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Abstract: In this paper, we propose an approach to nucleon-pair approximation (NPA) with m-scheme bases, in

which the collective nucleon pairs are represented in terms of antisymmetric matrices, and commutations between

nucleon pairs are given using a matrix multiplication that avoids angular-momentum couplings and recouplings.

Therefore the present approach significantly simplifies the NPA computation. Furthermore, it is formulated on the

same footing with and without isospin.
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I. INTRODUCTION

Pairing phenomena are observed in a wide range of
quantum many-body systems and scales, from finite nuc-
lei to neutron stars [1]. The pairing correlation in the nuc-
leus is originated from the short-range and attractive nuc-
lear interaction between like nucleons; in this case, two
nucleons have large spatial overlaps and achieve a low
energy. Such two nucleons are called a nucleon pair. This
correlation plays an important role in low-lying states,
particularly of semi-magic nuclei.

The theoretical formulation of pairing correlation can
be traced back to the seniority scheme in a single-j shell
[2-4], as suggested by Racah approximately 80 years ago.
In 1957, Bardeen, Cooper, and Schrieffer proposed the
BCS theory of superconductivity in metal conductors at
low temperatures [5, 6]. This approach was introduced to
nuclear physics to describe the pairing correlation in
Refs. [7-9]. Approximately 50 years ago, Talmi general-
ized the seniority scheme for semi-magic nuclei with
many-j shells [10, 11]. Richardson provided an exact nu-
merical solution to the simplified pairing model, which
was applied to various strongly correlated many-body
systems owing to its intimate link to several solvable pair
models [12]. As an extension of the BCS and generalized
seniority scheme, in studies of the low-energy states of
semi-magic nuclei, the broke-pair approximation [13] ad-

opts collective-S (spin-zero) nucleon pairs and a very few
broken (spin non-zero) nucleon pairs. In the 1970s, Ar-
ima and Iachello proposed the interacting boson model
(IBM) [14] in which the building blocks, sd bosons, are
mappings of SD (spin zero and two) nucleon pairs [15].
Motivated by the IBM, Ginocchio proposed a fermionic
model in which S D nucleon pairs follow dynamical sym-
metries [16, 17], and this Ginocchio model, called the fer-
mion dynamical symmetry model (FDSM), was further
developed by Wu and collaborators [18].

In the 1990s, Chen proposed the Wick theorem for
coupled fermion pairs [19, 20], and based on this novel
technique, Chen established the nucleon-pair shell model
(NPSM) [21], which is also called the nucleon-pair ap-
proximation (NPA) [22]. This approach was refined to
treat both even and odd nuclei in a more sagacious man-
ner [23]. In recent years, the isospin symmetry and
particle-hole configuration were considered in the NPA
[24, 25]. However, computations become heavy if the
valence proton number and/or valence neutron pair num-
ber is larger than eight. Therefore, studies on rotational
motion for heavy nuclei are prohibitively challenging in
these NPA approaches.

During the last two decades, the m-scheme shell mod-
el calculations have become increasingly more afford-
able than the j-scheme shell-model calculations, with a
rapid development of computer memory. In Ref. [26],
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Higashiyama and Yoshinaga expanded the NPA basis
states in terms of the m-scheme basis states and conduc-
ted NPA calculations using an m-scheme shell model
code. Quite recently, He and his collaborators conducted
NPA calculations in terms of collective nucleon pairs but
without angular-momentum coupling between pairs [27]
and called their approach a nucleon-pair shell model in
the m scheme. Because the approach in Ref. [27] does not
resort to the angular-momentum couplings of nucleon
pairs, it is more realizable than the transitional NPA cal-
culations in Refs. [21, 22, 26]; however, the commutat-
ors between nucleon pair operators and one-body (or two-
body) operators remain to be the same as in the NPA ap-
proach in Refs. [21, 22] and thus still suffer from sophist-
icated angular-momentum couplings and re-couplings.

In this paper, we propose an NPA approach, in which
one resorts neither to angular-momentum couplings and
re-couplings in the evaluation of commutators between
collective nucleon pairs, nor to the couplings and re-
couplings of “new ” nucleon pairs in the basis states.
Namely, angular-momentum couplings and re-couplings
are avoided from the beginning to the end of the compu-
tation.

Toward this goal, we adopt the uncoupled representa-
tion of collective nucleon pairs. An uncoupled representa-
tion was developed many years ago by Silvestre-Brac and
Piepenbring in studies on multi-phonon states [28-30]. In
addition, Ginocchio and Johnson derived a similar form-
alism based on generating functions [31], and Mizusaki
and Otsuka adopted an uncoupled representation in stud-
ies of the shell-model foundation of the IBM [32]. Ot-
suka et. al. also used it to formulate a pair truncation of
the Monte Carlo shell model [33].

In this study, we developed this uncoupled represent-
ation for collective nucleon pairs and derived commutat-
ors, overlaps of the NPA m-scheme basis states, and mat-
rix elements of the shell-model Hamiltonian under such
basis. The NPA with and without isospin symmetry, for
even-even nuclei and odd-mass nuclei, is presented in the
unified formulation. By using this version of the NPA,
numerical calculations of the rotational states for heavy
nuclei are now readily realizable.

This paper is organized as follows. In Sec. II, we
define the uncoupled representation of collective nucleon
pairs as well as one- and two-body operators and present
commutators between nucleon pairs and/or operators. In
this section, we also clarify how to utilize this representa-
tion to describe the concept of a “conventional” NPA [21,
22]. In Sec. III, we derive overlaps and the matrix ele-
ments of the shell model Hamiltonian for both even and
odd systems. In Sec. IV, we demonstrate the computa-
tion power of our new approach. In Sec. V, we describe
the sources of such remarkable computation power. Fi-
nally, in Sec. VI, we provide some concluding remarks
regarding this study.

II. UNCOUPLED COMMUTATIONS

In this section, we describe an uncoupled representa-
tion of collective nucleon pairs, one-body and two-body
operators, and unpaired particles in the NPA framework,
as well as commutators between them.

A. Pair and one-body operator in the NPA

We define collective nucleon-pair creation and anni-
hilation operators as follows:

o1 bt
P'=3 ) @Bz,
ap

PO 1
P=(P") =3 ) plapitaiy, (1)
ap

where @ and B denote the orthonormal single-particle
basis, and &' (¢) is a fermion creation (annihilation) oper-
ator. For example, in a spherical basis, /8 corresponds
to the {nijm} quantum numbers or {nljmr} with an extra
isospin projection, 7. p(af) are a pair of structural coeffi-
cients, with anti-symmetry p(af) = —p(Ba); here, p(ap)
are treated as matrix elements of matrix p.

Conventionally, a collective nucleon pair operator in
the NPA is defined as

AT =" y(abr)AT (ab),
ab

Api(ab) =(2h xe})

’
m

Al = Z y(abr)A’ (ab),
ab
r rf T A A\
Ap(ab) =(A}(ab)) = —(@ax &)}, 2

where 7 and m are the angular momentum of the pair and
its projection to the principal axis, respectively; a and b
represent the quantum numbers of a spherical single-
particle basis, {nlj}; the symbol x corresponds to angu-
lar-momentum couplings; and y(abr) is the structural
coefficient of the collective pair. In addition, y(abr) has
an anti-symmetric property as y(abr) = —(=) " Jy(bar).
Eq. (2) seems to differ from Eq. (1). However, we can
specialize the structural matrix as

plamg, bmy) = 2y(abr){ jama jomp|rm), 3)

where a =am, and B =bmy,. In addition, m, and m;, are
the projections of j, and j, onto principal axis, and
(Jamg jymp|lrm) is the Clebsch-Gorden coefficient. One
can easily see that p(amg,bmy)=—p(bmy,am,), given
y(abr) = —(=)""J=Iy(bar), corresponding to the anti-sym-
metry of the structural matrix. The collective pair with
such defined structural matrix is
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P = Z p(ama,bmb)ézmuczmb =A"T,

am,,bm,

For the NPA with isospin, the collective nucleon pair is
AT = Wabrt)Ar (ab),
ab

. A\t
rt N AT
Anf(ab) =(ehxef)

Alt = Z y(abrt)Alt (ab),
ab
. T R N
Art(ab) =(Arti(ab)) = = (CaXEp)tr )

where t and 7 is the isospin and its projection to the prin-
cipal axis, and the structural coefficients y(abrt) have an
anti-symmetry of y(bart) = (=) ~/i*ty(abr). Similarly,
we define our collective pair as

s R Af
P' = Z p(ama‘ra,ambrb)czmﬁuchmm %)

am,t,;bm,t,
with
plamgTq,bmptp) =2y(abrt){ jama jomplrm)

11
X <§Ta57bltf>, (6)

where a = am,7,, B = bmy7y,, and 7, and 1, are the single-
particle isospin projections. The structural coefficients
plam,t,,bmyty,) satisfy the requirement

p(bmyty,am,t,) = —plam,t,, bmyty) ,

given y(bart) = (=) J=i*ty(abr), and the collective nuc-
leon-pair operator such defined is equivalent to A™".

A general one-body operator in an uncoupled repres-
entation is defined as

0= qlepiies, ()
ap

where the coefficients g(aB) also construct a matrix gq.
Accordingly, the conjugate operator of 0, i.e., 07, has its
structural matrix as ¢7, i.e., the transpose matrix of q.

A conventional one-body operator in the NPA is in
following form:

0k = ) glabk(c)x &), Ok = ) alabkt)(c)x @), (8)
ab ab

where g(abk) and g(abkt) correspond to structural coeffi-
cients of the one-body operator in the NPA with and
without isospin, respectively. In addition, &, is the time-

reversal operator of ¢, with &, =(=)""c;_,, and
&jmyr, = (=)pm¥12= e, . The one-body operator is
readily rewritten in the form of Eq. (7) as follows:

k AT A
QK = Z q(ama’bmb)clmncbm,,s

am,,bm,
ng— = Z q(amaTas bmbTb)éim”T” é\'bm,,‘z',, )
am,t,,bm,t, (9)
with
qlamg,bmy) = (=) qabk){ jama jp ~ mylke) ,

qlamgTa, bmyty) = (=)™ g(abkt)

1 1
<jamajb _mblk’(><§7—a§ _TbltT> .

In most cases, one-body operators in the NPA are her-
mitian or anti-hermitian, corresponding to

(04) == (-)0k,,
¥ S
(Qﬁ) =% (_)k e TQ]iﬁ,;(_T’ (10)
and
q];(ama’ bmb) = i qli/((bmhvama)’
qev(amata, bmyty) = £ 4% (bmpty.amat,), (1)
respectively.

In an odd-nucleon system, an unpaired nucleon is rep-
resented using a linear combination of a single-particle
basis state:

a'l0y =) a,c}10), (12)

where a, are structural coefficients of a'; in addition,
when the unpaired nucleon occupies a given single-
particle level @, a, =1 and a, =0 (¢’ # @). Similarly, the
coefficients a, construct a column vector a.

Our nucleon-pair basis states of uncoupled represent-
ation is given by the following:

pt At pT .. pt
PoPPy---Py

o> (13)
with

p= 1  ineven system
0 a'  inodd system
Alternatively, we can also rewrite the above basis in a
conventional NPA style,
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ATA”x (Ttl);'Arz(‘tz)T . .ArN(tN)T

0" my () “ "my(1y) my(Ty)

o> (14)

with

for an even — even nucleus

a=l !

0 é;m(T) for an odd mass nucleus
where the parentheses of t and 7 indicate again that the
isospin degree of freedom might be suppressed. The
above m-scheme basis states do not have given angular
momentum, but a diagonalization of the shell model
Hamiltonian yields the same wave functions and eigen-
energies as the NPA calculations once the configuration
space in the form of the above basis states is complete.
The dimensions of the above basis states are also equal to
those of the NPA configuration space, as pointed out in
Ref. [27].

By using notations of Egs. (3) and (9), the shell-mod-

el Hamiltonian of like nucleons are as follows:

_ i
Hiike = Z Ea Z € jum,(z,) € Juma(x.)
a m,T,

i L(t)t L(t)
+ Z GL(fﬂ)ZAm(T) ()’i)Am(T)(y,')

L(t),i m(T)
i k(t k(t
+ D Fly 0 0@k @), (19)
k(t),i KT

where the parentheses of ¢ and 7 indicate that the isospin
degree of freedom can be suppressed for interactions
between like valence nucleons. The three terms in this
Hamiltonian corresponds to a one-body term, multipole
pairing interaction, and multipole-multipole interaction,
respectively, where ¢,, G, and F are the single-particle
energy and interaction strengths of multipole pairing and
multipole-multipole  interaction. =~ We  distinguish

L)t 4L k(t) k()T L
Am((‘i))TAm((?) (and QKEE)) QKEE)) terms) with different y; (or g;)
matrices but the same L(t) (or k(t)) quantum number(s).
The one-body single-particle term can be rewritten in the

form of Eq. (7) as

g _ AT A
Z €a Z € jimar) Clam(t) = Z q(aﬂ)chﬁ ’
a

m,T, af
where

q(ap) = q(amy(74), bmy(Tp))
= 5ab6n14,m,, (67“7,, )eq .

The proton-neutron interaction in the particle-hole
channel is written as follows:

Hry = ZFJZC Z 0(qr)(—) O (@) (16)
k,i K

where 7 and v correspond to proton and neutron degrees
of freedom, respectively, and label i is introduced to dis-
tinguish Q%(¢.)(-)“Q*,(¢,) interactions with the same k
but different ¢,; and ¢,; matrices of structural coeffi-
cients.

From the description in this subsection, we showed
that the collective pair in the NPA as well as one-body
and two-body interactions of the nuclear shell model can
be formulated with the uncoupled representation. The for-
mulas in the following sections are applicable to the NPA
calculation, with the basis states written in the form of
Egs. (13) or (14). We can see clearly that the uncoupled
representation of the NPA is formulated in a unified way,
for both even-even nuclei and odd-mass nuclei, and both
with and without isospin symmetry.

B. Commutations between pair and one-body
operators

In this subsection, we present key commutators
between one nucleon-pair operator and one-body operat-
or in a decoupled form, as defined in the last subsection.

The commutator between a nucleon-pair annihilation
operator and nucleon-pair creation operator is easily ob-
tained as follows:

PN 1 A
|1 B}] = 5w (p2p) + . (17)

where p,p, are structure matrices of Py, P, tr(pp;) in-
dicates the trace of matrix product p,p;, and @ is a one-
body operator

6=>" glapiiis,
af

with structural matrix

9 =p2p1 -

Similarly, the commutator between nucleon-pair anni-
hilation operator, P3, and one-body operator, 0, yields
another nucleon-pair annihilation operator Py,

Py=[P;3,0], with ps=psig+q ps, (18)

where p3 and p4 are structural coefficient matrices of P3
and Py, respectively. In some cases, Eq. (18) can be fur-
ther simplified. For example, if the O operator is from the
commutator between P; and another arbitrary pair cre-
ation operator Pl e, q = psp3 according to Eq. (17), the
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two parts of the right-hand side of Eq. (18) become equi-
valent according to the anti-symmetry of p; and ps, and
this equation then is reduced to ps =2p3psp;. We fre-
quently observe such a reduction in usual NPA calcula-
tions.

The single-particle operators follow the following re-
lation:

ab’ ={a,b'}-b'a=a-b-Q, (19)

where @-b is the inner product of vectors @ and 5, and Q
is a one-body operator with structural matrix ¢ = ba" .
The commutator between single-particle annihilation

operator, &, and one-body operator, O, yields another
single-particle annihilation operator, d,

~

=[2,01= ) doty, with
@
d=q"a, (20)
where vector d represents the structural coefficient d op-
erator.
The commutator between single-particle annihilation

operator, @, and pair creation operator, Pf, produces a
single-particle creation operator, d',

= D dot], with
(07

d=-pa, (21)

d" =1[a, P

where, again, d represents structural coefficient d* oper-
ator.

C. Commutators of N nucleon pair operators

By using Egs. (17) through (21), one easily derives
the commutator between N nucleon-pair annihilation op-
erator and one-body operator,

N
[Pobi - P0] = 3P0

Py Pk,Q]f’kH'“PN, (22)

. Py with =pg+q’ k0,
X A (23)
d with Pp=aandd=q'd k=0

Similarly, one derives commutators between N nucleon-
pair annihilation operators and one nucleon-pair creation
operator,

[popl PN,PT Py Pk P ]Pk+l Py

—=tr(ppi)Po- -+ Pio1 Prsr -+ Py

1
2

s le gMZ

Py ProyQPrsy -+ Py

>~
]

1
PP

+
=

Nlin odd system ’

24

where the one-body operator @; has a structural matrix
@i = PPk, and the single-particle creation operator A" has
structural coefficients represented by #=—pd. The
Py---Pr_1Gy term in the second term of the right-hand
side of the above equation is re-organized as follows,

Py, @k]+@kP0 Py

A

P Pk 1@ [ 0
k-1
= P()"'Pifl [P,',@Ak]PHl"'Pkfl

< P, (25)

5 51 ] Pk with Zik = PiPPi+ pippi 1#0,
16 ={ ¢ _ ”
ér with Py=aandé, = pkpd i=0.
(26)

From Eqgs. (24) and (25), we have the following:
N

A 1 N N A~ N
[POPI "'PNJPJT] = Z —§tr(lp17k)PO «Pr_1Pry1--- Py
=1

».

—1

+ Py -Piy Py Pisy- Py Pray Py

ko Pr—1Prer- - Py

odd system

0+ Pk-1Pr+1--- Py

@)
"U>

G M i

A

Q.) T
"U)

Nlodd system ’

@7

where ;4 and &, are as given in Eq. (26).

The two-body interaction operator are written in the
form of A"B, where A is a collective nucleon-pair cre-
ation operator with structural matrix p,, and B is a col-
lective nucleon-pair annihilation operator. From Eq. (27),
we have
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N N k-1
[ﬁopl"'pN,ATB] ZZ__tr(PAPk)PO Py BPyy g - PN+ZZIA)O'“IA)I'—1‘93\I',]{IA)I'+1 e Py BPpyy - Py
= k=2 i=1
N
+Zék---Pk_lBPk+1~-PN + ) GuPo- P BP - Py + APy Pr gy s (2)
k=1 inodd system k=1

where the structural coefficients of operators 93,;/(, ¢r, and @, are the same as in Eq. (26), with the replacement of p
when using pj.

The two-body operator in a particle-hole channel is written in the form of Q. We then readily have

[POIBI"‘PN»QQT] =[
= [[BoP1 Py, O], 07| + O [PoPy - Py, O]+ O[ PoPy - Py, O]. (29)

The iterative application of Eq. (22) to the above commutator yields
N

([oPr- 2.0].07] =| 3 oo Bics [Prans O Beor - B0

=0

Nhgi { Piy [pi,QT]PiH“'Pk—I[Pk’QA]pkH i<k } R
Py

= Z Py--- Pey [Pk, Q]Pk+l Py [P,», QT]le k<i

k,i=0
+ Z Py Py 1[ Py, A] ]Pk+1 <Py, (30)
k=i=0
where
[f, Q] _ Py with Pk =g +q pi k¢0 [P QT] ?z‘ with 7i =PiCIT+iIPi i#0
ko ¢ with Pp=aandé=q"a o f  with Pp=aand f=¢'@ i=0 "
[[2.0].0'] = Be with p =pquT+ququ+qpkq+qupk k#0 a1
¥ 2 with Py=aandg=qq"a k=0 -

Substituting this result into Eq. (29), we have the following:

N k#i

[#ob 2y 00']= 3 | A s .

A . Py
ProyPiPryy - Py PPy k<

A A

1B Prsy -+ Py

+
I
M=~
~
<
~>

=

N
+{Z P P Prr - Py+ ) fPi1 PP """PN+§"'13N}
i=1 k=1

odd system

+
2
~
(=)
~>
~>
Z
S
IQ>
T
"U>
©>

0. (32)

ference is that, in Refs. [29,30], the phonon states were
II. OVERLAPS OF BASIS STATES AND treated with quasi-particle pairs, whereas herein we ad-

MATRIX ELEMENTS OF HAMILTONIAN opt the m-scheme NPA basis states constructed from
valence-nucleon pairs. As in the previous NPA formula-
tion [21, 23-25], in this section, we first discuss the over-
laps of the basis states and the matrix elements of the  |ang of the basis states for systems without an unpaired
Hamiltonian matrix elements. Some formulas are in a nucleon. The overlaps for an odd-mass nucleus is then
similar form as those in Refs. [29, 30]; the essential dif- presented in terms of matrix elements of one-body oper-

In this section, we present general formulas for over-
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ators in the basis states of its even-even neighboring nuc-
leus, and the matrix elements of the shell-model Hamilto-
nian for an odd-mass nucleus are written in terms of over-
laps of basis states for this odd-mass nucleus. Therefore,
the evaluation of the overlaps for the basis states without
an unpaired nucleon is the key computation, as in the pre-

A

PPy

o

J@{-..Pjv|o>

| =

<0

»

-1

(ol

i
where % is given in Eq. (26). The above formula of an
N-pair overlap can be used recursively, and thus is re-
duced to a sum of the overlaps for N =1,

(0]2[#*|0) = <o

where p and p are structural matrices of P and P', re-
spectively.

By using Eq. (22), one obtains the matrix element of
the one-body operator, Q, in the nucleon-pair basis,

+

Mz EMz

=~
1l
—_

[§

Pl [.57]0) =S uwp)

vious versions of the NPA in Refs. [21, 23-25, 27].

A. Even-nucleon system

Let us first consider the overlap

<0'131 Py 'PI o -I@’}Lv )0> By using Eq. (27), we have

tf(]PNPk)< |P1 Py Pryy - PN|PT |0>

Pi1PigPisy - Py Pryy -+ Py '113’1 - ']@L_l '0>

<0

A A

!

'ﬁ)

~|0[B]

Byfo)=(o[[P1-+Pn.0]21 -2}

N
= Z<0'131 "'pk_lg%kpkﬂ"'pN’PI--.@HO>’
) (34)

where P is as given in Eq. (23).

From Eq. (28), one obtains the matrix element of a
two-body interaction operator in the particle-particle
channel, AB,

(o[- P |A" B2 B} 0) =(o] [Py -+ P A"B]] -2} 0)
N
1 St . DT
=- Zztr(PAPk)< Pr1BPyy PN|P1 PN'0>
k=1
Nk ,
+ZZ< [Py Py @by - Py BPyy - Py [B] -P,'v|0> (35)
k=2 i=1
Similarly, from Eq. (32), one obtains a matrix element of particle-hole interaction, 00,
(0fP1-+ 21 100'|#]---21[0) =(0]| 71+ Py 00521 o)
Nk A PO
X 5 Pi 1 PPy PioaPriPr1 i<k 5 lat ot >
= olp, ... { L1t k=17 k) Pyt BT o
];:1< ! {Pk—l{@kpkﬂ“'Pi—lgjiPiH k<i N‘l N‘
N .
# 3 (0]Pr-++ PucrtuPros - P[] -} o), (36)
k=1

where &;, P, and B, are as given in Eq. (31).

B. Odd-nucleon system

As discussed above, once the overlaps and matrix ele-
ments of one- and two-body operators for even-nucleon
systems are obtained, the results for odd-mass systems
are readily obtained in terms of those of even-nucleon

[
systems. From Eq. (19), one obtains an overlap of an
odd-mass nucleus in nucleon-pair basis states as follows:

<0'aﬁ1 Py

b8} -8 [0) =@-5)(0[Py - Py E] -} o)

—<0|f’1"'ﬁN|Q|1AP’T"'I@’L|O>’
(37)

054103-7



Y. Lei, Y. Lu, Y. M. Zhao

Chin. Phys. C 45, 054103 (2021)

where Q has a structural matrix Qzl;ZiT. On the right
hand side of the above equation, the formula of the first
term is given in Eq. (33), and the formula of the second

term is given in Eq. (34). For the case of N =0,

AAAAA

PT| >=< '[aPl Py, Q)68

-

(alp™)=a"b.

Similarly, we preset the matrix elements of O, A"B,
and QO for an odd-nucleon system, in terms of overlaps
of Eq. (37). By using Eq. (22), one obtains the Q matrix
element of an odd-nucleon system as follows:

%)

Pt
Py

N
=<0’c?131 Py 'BTI@}-.P;,'0>+Z<0|&---Pk_1@kﬁk+l ~--13N|BT---J@>L'0>, (38)
=1
where d and 9 are as given in Eq. (23). By using Eq. (28), one obtains the matrix elements of A B as follows.
(0faPy-+- Py |A"B|5'B]--BL|0) =(o][aPy - Py, A'B] @T@j...@;|o>
o
== > Swpap) (0[aPy -+ Prot BBt -+ Py [pTE]E] - B [0)
k=1
Nk ,
+ZZ<O|&P1 o P PipPisr - Pio BPyy - Py 'b*P}---P}V|o>
k=2 i=1
N . .
+Z<0 oxPy - Py BPyy -+ Py @T@;I@;...@Ho), (39)
k=1
where 9, and &, are given in Eq. (26). By using Eq. (32), one obtains the matrix elements of QQ" as follows.
(ofay - Pu|0O'|5'E] - BY|) = (0[aPr- v, 00|57} -2}
N
=(0fay -+ Pu[BE] 2 0) + 3" (0[ePr-+ ProrPiPrnr -+ P[] -] o)
N v
+Z< 'fP] Pk 19’Pk+1 PN'bTPT -P) |0>
i=1
N
+Z<O'&P1---Pk_l‘BkPk+l Py ‘bTPI---PjV]0>
=1
Nt . . . .
\ A Pifleq)iPiJr]"'Pkflg@kPkH i<k } 5 |t A >
+ olap,--- { . ! X . . p o PylbT--PL{0), 40
& ( ! { Py PiPrar - Pioi PP k< N' N‘ (40)

where %, P;, By, e, f, and g are as given in Eq. (31),

IV. EFFICIENCY DEMOSTRATION

In this section, we demonstrate the computational ef-
ficiency of the matrix-represented NPA from three as-
pects: overlap computation, overall timing for the whole
NPA procedure, and °Sm calculation.

A. Overlap computation
The computation of overlaps between the basis states

is a key part of all approaches of the NPA. In this subsec-
tion, we discuss the computational advantage of our mat-
rix-represented NPA in the calculations of the overlaps
between the basis states, in comparison with those for the
NPA described in Refs. [21,23] and Ref. [27]. This com-
parison is exemplified by calculations for a semi-magic
Ca isotope chain using S D-pair approximation of the pf
shell.

In Fig. 1, we plot the evolution of the average compu-
tational time of one overlap with nucleon-pair number N.
According to Fig. 1, the overlap-computation time for the
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Fig. 1.
overlap versus nucleon-pair number N, for three approaches of
the NPA, exemplified by the calculations for Ca isotope chain
using S D-pair space in the pf shell. In addition, “traditional
NPA” corresponds to the NPA of Refs. [21, 23], “He eral.”
corresponds to the NPA of Ref. [27], and “this work” corres-
ponds to the NPA with an uncoupled representation. The cal-
culations are carried out on a PC platform with a CPU fre-
quency of 4.9 GHz.

(color online) Average computational time of one

NPA of Refs. [21, 23] is the smallest when N =1 and is
almost the same for three approaches in Refs. [21, 23],
Ref. [27], and for the present NPA with an uncoupled
representation when N =2. For N > 3, the overlap-com-
putation time with an uncoupled representation is sub-
stantially superior to that for the NPA of Refs. [21, 23]
and Ref. [27]. For instance, for N =5, the overlap-com-
putation time using the approaches of Refs. [21,23] is lar-
ger by approximately 2 orders than that of Ref. [27] and
by approximately 4 orders than that of the NPA with the
uncoupled representation suggested in this study.

It is worth understanding the reason why the overlap-
computation time of an uncoupled representation is lar-
ger than the other two for the case of N = 1. In the case of
N =1, the NPA of Refs. [21,23] or Ref. [27] calculates
the overlaps using an extremely compact formula,

(ri,J1ls1,J1) = 201,501, 7,65,, Zy(abrl)y(absl) ,
ab

which corresponds to the inner product of the two struc-
tural y matrices of the bra and ket. On the other hand,
with the uncoupled representation, the N =1 overlap is
described with Eq. (34), an inner product of two structur-
al matrices of p and p. Because in previous NPA ap-
proaches, for the angular-momentum-projection, the de-
gree of freedom of the collective pairs is degenerative and
thus frozen, its structural y matrix has a smaller dimen-
sion than the p and p matrices used in our approach. As a
result, the N =1 overlap of previous approach requires
less time.

B. Overall timing
Although the efficiency improvement of our ap-

proach is obvious regarding the overlap calculation, be-
cause of the introduction of the m-scheme basis, the mod-
el space is enlarged. This leads to more calculations of
the Hamiltonian matrix elements. It is worth verifying
whether this model space enlargement diminishes the ef-
ficiency improvement in the overlap calculation.

To achieve this, we finish a series of NPA calcula-
tions with three different approaches. Similar to the over-
lap computation test described in Sec. IVA, these calcula-
tions are specified for the Ca isotope chain in the pf shell
with S D pairs. Each calculation covers all of the neces-
sary procedures to obtain the yrast level scheme of
quantum many-body systems, from the basis construc-
tion to the Hamiltonian matrix element calculation, and
finally to the diagonalization of the Hamiltonian. The
overall time of such a calculation can comprehensively
demonstrate the efficiency improvement of our approach
in a general and realistic calculation regarding the nucle-
ar structure.

The overall times of these calculations are presented
in Fig. 2. Regardless of how many valence nucleon pairs
are introduced, our approach always requires the minim-
al time to finish the entire process of the NPA calculation.
Thus, the enlargement of the model space brought by the
m-scheme basis is tolerable in our approach. Furthermore,
with the extra calculations of the Hamiltonian matrix ele-
ments, we do not observe the superiority of the tradition-
al NPA approach and the approach in Ref. [27] for the
N =1 case, which was seen in the overlap computation,
as shown in Fig. 1. This is because the calculations of the
Hamiltonian matrix elements in these two approaches can
no longer be reduced to a simple and compact inner
product of small y matrices and thus require a longer
CPU time.

C. Realistic calculation for *°Sm

Figure 2 lets us realize the possibility of NPA calcula-
tions with 6 identical valence nucleon pair on a usual PC.
Therefore, we attempt to perform an NPA calculation for
156Sm, which has 12 (6 pairs of) valence protons and 12

10* T T T T : I
= This work
f| o Heetal © 3

= 10 A traditional NPA] 4 . ]
N— o]
(] 3 4
S
F 10°k : y
E A
O E . 3

107 5 1

1 2 3 4 5 6

N
Fig. 2. (color online) The same as in Fig. 1, except for the
overall computational time of the whole NPA calculation.
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(6 pairs of) valence neutrons in 50-82 and 82-126 shells,
respectively. This nucleus is impossible to manage with
previous NPA approaches. Therefore, such a calculation
pushes the potential capability of the uncoupled repres-
entation to its limit and can best demonstrate the power of
our approach.

In the '*%Sm calculation, we adopt the same Hamilto-
nian and model space as those used for '°Nd calculation
in Ref. [27], except for a slight tunning of the two-body
interaction strengths to fit the experimental level scheme.
The Hamiltonian parameters are listed in Table 1.

After ~36-h serial computing on a PC platform with a
CPU frequency of 4.9 GHz, we obtain the low-lying
spectrum of °Sm and compare it with the experimental
spectrum in Fig. 3. A reasonable agreement is achieved.

This serial calculation for '°Sm suggests that the
NPA with an uncoupled representation is feasible for all
nuclei with the valence-pair number < 6. By contrast, to
the best of our knowledge, a traditional NPA can only
manage a valence-pair number <4. That means that the
uncoupled representation extends the NPA-applicable re-
gion by ~100%, as shown in Fig. 4.

V. REASONS FOR EFFICIENCY
IMPROVEMENT

We noted the dramatic efficiency improvement of the

Table 1.
the details of the Hamiltonian. The single-particle energy is
from Ref. [34]

Hamiltonian parameters in MeV. See Ref. [27] for

51/2 32 ds)» 812 hi1)2
2.990 2.44 0.962 0.000 2.793

En

P12 P32 f52 fi2 89/2 i13/2
&y
1.363 0.8537  2.0046  0.000 1.5609  2.690
Gor Gox Goy Gay Kny
two-body
0.140 0.063 0.120 0.019 0.251
C 1-24.0
L 4+
1.5 10+ 2+ —10+
i {-245
1.0} . —0+ 6+
—~ —8+ — 8+ _
> . 4 1250
> 6+ —6+ 3
< 05r  — ] =0+
. —4+ - 4+ 2+ 1255
0.0f =2 —2+
0+
(a) Exp. | (b)Cal. | 560
Fig. 3.  Low-lying spectra of '°Sm. Experimental data

(Exp.) is from Refs. [34,35]. The theoretical calculation (Cal.)
is performed with an uncoupled representation.

98

96

94 156Sm

92

90 148Ce

88

86

84

82 32Sr/

50 52 54 56 58 60 62 64 66
V4

Fig. 4.  (color online) NPA-applicable nuclear region in
Z=52-82 and N =82-126 major shells. The slash shadow
area is for the j scheme with “8Ce as the heaviest nucleus,
which has four pairs of valence protons and four pairs of
valence neutrons. The gray area is for an uncoupled represent-
ation with 1°Sm as the heaviest nucleus.

uncoupled representation. In this section, we try to ex-
plain the reason from two aspects, i.e., the commutation
efficiency and recursion number.

A. Commutation efficiency

In a traditional NPA or the newly proposed approach
in Ref. [27], the commutations of collective pairs and
one-body operators involve a three-folded summation
over a gigantic amount of 6j-symbol calculations [for ex-
ample, see Egs. (2.10a) and (4.5a) of Ref. [23], or Egs.
(16) and (17) of Ref. [27]], which are extremely time-
consuming.

Represented using matrices, the commutations are
simply and straightforwardly expressed, without angular-
momentum coupling. Furthermore, a modern computing
architecture has been developed to adapt to the instruc-
tion set of Single Instruction Multiple Data, which
provides data-level parallelism on multiple data points as
opposed to executing multiple instructions [36]. Such a
technique favors a matrix-product operation. Thus, a mat-
rix-represented commutation on the current generation of
the processors is expected to be more efficient.

To demonstrate the commutation efficiency, we ap-
ply a commutation between a pair annihilation and cre-
ation operators with different formulas on the same PC
platform with a CPU frequency of 4.9 GHz. The actual
computational time for each commutation is presented in
Table 2. With the matrix multiplication of Eq. (2.17), the
computational time is ~10"° s for an arbitrary commuta-
tion [Py, P]] between two collective pairs P; and P} . By
contrast, with the traditional formalism as described with
Egs. (2.10a) and (2.10b) of Ref. [23], coupled commuta-
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Table 2.
of 107° s. The single-particle space is in the pf major shell.

Computational times for one commutation in unit

Here, [ﬁl,f’;] corresponds to any arbitrary commutation of the
pair creation and annihilation operators in an uncoupled rep-
resentation without an angular-momentum coupling, as de-
scribed in Eq. (17). The § and D pairs correspond to the col-
lective pairs with J™ =07, 2+, respectively. Their commuta-
tions with definite final angular momentums (¢ number) are
carried out with Egs. (2.10a) and (2.10b) of Ref. [23].

Commutation time (10 s) Commutation time (10 s)
[P1,P5] 0.926
3.8 T]’=° 4.077 [D. ﬁ#]’ﬂ 6.320
3,017 4787 [0.67]™ 7.637
[5.57]7 8.475 [0.51]7 8.010
[D. f)'r]’:" 4.928 [D. [)'i']’:“ 6.374

tions with a definite t quantum number usually take
~5x%107% s or more. This observation agrees with the
analysis in this subsection.

B. Recursive number

All NPA calculations are performed recursively.
Therefore, smaller numbers of recursion are favorable in
the NPA calculations. Below we enumerate the number
of recursions involved in an overlap calculation for N
nucleon-pair basis in terms of the (N -—1)-pair overlap
number required in such a calculation.

In Fig. 5 we plot such overlap numbers with (N—1)
nucleon pairs, versus nucleon-pair number N, for the
NPA approach of Refs. [21,23] and Ref. [27] and the un-
coupled representation suggested in this paper. One can
see that the number of overlaps with (N — 1) nucleon pairs
involved in an overlap of N nucleon pairs for the matrix
represented NPA is the smallest. In particular, in cases of
nucleon pairs with larger spins, the advantage of the mat-
rix representing the NPA is even more striking.

Let us first take a close look at the approaches of
Refs. [21,23]. In this approach, new intermediate
quantum numbers arise from angular-momentum recoup-
lings of the basis states and nucleon-pairs, i.e., the L
quantum numbers therein [21, 23]. In this case, it is diffi-
cult to enumerate the number of overlaps with (N—1)
nucleon pairs analytically; herein, we apply this enumera-
tion using our computer code and plot the numbers versus
pair number N in Fig. 5, denoted using shadows in grey,
for an S D-pair configuration in the pf shell. According
to our enumeration, as plotted in Fig. 5 for an overlap
with N = 6, for example, one has to calculate up to a few
hundred overlaps of the basis states with N =5.

The NPA approach of Ref. [27] involves of a smaller
number of recursions of overlaps with N—1 nucleon
pairs than the approaches of Refs. [21,23] in the overlaps

T T T T

-
(=)
S
T

m this work

U] He et al.
[ traditional NPA

2 4 6 8 10
N

Fig. 5. (color online) Number of overlaps with (N - 1) nucle-
on pairs required in an overlap calculation with N nucleon
pairs, with the NPA approaches of Refs. [21,23] (shadow in
grey, labeled as “traditional NPA™), that of Ref. [27] (stripes,
labeled as “He et al”), and the present formulation (solid
squares in black, labeled as “this work”). See the text for de-
tails.

- -
o (=)
) w
T T
!

N
O_.
T

Number of (N-1)-pair overlaps

1

of N nucleon pairs. In the overlap <O|D1D2---D,~---

Dy DID;--- D;---D]TV'O> of Ref. [27], each {i,k} combin-
ation includes seven overlaps of a(N-1)-pair system,
with seven possible intermediate pairs of A7"=0~%. In total,
there are N(7N —5)/2 overlaps with (N —1) nucleon pairs
involved in the calculations of overlaps with N nucleon
pairs. The numbers of overlaps with (N — 1) nucleon pairs
for various nucleon-pair basis states are plotted using
stripes in Fig. 5, with their maxima N(7N —5)/2.

Inthe NPA with an uncoupled representation de-
scribed in this paper, all nucleon pairs including those
given by a double commutation, as shown in Eq. (26), are
represented by matrices, and there is no multiplicity of
angular momentum arising from a commutation. There
are N(N-1)/2 overlaps of (N—1) nucleon pairs with a
new pair of %, given in Eq. (26) and N overlaps of
(N —1) nucleon pairs without new pairs. In total, one N-
pair overlap involves N(N + 1)/2 overlaps of (N —1) nuc-
leon pairs, as denoted by the solid squares in black. This
number is in general smaller than that in the NPA ap-
proach of Ref. [27].

Note that the reduction of the recursive number in our
approach can be attributed to the flexibility of our formal-
ism presented in Sec. III. Such formalism does not re-
quire a definite angular momentum for all pair and
particle-hole operators. Thus, when an intermediate pair
or particle-hole operator is created during the calculation,
to adapt to our formalism, we do not need to decouple it
into several operators with a definite angular momentum.
However, this operator decoupling is required by the
formalism in Ref. [27], which introduces extra overlap
callings and recursions.

In a word, the boost of the commutation computing
and the decrease in the recursive number are the two
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components of the efficiency improvement brought about
by an uncoupled representation. According to the analys-
is in this section, these two elements are strongly related
to the complete removal of angular-momentum coup-
lings and recouplings throughout the computation.

VI. SUMMARY

To summarize, in this paper, we revisited the NPA
formulation with an uncoupled representation. The nucle-
on-pair structural coefficients in this formulation are rep-
resented in terms of anti-symmetrized matrices. The over-
laps, matrix elements of one-body operators, and a shell
model Hamiltonian are calculated recursively as in previ-
ous approaches [21, 23-25, 27].

This formalism presented in Secs. IIB, IIC, and III
does not necessarily require a definite angular mo-
mentum and its projection for all pairs and particle-hole
operators. Such flexibility leads to fewer recursions in the
overlap calculation, as presented in Fig. 5, which contrib-
utes significantly to an improvement in the computation-
al efficiency. Furthermore, within this formalism, the

NPA calculations with and without isospin symmetry and
for odd and even nucleons are formulated on the same
footing. This enables easy extensibility of the NPA com-
putation.

The implementation of this formalism presents a sig-
nificant improvement in the computational efficiency ac-
cording to the overlap calculations, the whole-procedure
NPA calculations, and perhaps the heaviest NPA calcula-
tion ever for a realistic '*°Sm, which only requires ~36 h
on a typical PC. This efficiency improvement of the
present approach is finally traced back to the removal of
angular-momentum couplings and  recouplings
throughout the computation.

As shown with the '%Sm calculation, the uncoupled
representation enables studies of the rotational motion of
heavy nuclei within the framework of the nucleon-pair
approximation of the nuclear shell model.
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