]. At this point, if the system in the
case of finite isospin and baryon densities is studied, we
should consider the effects of the vector-isoscalar chan-
nels and the pseudoscalar-isovector channels [36]. In pre-
vious discussions of the NJL model, people usually neg-
lect the contributions of various terms from the Fierz
transformation or add the relevant channels by hand [37].
This leads to the realization that the above approach of
mean field approximation is not self-consistent. In our
work, the self-consistent mean field approximation [28]
of the NJL model will be employed to study the phase
structure of a strongly interacting system at nonzero
isospin and baryon chemical potentials. A free parameter
«a is introduced in this model to reflect the competition of
the different channels through the Fierz transformation.

The rest of this paper is organized as follows. In Sec.
II, the two-flavor NJL model and the self-consistent mean

field approximation in the finite isospin and baryon
chemical potentials are introduced, and the self-consist-
ent gap equations are obtained. In Sec. III we will dis-
cuss QCD phase structures, and analyze our numerical
results with different o's. We summarize in the last sec-
tion.

II. SELF-CONSISTENT MEAN FIELD
APPROXIMATION OF THE NJL MODEL

In the present study, two flavors of light quarks are
involved. The standard Lagrangian density of the two-fla-
vor NJL model is defined as [27]

Ly =g -mo)y+G () + @iysty)’| (1)

with the interaction channels of the scalar and pseudo-
scalar corresponding to the excitations of o and 7 re-
spectively, where mg = diag(mq,,mos) is the current quark
mass matrix and the coupling is G.

The four-fermion interaction channel is calculated by
the Fierz transformation [27], giving

G - -, 7
Lir =gy [20w)* +2@iysty)’ -2(Frv)’

—2(Piysy)’ —4(@y"y) - 4Gy ysw)’
+ @ y) = o Ty)), )

where the contributions of the color octet have been omit-
ted, and N, =3 is the number of colors. Next, the Lag-
rangian density is found to be

Lr=yd—mo)y+ L. 3)

Because of the Fierz transformation, the Lagrangian
Ly and the transformed Lagrangian Ly are equivalent.
In view of the mathematical equivalence of Ly and Lp,
the general effective Lagrangian density is introduced
[28]: Lg = (1 —a)LnL + @ Lp, Where the parameter « is a
weighting factor (a real number from 0 to 1) used to re-
flect the competition between the "direct" channel (Lnj)
and the "exchange" channel (L£r). In this way, we can get
more interaction channels through the Fierz transforma-
tion. This helps us to recognize and handle the strong in-
teraction system with finite density. As mentioned in the
last section, the contributions of the various channels are
not negligible if we research the system in the case of fi-
nite density.

Nevertheless, the contributions of Lyj. and Ly are
no longer identical once the mean field approximation is
used, because of the noncommutability between the Fierz
transformation and the mean field approximation. Espe-
cially for a system at finite density, the results given by
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the two Lagrangians are quite different [27]. This indic-
ates that it is vital for us to acknowledge the contribu-
tions of each interaction channel once the mean field ap-
proximation is applied. In fact, just as shown by Refs.
[28, 35, 36, 38-43], there is currently no physical require-
ment to determine the value of « . In principle, a needs
to be constrained by experiments but not the self-consist-
ent mean field approximation itself. The Lagrangian
density with the self-consistent mean field approximation
is adopted as (Lr)m =1 —a){Lniim+{Lr)m [28],
where (), marks the mean field approximation. What
needs to be emphasized here is that the mean field ap-
proximation that does not consider the contribution of the
"exchange" channel (Lr) is theoretically not self-consist-
ent [37, 44].

For the sake of the investigation of the system in
isospin and baryon matter, we can introduce the isospin
chemical potential y; and the baryon chemical potential
up, which connect to the isospin number density
ny=(n,—-ng)/2 and the baryon number density
ng = (n, +ny)/3 respectively. In finite temperature field
theory [45], the partition function for a system with finite
isospin and baryon chemical potentials is expressed as

Z(T,p1,u3,V) = f [ [du]eb ar @ Lramo) (4

where B=1/T is the inverse temperature of the system,
the volume is V, and u; and ug are the isospin and bary-
on chemical potentials respectively. The quark chemical
potential matrix in flavor space is u = diag(uy, 1q) With u-
and d-quark chemical potentials

HB | HI HB  Hi
=—+=, =—-—=. 5
Hu 3 3 Ha (5)

1 1 1. . .
The factors 3 and 3 reflect the fact that 5 1s the isospin

quantum number of quark and one baryon is made up of
3 quarks.
Then the equivalent Lagrangian density is rewritten as

L= -a)LnL+aLp +Puyod. (6)

In our work, only the contributions from the vector,
scalar and pseudoscalar-isovector channels are con-
sidered. At the level of the mean field approximation, no
other terms affect our calculation. Using the mean field
approximation to this Lagrangian, and dropping the irrel-
evant channels, one can obtain the effective Lagrangian
density,

Leir =0 (id — M + 1" yo +2Griyst) Y
—G(a'2+7r2) +8n%, @)

where o is the quark condensate and x is the pion con-
densate, and the constituent quark mass is

M =my—-2Go, (8)
with
Wo=p—2pn. ©)
Employing Egs. (5) and (9), we get the following re-
lations:
My = —8Bny, (10)

and

Hp = up — 18Bns, (11)

where for convenience we redefine the parameter in the
formalism

-2Ga

P= a1

The quark condensate o = (y), the pion condensate
n = (iiysd) + {diysu), the quark number density n = (@you)+

- . . . 1
(dyod), the isospin number density n;= 5((1270u)—
(dyod)), and the baryon number density np = %((ﬁyou)+

{(dyod)) are solved in a thermodynamically self-consist-
ent way. By inserting the effective Lagrangian density (7)
into the partition function (4), one can get the mean-field
thermodynamic potential,

T
Q:—‘—/an=G(a'2+7r2)—,Bn2+QM, (12)
where Q) can be represented as

A d3ﬁ

Qu =—N, ——|E_-E.+E'-E"+2T

O A
X(In(1+exp(-EZ/T))+1In(1+exp(E;/T))

+ In(1+exp(=EX/T))+In(1 +exp(ET/T)))], (13)

and the energies of the effective quark EZ are given by:

Ei=E;7-, (14)
+_ ’ 19)2 2.2
E; = \/(Ep£u)/2) +4G222, (15)
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= \JlpP2+ M2 . (16)

Given the extremum condition of thermodynamic po-
0Q 0Q
tential i 0, —

loa on

A BF2NM[E,—11)/2
o= fo P [ P M2 - f-ET)

=0, one has the quark condensation,

@en? E, E,
E,+
- Eﬁ" (ED - f(- E*))] (a7

and the pion condensation,

B A d3ﬁ
——anon [ L\ [—(f(E) F-ED)

+ g UED-F-ED)|. 18)
P

From the derivatives of the thermodynamic potential
with respect to their respective chemical potential

0Q 0Q oQ
=—,ny=—,ng= —0 has the density of k
n o ny o np i one has the density of quar
number,

A d3ﬁ
n=2N, [ S UAED B+ SED + -ED-2]
0 "

the isospin number density,

Nf 7 it
(2m) E,

Ev il gy p E+>>] (20)

(F(ED) = f(=E))

E+
and the baryon number density,

2 N Bp

=3 J Gy VEDHCEIHIED

+ f(-E1)-2] 21)

with the Fermi-Dirac distribution function

f® = 77— (22)

eT+1

Eventually, we insert Egs. (17)-(21) into Egs. (8)-
(11), and obtain a set of integral equations in the case of
finite isospin and baryon chemical potentials. By numer-
ically solving this set of equations we can get the relev-

ant phase diagram.

The parameters used in the present work are the mass
of the current quark myg, =mos =my=4.76 MeV, the
cutoff A=659 MeV, and the coupling G =4.78%
107° MeV~2, which are fixed by fitting the mass of the pi-
on m, = 131.7 MeV from lattice QCD calculation [46] at
T =p; = up = 0. The other parameters are the quark con-
densation per flavor (Jay) = —(250 MeV)? and the decay
constant f; =92.4 MeV.

III. NUMERICAL RESULTS AND DISCUSSION

As mentioned above, Refs. [28, 35, 36, 38-41] point
out that the parameter @ needs to be determined experi-
mentally. A possible choice, for instance in Refs. [38,
39], is that « can be constrained by astronomical observa-
tion data of a recent binary neutron star merger. Never-
theless, there is a lack of reliable experimental data for
strongly interacting matter at finite densities so far, so in
our work a is considered to be a free parameter. In this
paper, our results are shown with different a's. @ = 0 rep-
resents the standard NJL model [26, 27]; a = 0.5, which
is in good agreement with lattice data, is taken from Ref.
[36]; and @ = 0.9 is adopted from Ref. [38].

Figures 1 and 2 show the variation of the normalized

100 a=0
— a=0.5
08 - a=0.9
LacD
© 06
£
s
04
02
0.0 . -
0.0 05 1.0 15 2.0
Hfmy
Fig. 1. (color online) Normalized isospin density n;/m} with

different «'s as a function of the normalized isospin chemical
potential y;/m, at T = up =0 compared with lattice data [47].

1.0 1.2 1.4 1.6 1.8 2.0
pimy

Fig. 2. (color online) Normalized energy density e/m* with
different «'s as a function of the normalized isospin chemical
potential y;/m, at T = up =0, compared with lattice data [48].
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isospin density and energy density with «=0,0.5,0.9
versus y;, scaled by m,, compared with the correspond-
ing lattice results from Ref. [47] and Ref. [48] respect-
ively. The lattice QCD data are described well by the cal-
culation with @ = 0.5. Only some data are situated on the
a =0 curve (i.e. the standard NJL model results) around
ur ~ 1.5m, [11]. Our results show that in order to better
match the corresponding lattice results, the contributions
of the "exchange" channel need to be considered in the
framework of the NJL model, and a weighting factor
a = 0.5 should be taken. This is consistent with the find-
ing of Refs. [37, 44] in the mid-1980s. We remark that fi-
nite isospin density experiment confirmation is still lack-
ing. The lattice data calculation, combined with our cal-
culation, provides some support for Refs. [37, 44]. The
solutions of Eq. (18) for a = condensate with different
a's, delimiting the regions of the pion superfluidity phase
(7 #0) and the normal phase (7 =0), are given in Fig. 3
in the T—y; plane for up=0. It can be seen that the
phase transition line of these two regions becomes lower
as « increases (the @ =0 corresponding to the result of
Ref. [26]), except that in the beginning they always re-
main at zero, and the largest differences among them ap-
pear at u; ~ 1.5m,. Especially at zero temperature, the
critical isospin chemical potential u§ of the phase trans-

200

— a=0.9
— a=0.5
1501 — q=0
S
2 100 T*0
g =0
50
% 100 200 300 400 500 600

1 (MeV)

Fig. 3. (color online) Phase diagram of pion superfluidity in
the 7 —y; plane (ug =0).

200

— a=0.9
— a=0.5
— a=0

the symmetric one

50 the chiral symmetry
broken phase
% 200 400 600 800 1000 1200
s (MeV)
Fig. 4. (color online) Phase diagram of chiral condensate in

the T-pup plane (u; =0) (without considering pion condensa-
tion).

ition is at 4§ = m,.

In the following, we will discuss the phase diagram at
finite baryon chemical potential for different fixed isospin
chemical potentials. By solving Egs. (8)-(11) numeric-
ally, we can obtain the phase diagrams (Figs. 4 and 5) in
T —up plane at y; =0 and w; = 200 MeV (without consid-
ering pion condensation). The chiral phase transition lines
with different @'s in the diagram represent the phase
transition from the chiral symmetry broken phase to the
symmetric one, with the solid lines denoting the crossov-
er and the dashed lines the first-order phase transition. At
uy =0, for the same temperature the critical baryon chem-
ical potential of the phase transition gets larger with in-
creasing «, which means that at a fixed temperature, for
the larger @ the occurrence of the phase transition will be
postponed as the baryon chemical potential increases. At
1 =200 MeV, the phase transition lines with different
a's intersect at medium 7 and medium ug. For higher
fixed p; (p; > 400 MeV), the value of the chiral condens-
ate with different temperatures and baryon chemical po-
tentials tends to zero.

We solve Egs. (17) and (18) simultaneously and ob-
tain the phase diagrams (Figs. 6 and 7) in the T —pug
plane at y; = 200 MeV and y; = 500 MeV. There is an on-
set of pion condensation (i.e. 7 # 0 corresponding to the

200
— a=0.9
— a=0.5

the symmetric one

— a=0

50 the chiral symmetry
broken phase
00 200 400 600 800 1000

ks (MeV)

Fig. 5. (color online) Phase diagram of chiral condensate in
the T—-up plane (u; =200 MeV) (without considering pion
condensation).

200

— a=0.9
— a=0.5

— a=0

0 200 400 600 800 1000
ks (MeV)

Fig. 6. (color online) Phase diagram of pion superfluidity in
the T —pup plane (u; =200 MeV).

064102-5



Zu-Qing Wu, Jia-Lun Ping, Hong-Shi Zong

Chin. Phys. C 45, 064102 (2021)

200

— a=0.9
— a=0.5

150 =0
3
2 100
=
m*0
50
00 200 400 600 800 1000 1200

Hp (MeV)

Fig. 7. (color online) Phase diagram of pion superfluidity in
the T —pup plane (u; = 500 MeV).

system in the pion superfluidity phase) at u§ =m, and
T =up =0 [7]. From the figures, we can see that at low
temperatures the system transitioning from the pion su-
perfluidity phase to the normal phase (7 =0) needs a
much larger up. In Figs. 6 and 7, the solid lines indicate
the second-order phase transition, the dashed lines indic-
ate the first-order phase transition, and for the lower
;=200 MeV the phase transition lines with different a's
(a =0 corresponding to the result of Ref. [26]) intersect
at low T and high ug, while for the higher u; = 500 MeV
they intersect at high 7" and low pp.

Mapping the phase diagram and testing the existence
of the critical endpoint (CEP) or tricritical point (TCP) is
one of the most active fields in high energy physics [49].
The existence of the CEP (or TCP) is shown, and its
probable position is also estimated below. At y; =0 and
ur =200 MeV, the phase diagrams, Figs. 4 and 5, of the
chiral condensate give the CEP with different «'s. This is
the terminal point of the first-order phase transition curve.
In the cases of u; =200, 500 MeV, the phase diagrams,
Fig. 6 and Fig. 7, of pion superfluidity give the TCP with
different «'s separately. This is the intersection of the
first-order phase transition curve and the second-order
phase transition curve. In Table 1, the critical points of
the phase transitions are presented. For CEPs with fixed
iy, the larger the value of «, the larger the critical baryon
chemical potential but the smaller the critical temperat-
ure. For TCPs at the lower fixed isospin chemical poten-
tial u; =200 MeV the variation of the critical baryon
chemical potential and the critical temperature versus « is
similar to the case of CEPs, but at the higher fixed isospin
chemical potential y; = 500 MeV the larger the value of «

200

— a=0.5 (=500 MeV)
~- — a=0.5 (=200 MeV)
=0 — =0 (=500 MeV)
— =0 (=200 MeV)

150

3
£ 100
g
+0
50
% 200 400 600 800 1000 1200
Hg (MeV)
Fig. 8. (color online) Phase diagram of pion superfluidity in

the T —up plane (y; =200, 500 MeV).

the larger the critical temperature. Our calculations indic-
ate that as the weighting factor « increases, the critical
baryon chemical potential of the CEP gets larger.

In Fig. 8, we compare the results with @ = 0.5 and the
results with @ =0 (the standard NJL model results) for
different fixed nonzero isospin chemical potentials. The
figure shows that for the same «, increasing u; moves the
phase transition line to its upper right in the 7 —up plane,
and for the @ =0 case the part of the first-order phase
transition line moves less. This indicates that a higher y;
gives a larger critical baryon chemical potential (or tem-
perature) with the same « for a fixed temperature (or ba-
ryon chemical potential).

We show the critical temperature 7€ of phase trans-
ition with different a's at ug =0 as a function of u; in
Fig. 9. It shows that the critical temperature TC of phase
transition with different « increases quickly at the begin-
ning as the isospin chemical potential increases, and
when y; >300 MeV the critical temperature 7€ in-
creases slowly to a constant value. On the whole, the 7€
values are closer between =0 and o =0.5 compared
with @ = 0.9. The critical baryon chemical potential 4§ of
phase transition with different a's at 7 =0 as a function
of y; is plotted in Fig. 10. For small y;, the values of
with different « are closer, and as the isospin chemical
potential increases, u§ with @ =0,0.5 increases slowly
and synchronously, while 4§ with @ =0.9 increases al-
most linearly.

IV. SUMMARY

The behavior of a system in both vacuum and dense

Table 1. The critical endpoint (CEP) and the tricritical point (TCP) with different «'s for different fixed isospin chemical potentials.
a=0 a=0.5 a=09
CEP (u; = 0) (T =72MeV, up = 813 MeV) (T =72 MeV, up = 841 MeV) (T =69 MeV, up =971 MeV)

CEP (y; =200 MeV)
TCP (u; =200 MeV)
TCP (1 = 500 MeV)

(T =43 MeV, up = 766 MeV)
(T =49 MeV, up = 761 MeV)
(T =111 MeV, up = 612 MeV)

(T =40 MeV, up = 786 MeV)
(T =49 MeV, up = 769 MeV)
(T =120 MeV, up = 646 MeV)

(T =28 MeV, up =834 MeV)
(T =30MeV, up =823 MeV)
(T =123 MeV, up =821 MeV)

064102-6



QCD phase diagram at finite isospin and baryon chemical potentials...

Chin. Phys. C 45, 064102 (2021)

200

— a=09
— a=05
190

— a=0

180

S
(2]
2170
I8
~
160
150
o0 300 400 500 600
41 (MeV)
Fig. 9. (color online) Variation of critical temperature 7€ of

phase transition with y; at up =0.

1200
— a=0.9
— a=0.5
1100f — a=0
S
(]
= 1000
om
=
900
80900 300 400 500 600
ki (MeV)

Fig. 10. (color online) Variation of critical baryon chemical
potential 4§ of phase transition with x; at 7 =0.

and hot medium depends on its physical symmetries. The
symmetries change as temperature and density vary. In
this paper, we have employed the self-consistent mean
field approximation of the NJL model to study the
changes of isospin symmetry and chiral symmetry, and
the QCD phase structure at finite densities and finite tem-
perature. In our calculation, we have considered the con-
tributions of different interaction channels (the intro-
duced parameter a reflects the weight) with different

cases of =0, @ =0.5, and @ = 0.9 [36]. The results with
a=0.5 are in good agreement with lattice data, and the
contributions of the "exchange" channel need to be con-
sidered in the framework of the NJL model. We find that
the phase transition line of the 7' —y; plane with @ =0.5 is
located in the middle, in the three cases of @ =0, 0.5, 0.9,
and the difference of these three lines is largest at
Hr ~ 15m,,

We have plotted the phase transition lines in the
T —up plane for different fixed isospin chemical poten-
tials. At ;=0 and y; =200 MeV, the chiral phase dia-
grams Figs. 4 and 5 give the CEPs with different a's. It
can be seen that the critical baryon chemical potential of
the CEP increases with increasing « , and a smaller critic-
al baryon chemical potential of the CEP with the same «
is given for higher fixed p;. At y; =200 MeV and 500
MeV (> m,), the corresponding phase diagrams, Figs. 6
and 7, of pion condensate give the TCPs with different
a's. We can see that at low temperatures the system is in
the pion superfluidity phase at first. It transitions to the
normal phase with increasing up, and a smaller critical
baryon chemical potential of the TCP is obtained for
higher fixed ;.

Finally, the critical temperature 7€ and the critical
baryon chemical potential u§ of the phase transition,
varying with yu;, were discussed. It was found that for
;> 300 MeV, the variation rate of the critical temperat-
ure TC of the phase transition with different a's de-
creases as y increases, and the critical baryon chemical
potential 4§ of phase transition with @ =0,0.5 rises more
slowly with y;, compared with @ =0.9. In general,
through investigating the QCD phase structure and the
location of the critical points, we can further understand
the properties of phase transitions at finite densities and
finite temperatures. This also provides some information
about the phase transitions for experimental measure-
ments.
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